3467 lines
90 KiB
C
3467 lines
90 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
|
|
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
|
|
*
|
|
* Copyright (C) 2005, Intec Automation Inc.
|
|
* Copyright (C) 2014, Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/spi/flash.h>
|
|
#include <linux/mtd/spi-nor.h>
|
|
|
|
#include "core.h"
|
|
|
|
/* Define max times to check status register before we give up. */
|
|
|
|
/*
|
|
* For everything but full-chip erase; probably could be much smaller, but kept
|
|
* around for safety for now
|
|
*/
|
|
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
|
|
|
|
/*
|
|
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
|
|
* for larger flash
|
|
*/
|
|
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
|
|
|
|
#define SPI_NOR_MAX_ADDR_WIDTH 4
|
|
|
|
/**
|
|
* spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
|
|
* transfer
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @op: pointer to 'struct spi_mem_op' template for transfer
|
|
*
|
|
* If we have to use the bounce buffer, the data field in @op will be updated.
|
|
*
|
|
* Return: true if the bounce buffer is needed, false if not
|
|
*/
|
|
static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
|
|
{
|
|
/* op->data.buf.in occupies the same memory as op->data.buf.out */
|
|
if (object_is_on_stack(op->data.buf.in) ||
|
|
!virt_addr_valid(op->data.buf.in)) {
|
|
if (op->data.nbytes > nor->bouncebuf_size)
|
|
op->data.nbytes = nor->bouncebuf_size;
|
|
op->data.buf.in = nor->bouncebuf;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_spimem_exec_op() - execute a memory operation
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @op: pointer to 'struct spi_mem_op' template for transfer
|
|
*
|
|
* Return: 0 on success, -error otherwise.
|
|
*/
|
|
static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
|
|
{
|
|
int error;
|
|
|
|
error = spi_mem_adjust_op_size(nor->spimem, op);
|
|
if (error)
|
|
return error;
|
|
|
|
return spi_mem_exec_op(nor->spimem, op);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_spimem_read_data() - read data from flash's memory region via
|
|
* spi-mem
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @buf: pointer to dst buffer
|
|
*
|
|
* Return: number of bytes read successfully, -errno otherwise
|
|
*/
|
|
static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
|
|
size_t len, u8 *buf)
|
|
{
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
|
|
SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
|
|
SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
|
|
SPI_MEM_OP_DATA_IN(len, buf, 1));
|
|
bool usebouncebuf;
|
|
ssize_t nbytes;
|
|
int error;
|
|
|
|
/* get transfer protocols. */
|
|
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
|
|
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
|
|
op.dummy.buswidth = op.addr.buswidth;
|
|
op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
|
|
|
|
/* convert the dummy cycles to the number of bytes */
|
|
op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
|
|
|
|
usebouncebuf = spi_nor_spimem_bounce(nor, &op);
|
|
|
|
if (nor->dirmap.rdesc) {
|
|
nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
|
|
op.data.nbytes, op.data.buf.in);
|
|
} else {
|
|
error = spi_nor_spimem_exec_op(nor, &op);
|
|
if (error)
|
|
return error;
|
|
nbytes = op.data.nbytes;
|
|
}
|
|
|
|
if (usebouncebuf && nbytes > 0)
|
|
memcpy(buf, op.data.buf.in, nbytes);
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_read_data() - read data from flash memory
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @from: offset to read from
|
|
* @len: number of bytes to read
|
|
* @buf: pointer to dst buffer
|
|
*
|
|
* Return: number of bytes read successfully, -errno otherwise
|
|
*/
|
|
ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
|
|
{
|
|
if (nor->spimem)
|
|
return spi_nor_spimem_read_data(nor, from, len, buf);
|
|
|
|
return nor->controller_ops->read(nor, from, len, buf);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_spimem_write_data() - write data to flash memory via
|
|
* spi-mem
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @buf: pointer to src buffer
|
|
*
|
|
* Return: number of bytes written successfully, -errno otherwise
|
|
*/
|
|
static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
|
|
size_t len, const u8 *buf)
|
|
{
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
|
|
SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(len, buf, 1));
|
|
ssize_t nbytes;
|
|
int error;
|
|
|
|
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
|
|
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
|
|
op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
|
|
|
|
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
|
|
op.addr.nbytes = 0;
|
|
|
|
if (spi_nor_spimem_bounce(nor, &op))
|
|
memcpy(nor->bouncebuf, buf, op.data.nbytes);
|
|
|
|
if (nor->dirmap.wdesc) {
|
|
nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
|
|
op.data.nbytes, op.data.buf.out);
|
|
} else {
|
|
error = spi_nor_spimem_exec_op(nor, &op);
|
|
if (error)
|
|
return error;
|
|
nbytes = op.data.nbytes;
|
|
}
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_data() - write data to flash memory
