linux_old1/drivers/gpu/drm/radeon/radeon_sync.c

221 lines
5.6 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Christian König <christian.koenig@amd.com>
*/
#include <drm/drmP.h>
#include "radeon.h"
#include "radeon_trace.h"
/**
* radeon_sync_create - zero init sync object
*
* @sync: sync object to initialize
*
* Just clear the sync object for now.
*/
void radeon_sync_create(struct radeon_sync *sync)
{
unsigned i;
for (i = 0; i < RADEON_NUM_SYNCS; ++i)
sync->semaphores[i] = NULL;
for (i = 0; i < RADEON_NUM_RINGS; ++i)
sync->sync_to[i] = NULL;
sync->last_vm_update = NULL;
}
/**
* radeon_sync_fence - use the semaphore to sync to a fence
*
* @sync: sync object to add fence to
* @fence: fence to sync to
*
* Sync to the fence using the semaphore objects
*/
void radeon_sync_fence(struct radeon_sync *sync,
struct radeon_fence *fence)
{
struct radeon_fence *other;
if (!fence)
return;
other = sync->sync_to[fence->ring];
sync->sync_to[fence->ring] = radeon_fence_later(fence, other);
if (fence->is_vm_update) {
other = sync->last_vm_update;
sync->last_vm_update = radeon_fence_later(fence, other);
}
}
/**
* radeon_sync_resv - use the semaphores to sync to a reservation object
*
* @sync: sync object to add fences from reservation object to
* @resv: reservation object with embedded fence
* @shared: true if we should only sync to the exclusive fence
*
* Sync to the fence using the semaphore objects
*/
int radeon_sync_resv(struct radeon_device *rdev,
struct radeon_sync *sync,
struct reservation_object *resv,
bool shared)
{
struct reservation_object_list *flist;
struct fence *f;
struct radeon_fence *fence;
unsigned i;
int r = 0;
/* always sync to the exclusive fence */
f = reservation_object_get_excl(resv);
fence = f ? to_radeon_fence(f) : NULL;
if (fence && fence->rdev == rdev)
radeon_sync_fence(sync, fence);
else if (f)
r = fence_wait(f, true);
flist = reservation_object_get_list(resv);
if (shared || !flist || r)
return r;
for (i = 0; i < flist->shared_count; ++i) {
f = rcu_dereference_protected(flist->shared[i],
reservation_object_held(resv));
fence = to_radeon_fence(f);
if (fence && fence->rdev == rdev)
radeon_sync_fence(sync, fence);
else
r = fence_wait(f, true);
if (r)
break;
}
return r;
}
/**
* radeon_sync_rings - sync ring to all registered fences
*
* @rdev: radeon_device pointer
* @sync: sync object to use
* @ring: ring that needs sync
*
* Ensure that all registered fences are signaled before letting
* the ring continue. The caller must hold the ring lock.
*/
int radeon_sync_rings(struct radeon_device *rdev,
struct radeon_sync *sync,
int ring)
{
unsigned count = 0;
int i, r;
for (i = 0; i < RADEON_NUM_RINGS; ++i) {
struct radeon_fence *fence = sync->sync_to[i];
struct radeon_semaphore *semaphore;
/* check if we really need to sync */
if (!radeon_fence_need_sync(fence, ring))
continue;
/* prevent GPU deadlocks */
if (!rdev->ring[i].ready) {
dev_err(rdev->dev, "Syncing to a disabled ring!");
return -EINVAL;
}
if (count >= RADEON_NUM_SYNCS) {
/* not enough room, wait manually */
r = radeon_fence_wait(fence, false);
if (r)
return r;
continue;
}
r = radeon_semaphore_create(rdev, &semaphore);
if (r)
return r;
sync->semaphores[count++] = semaphore;
/* allocate enough space for sync command */
r = radeon_ring_alloc(rdev, &rdev->ring[i], 16);
if (r)
return r;
/* emit the signal semaphore */
if (!radeon_semaphore_emit_signal(rdev, i, semaphore)) {
/* signaling wasn't successful wait manually */
radeon_ring_undo(&rdev->ring[i]);
r = radeon_fence_wait(fence, false);
if (r)
return r;
continue;
}
/* we assume caller has already allocated space on waiters ring */
if (!radeon_semaphore_emit_wait(rdev, ring, semaphore)) {
/* waiting wasn't successful wait manually */
radeon_ring_undo(&rdev->ring[i]);
r = radeon_fence_wait(fence, false);
if (r)
return r;
continue;
}
radeon_ring_commit(rdev, &rdev->ring[i], false);
radeon_fence_note_sync(fence, ring);
}
return 0;
}
/**
* radeon_sync_free - free the sync object
*
* @rdev: radeon_device pointer
* @sync: sync object to use
* @fence: fence to use for the free
*
* Free the sync object by freeing all semaphores in it.
*/
void radeon_sync_free(struct radeon_device *rdev,
struct radeon_sync *sync,
struct radeon_fence *fence)
{
unsigned i;
for (i = 0; i < RADEON_NUM_SYNCS; ++i)
radeon_semaphore_free(rdev, &sync->semaphores[i], fence);
}