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @buf: pointer to src buffer
|
|
*
|
|
* Return: number of bytes written successfully, -errno otherwise
|
|
*/
|
|
ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
|
|
const u8 *buf)
|
|
{
|
|
if (nor->spimem)
|
|
return spi_nor_spimem_write_data(nor, to, len, buf);
|
|
|
|
return nor->controller_ops->write(nor, to, len, buf);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_enable() - Set write enable latch with Write Enable command.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_write_enable(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_NO_DATA);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
|
|
NULL, 0);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_disable() - Send Write Disable instruction to the chip.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_write_disable(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_NO_DATA);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
|
|
NULL, 0);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_read_sr() - Read the Status Register.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @sr: pointer to a DMA-able buffer where the value of the
|
|
* Status Register will be written.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_IN(1, sr, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
|
|
sr, 1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d reading SR\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_read_fsr() - Read the Flag Status Register.
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @fsr: pointer to a DMA-able buffer where the value of the
|
|
* Flag Status Register will be written.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_IN(1, fsr, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
|
|
fsr, 1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d reading FSR\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_read_cr() - Read the Configuration Register using the
|
|
* SPINOR_OP_RDCR (35h) command.
|
|
* @nor: pointer to 'struct spi_nor'
|
|
* @cr: pointer to a DMA-able buffer where the value of the
|
|
* Configuration Register will be written.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_IN(1, cr, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d reading CR\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
|
|
* address mode.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
|
|
SPINOR_OP_EN4B :
|
|
SPINOR_OP_EX4B,
|
|
1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_NO_DATA);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor,
|
|
enable ? SPINOR_OP_EN4B :
|
|
SPINOR_OP_EX4B,
|
|
NULL, 0);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
|
|
* flashes.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
|
|
* address mode.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
|
|
{
|
|
int ret;
|
|
|
|
nor->bouncebuf[0] = enable << 7;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
|
|
nor->bouncebuf, 1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_ear() - Write Extended Address Register.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @ear: value to write to the Extended Address Register.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
|
|
{
|
|
int ret;
|
|
|
|
nor->bouncebuf[0] = ear;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
|
|
nor->bouncebuf, 1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d writing EAR\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @sr: pointer to a DMA-able buffer where the value of the
|
|
* Status Register will be written.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_IN(1, sr, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
|
|
sr, 1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
|
|
* the flash is ready for new commands.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_xsr_ready(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
ret = spi_nor_xread_sr(nor, nor->bouncebuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return !!(nor->bouncebuf[0] & XSR_RDY);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_clear_sr() - Clear the Status Register.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*/
|
|
static void spi_nor_clear_sr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_NO_DATA);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
|
|
NULL, 0);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d clearing SR\n", ret);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
|
|
* for new commands.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_sr_ready(struct spi_nor *nor)
|
|
{
|
|
int ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->flags & SNOR_F_USE_CLSR &&
|
|
nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
|
|
if (nor->bouncebuf[0] & SR_E_ERR)
|
|
dev_err(nor->dev, "Erase Error occurred\n");
|
|
else
|
|
dev_err(nor->dev, "Programming Error occurred\n");
|
|
|
|
spi_nor_clear_sr(nor);
|
|
|
|
/*
|
|
* WEL bit remains set to one when an erase or page program
|
|
* error occurs. Issue a Write Disable command to protect
|
|
* against inadvertent writes that can possibly corrupt the
|
|
* contents of the memory.
|
|
*/
|
|
ret = spi_nor_write_disable(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return !(nor->bouncebuf[0] & SR_WIP);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_clear_fsr() - Clear the Flag Status Register.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*/
|
|
static void spi_nor_clear_fsr(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_NO_DATA);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
|
|
NULL, 0);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
|
|
* ready for new commands.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_fsr_ready(struct spi_nor *nor)
|
|
{
|
|
int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
|
|
if (nor->bouncebuf[0] & FSR_E_ERR)
|
|
dev_err(nor->dev, "Erase operation failed.\n");
|
|
else
|
|
dev_err(nor->dev, "Program operation failed.\n");
|
|
|
|
if (nor->bouncebuf[0] & FSR_PT_ERR)
|
|
dev_err(nor->dev,
|
|
"Attempted to modify a protected sector.\n");
|
|
|
|
spi_nor_clear_fsr(nor);
|
|
|
|
/*
|
|
* WEL bit remains set to one when an erase or page program
|
|
* error occurs. Issue a Write Disable command to protect
|
|
* against inadvertent writes that can possibly corrupt the
|
|
* contents of the memory.
|
|
*/
|
|
ret = spi_nor_write_disable(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return nor->bouncebuf[0] & FSR_READY;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_ready() - Query the flash to see if it is ready for new commands.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_ready(struct spi_nor *nor)
|
|
{
|
|
int sr, fsr;
|
|
|
|
if (nor->flags & SNOR_F_READY_XSR_RDY)
|
|
sr = spi_nor_xsr_ready(nor);
|
|
else
|
|
sr = spi_nor_sr_ready(nor);
|
|
if (sr < 0)
|
|
return sr;
|
|
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
|
|
if (fsr < 0)
|
|
return fsr;
|
|
return sr && fsr;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_wait_till_ready_with_timeout() - Service routine to read the
|
|
* Status Register until ready, or timeout occurs.
|
|
* @nor: pointer to "struct spi_nor".
|
|
* @timeout_jiffies: jiffies to wait until timeout.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
|
|
unsigned long timeout_jiffies)
|
|
{
|
|
unsigned long deadline;
|
|
int timeout = 0, ret;
|
|
|
|
deadline = jiffies + timeout_jiffies;
|
|
|
|
while (!timeout) {
|
|
if (time_after_eq(jiffies, deadline))
|
|
timeout = 1;
|
|
|
|
ret = spi_nor_ready(nor);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret)
|
|
return 0;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
dev_dbg(nor->dev, "flash operation timed out\n");
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
|
|
* flash to be ready, or timeout occurs.
|
|
* @nor: pointer to "struct spi_nor".
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_wait_till_ready(struct spi_nor *nor)
|
|
{
|
|
return spi_nor_wait_till_ready_with_timeout(nor,
|
|
DEFAULT_READY_WAIT_JIFFIES);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_sr() - Write the Status Register.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @sr: pointer to DMA-able buffer to write to the Status Register.
|
|
* @len: number of bytes to write to the Status Register.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
|
|
{
|
|
int ret;
|
|
|
|
ret = spi_nor_write_enable(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(len, sr, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
|
|
sr, len);
|
|
}
|
|
|
|
if (ret) {
|
|
dev_dbg(nor->dev, "error %d writing SR\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return spi_nor_wait_till_ready(nor);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
|
|
* ensure that the byte written match the received value.
|
|
* @nor: pointer to a 'struct spi_nor'.
|
|
* @sr1: byte value to be written to the Status Register.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
|
|
{
|
|
int ret;
|
|
|
|
nor->bouncebuf[0] = sr1;
|
|
|
|
ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->bouncebuf[0] != sr1) {
|
|
dev_dbg(nor->dev, "SR1: read back test failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
|
|
* Status Register 2 in one shot. Ensure that the byte written in the Status
|
|
* Register 1 match the received value, and that the 16-bit Write did not
|
|
* affect what was already in the Status Register 2.
|
|
* @nor: pointer to a 'struct spi_nor'.
|
|
* @sr1: byte value to be written to the Status Register 1.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
|
|
{
|
|
int ret;
|
|
u8 *sr_cr = nor->bouncebuf;
|
|
u8 cr_written;
|
|
|
|
/* Make sure we don't overwrite the contents of Status Register 2. */
|
|
if (!(nor->flags & SNOR_F_NO_READ_CR)) {
|
|
ret = spi_nor_read_cr(nor, &sr_cr[1]);
|
|
if (ret)
|
|
return ret;
|
|
} else if (nor->params->quad_enable) {
|
|
/*
|
|
* If the Status Register 2 Read command (35h) is not
|
|
* supported, we should at least be sure we don't
|
|
* change the value of the SR2 Quad Enable bit.
|
|
*
|
|
* We can safely assume that when the Quad Enable method is
|
|
* set, the value of the QE bit is one, as a consequence of the
|
|
* nor->params->quad_enable() call.
|
|
*
|
|
* We can safely assume that the Quad Enable bit is present in
|
|
* the Status Register 2 at BIT(1). According to the JESD216
|
|
* revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
|
|
* Write Status (01h) command is available just for the cases
|
|
* in which the QE bit is described in SR2 at BIT(1).
|
|
*/
|
|
sr_cr[1] = SR2_QUAD_EN_BIT1;
|
|
} else {
|
|
sr_cr[1] = 0;
|
|
}
|
|
|
|
sr_cr[0] = sr1;
|
|
|
|
ret = spi_nor_write_sr(nor, sr_cr, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->flags & SNOR_F_NO_READ_CR)
|
|
return 0;
|
|
|
|
cr_written = sr_cr[1];
|
|
|
|
ret = spi_nor_read_cr(nor, &sr_cr[1]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (cr_written != sr_cr[1]) {
|
|
dev_dbg(nor->dev, "CR: read back test failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
|
|
* Configuration Register in one shot. Ensure that the byte written in the
|
|
* Configuration Register match the received value, and that the 16-bit Write
|
|
* did not affect what was already in the Status Register 1.
|
|
* @nor: pointer to a 'struct spi_nor'.
|
|
* @cr: byte value to be written to the Configuration Register.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
|
|
{
|
|
int ret;
|
|
u8 *sr_cr = nor->bouncebuf;
|
|
u8 sr_written;
|
|
|
|
/* Keep the current value of the Status Register 1. */
|
|
ret = spi_nor_read_sr(nor, sr_cr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sr_cr[1] = cr;
|
|
|
|
ret = spi_nor_write_sr(nor, sr_cr, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sr_written = sr_cr[0];
|
|
|
|
ret = spi_nor_read_sr(nor, sr_cr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (sr_written != sr_cr[0]) {
|
|
dev_dbg(nor->dev, "SR: Read back test failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (nor->flags & SNOR_F_NO_READ_CR)
|
|
return 0;
|
|
|
|
ret = spi_nor_read_cr(nor, &sr_cr[1]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (cr != sr_cr[1]) {
|
|
dev_dbg(nor->dev, "CR: read back test failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
|
|
* the byte written match the received value without affecting other bits in the
|
|
* Status Register 1 and 2.
|
|
* @nor: pointer to a 'struct spi_nor'.
|
|
* @sr1: byte value to be written to the Status Register.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
|
|
{
|
|
if (nor->flags & SNOR_F_HAS_16BIT_SR)
|
|
return spi_nor_write_16bit_sr_and_check(nor, sr1);
|
|
|
|
return spi_nor_write_sr1_and_check(nor, sr1);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_write_sr2() - Write the Status Register 2 using the
|
|
* SPINOR_OP_WRSR2 (3eh) command.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @sr2: pointer to DMA-able buffer to write to the Status Register 2.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
|
|
{
|
|
int ret;
|
|
|
|
ret = spi_nor_write_enable(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(1, sr2, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
|
|
sr2, 1);
|
|
}
|
|
|
|
if (ret) {
|
|
dev_dbg(nor->dev, "error %d writing SR2\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return spi_nor_wait_till_ready(nor);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_read_sr2() - Read the Status Register 2 using the
|
|
* SPINOR_OP_RDSR2 (3fh) command.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
* @sr2: pointer to DMA-able buffer where the value of the
|
|
* Status Register 2 will be written.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_IN(1, sr2, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
|
|
sr2, 1);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d reading SR2\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_erase_chip() - Erase the entire flash memory.
|
|
* @nor: pointer to 'struct spi_nor'.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_erase_chip(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_NO_DATA);
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
|
|
NULL, 0);
|
|
}
|
|
|
|
if (ret)
|
|
dev_dbg(nor->dev, "error %d erasing chip\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (table[i][0] == opcode)
|
|
return table[i][1];
|
|
|
|
/* No conversion found, keep input op code. */
|
|
return opcode;
|
|
}
|
|
|
|
u8 spi_nor_convert_3to4_read(u8 opcode)
|
|
{
|
|
static const u8 spi_nor_3to4_read[][2] = {
|
|
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
|
|
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
|
|
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
|
|
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
|
|
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
|
|
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
|
|
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
|
|
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
|
|
|
|
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
|
|
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
|
|
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
|
|
};
|
|
|
|
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
|
|
ARRAY_SIZE(spi_nor_3to4_read));
|
|
}
|
|
|
|
static u8 spi_nor_convert_3to4_program(u8 opcode)
|
|
{
|
|
static const u8 spi_nor_3to4_program[][2] = {
|
|
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
|
|
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
|
|
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
|
|
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
|
|
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
|
|
};
|
|
|
|
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
|
|
ARRAY_SIZE(spi_nor_3to4_program));
|
|
}
|
|
|
|
static u8 spi_nor_convert_3to4_erase(u8 opcode)
|
|
{
|
|
static const u8 spi_nor_3to4_erase[][2] = {
|
|
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
|
|
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
|
|
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
|
|
};
|
|
|
|
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
|
|
ARRAY_SIZE(spi_nor_3to4_erase));
|
|
}
|
|
|
|
static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
|
|
{
|
|
return !!nor->params->erase_map.uniform_erase_type;
|
|
}
|
|
|
|
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
|
|
{
|
|
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
|
|
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
|
|
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
|
|
|
|
if (!spi_nor_has_uniform_erase(nor)) {
|
|
struct spi_nor_erase_map *map = &nor->params->erase_map;
|
|
struct spi_nor_erase_type *erase;
|
|
int i;
|
|
|
|
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
|
|
erase = &map->erase_type[i];
|
|
erase->opcode =
|
|
spi_nor_convert_3to4_erase(erase->opcode);
|
|
}
|
|
}
|
|
}
|
|
|
|
int spi_nor_lock_and_prep(struct spi_nor *nor)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&nor->lock);
|
|
|
|
if (nor->controller_ops && nor->controller_ops->prepare) {
|
|
ret = nor->controller_ops->prepare(nor);
|
|
if (ret) {
|
|
mutex_unlock(&nor->lock);
|
|
return ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void spi_nor_unlock_and_unprep(struct spi_nor *nor)
|
|
{
|
|
if (nor->controller_ops && nor->controller_ops->unprepare)
|
|
nor->controller_ops->unprepare(nor);
|
|
mutex_unlock(&nor->lock);
|
|
}
|
|
|
|
static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
|
|
{
|
|
if (!nor->params->convert_addr)
|
|
return addr;
|
|
|
|
return nor->params->convert_addr(nor, addr);
|
|
}
|
|
|
|
/*
|
|
* Initiate the erasure of a single sector
|
|
*/
|
|
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
|
|
{
|
|
int i;
|
|
|
|
addr = spi_nor_convert_addr(nor, addr);
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
|
|
SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_NO_DATA);
|
|
|
|
return spi_mem_exec_op(nor->spimem, &op);
|
|
} else if (nor->controller_ops->erase) {
|
|
return nor->controller_ops->erase(nor, addr);
|
|
}
|
|
|
|
/*
|
|
* Default implementation, if driver doesn't have a specialized HW
|
|
* control
|
|
*/
|
|
for (i = nor->addr_width - 1; i >= 0; i--) {
|
|
nor->bouncebuf[i] = addr & 0xff;
|
|
addr >>= 8;
|
|
}
|
|
|
|
return nor->controller_ops->write_reg(nor, nor->erase_opcode,
|
|
nor->bouncebuf, nor->addr_width);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_div_by_erase_size() - calculate remainder and update new dividend
|
|
* @erase: pointer to a structure that describes a SPI NOR erase type
|
|
* @dividend: dividend value
|
|
* @remainder: pointer to u32 remainder (will be updated)
|
|
*
|
|
* Return: the result of the division
|
|
*/
|
|
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
|
|
u64 dividend, u32 *remainder)
|
|
{
|
|
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
|
|
*remainder = (u32)dividend & erase->size_mask;
|
|
return dividend >> erase->size_shift;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_find_best_erase_type() - find the best erase type for the given
|
|
* offset in the serial flash memory and the
|
|
* number of bytes to erase. The region in
|
|
* which the address fits is expected to be
|
|
* provided.
|
|
* @map: the erase map of the SPI NOR
|
|
* @region: pointer to a structure that describes a SPI NOR erase region
|
|
* @addr: offset in the serial flash memory
|
|
* @len: number of bytes to erase
|
|
*
|
|
* Return: a pointer to the best fitted erase type, NULL otherwise.
|
|
*/
|
|
static const struct spi_nor_erase_type *
|
|
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
|
|
const struct spi_nor_erase_region *region,
|
|
u64 addr, u32 len)
|
|
{
|
|
const struct spi_nor_erase_type *erase;
|
|
u32 rem;
|
|
int i;
|
|
u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
|
|
|
|
/*
|
|
* Erase types are ordered by size, with the smallest erase type at
|
|
* index 0.
|
|
*/
|
|
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
|
|
/* Does the erase region support the tested erase type? */
|
|
if (!(erase_mask & BIT(i)))
|
|
continue;
|
|
|
|
erase = &map->erase_type[i];
|
|
|
|
/* Don't erase more than what the user has asked for. */
|
|
if (erase->size > len)
|
|
continue;
|
|
|
|
/* Alignment is not mandatory for overlaid regions */
|
|
if (region->offset & SNOR_OVERLAID_REGION)
|
|
return erase;
|
|
|
|
spi_nor_div_by_erase_size(erase, addr, &rem);
|
|
if (rem)
|
|
continue;
|
|
else
|
|
return erase;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
|
|
{
|
|
return region->offset & SNOR_LAST_REGION;
|
|
}
|
|
|
|
static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
|
|
{
|
|
return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_region_next() - get the next spi nor region
|
|
* @region: pointer to a structure that describes a SPI NOR erase region
|
|
*
|
|
* Return: the next spi nor region or NULL if last region.
|
|
*/
|
|
struct spi_nor_erase_region *
|
|
spi_nor_region_next(struct spi_nor_erase_region *region)
|
|
{
|
|
if (spi_nor_region_is_last(region))
|
|
return NULL;
|
|
region++;
|
|
return region;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_find_erase_region() - find the region of the serial flash memory in
|
|
* which the offset fits
|
|
* @map: the erase map of the SPI NOR
|
|
* @addr: offset in the serial flash memory
|
|
*
|
|
* Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
|
|
* otherwise.
|
|
*/
|
|
static struct spi_nor_erase_region *
|
|
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
|
|
{
|
|
struct spi_nor_erase_region *region = map->regions;
|
|
u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
|
|
u64 region_end = region_start + region->size;
|
|
|
|
while (addr < region_start || addr >= region_end) {
|
|
region = spi_nor_region_next(region);
|
|
if (!region)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
|
|
region_end = region_start + region->size;
|
|
}
|
|
|
|
return region;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_init_erase_cmd() - initialize an erase command
|
|
* @region: pointer to a structure that describes a SPI NOR erase region
|
|
* @erase: pointer to a structure that describes a SPI NOR erase type
|
|
*
|
|
* Return: the pointer to the allocated erase command, ERR_PTR(-errno)
|
|
* otherwise.
|
|
*/
|
|
static struct spi_nor_erase_command *
|
|
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
|
|
const struct spi_nor_erase_type *erase)
|
|
{
|
|
struct spi_nor_erase_command *cmd;
|
|
|
|
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
|
|
if (!cmd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&cmd->list);
|
|
cmd->opcode = erase->opcode;
|
|
cmd->count = 1;
|
|
|
|
if (region->offset & SNOR_OVERLAID_REGION)
|
|
cmd->size = region->size;
|
|
else
|
|
cmd->size = erase->size;
|
|
|
|
return cmd;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_destroy_erase_cmd_list() - destroy erase command list
|
|
* @erase_list: list of erase commands
|
|
*/
|
|
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
|
|
{
|
|
struct spi_nor_erase_command *cmd, *next;
|
|
|
|
list_for_each_entry_safe(cmd, next, erase_list, list) {
|
|
list_del(&cmd->list);
|
|
kfree(cmd);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spi_nor_init_erase_cmd_list() - initialize erase command list
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @erase_list: list of erase commands to be executed once we validate that the
|
|
* erase can be performed
|
|
* @addr: offset in the serial flash memory
|
|
* @len: number of bytes to erase
|
|
*
|
|
* Builds the list of best fitted erase commands and verifies if the erase can
|
|
* be performed.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
|
|
struct list_head *erase_list,
|
|
u64 addr, u32 len)
|
|
{
|
|
const struct spi_nor_erase_map *map = &nor->params->erase_map;
|
|
const struct spi_nor_erase_type *erase, *prev_erase = NULL;
|
|
struct spi_nor_erase_region *region;
|
|
struct spi_nor_erase_command *cmd = NULL;
|
|
u64 region_end;
|
|
int ret = -EINVAL;
|
|
|
|
region = spi_nor_find_erase_region(map, addr);
|
|
if (IS_ERR(region))
|
|
return PTR_ERR(region);
|
|
|
|
region_end = spi_nor_region_end(region);
|
|
|
|
while (len) {
|
|
erase = spi_nor_find_best_erase_type(map, region, addr, len);
|
|
if (!erase)
|
|
goto destroy_erase_cmd_list;
|
|
|
|
if (prev_erase != erase ||
|
|
region->offset & SNOR_OVERLAID_REGION) {
|
|
cmd = spi_nor_init_erase_cmd(region, erase);
|
|
if (IS_ERR(cmd)) {
|
|
ret = PTR_ERR(cmd);
|
|
goto destroy_erase_cmd_list;
|
|
}
|
|
|
|
list_add_tail(&cmd->list, erase_list);
|
|
} else {
|
|
cmd->count++;
|
|
}
|
|
|
|
addr += cmd->size;
|
|
len -= cmd->size;
|
|
|
|
if (len && addr >= region_end) {
|
|
region = spi_nor_region_next(region);
|
|
if (!region)
|
|
goto destroy_erase_cmd_list;
|
|
region_end = spi_nor_region_end(region);
|
|
}
|
|
|
|
prev_erase = erase;
|
|
}
|
|
|
|
return 0;
|
|
|
|
destroy_erase_cmd_list:
|
|
spi_nor_destroy_erase_cmd_list(erase_list);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_erase_multi_sectors() - perform a non-uniform erase
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @addr: offset in the serial flash memory
|
|
* @len: number of bytes to erase
|
|
*
|
|
* Build a list of best fitted erase commands and execute it once we validate
|
|
* that the erase can be performed.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
|
|
{
|
|
LIST_HEAD(erase_list);
|
|
struct spi_nor_erase_command *cmd, *next;
|
|
int ret;
|
|
|
|
ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
list_for_each_entry_safe(cmd, next, &erase_list, list) {
|
|
nor->erase_opcode = cmd->opcode;
|
|
while (cmd->count) {
|
|
ret = spi_nor_write_enable(nor);
|
|
if (ret)
|
|
goto destroy_erase_cmd_list;
|
|
|
|
ret = spi_nor_erase_sector(nor, addr);
|
|
if (ret)
|
|
goto destroy_erase_cmd_list;
|
|
|
|
addr += cmd->size;
|
|
cmd->count--;
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto destroy_erase_cmd_list;
|
|
}
|
|
list_del(&cmd->list);
|
|
kfree(cmd);
|
|
}
|
|
|
|
return 0;
|
|
|
|
destroy_erase_cmd_list:
|
|
spi_nor_destroy_erase_cmd_list(&erase_list);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Erase an address range on the nor chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
u32 addr, len;
|
|
uint32_t rem;
|
|
int ret;
|
|
|
|
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
|
|
(long long)instr->len);
|
|
|
|
if (spi_nor_has_uniform_erase(nor)) {
|
|
div_u64_rem(instr->len, mtd->erasesize, &rem);
|
|
if (rem)
|
|
return -EINVAL;
|
|
}
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
ret = spi_nor_lock_and_prep(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* whole-chip erase? */
|
|
if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
|
|
unsigned long timeout;
|
|
|
|
ret = spi_nor_write_enable(nor);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
ret = spi_nor_erase_chip(nor);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
/*
|
|
* Scale the timeout linearly with the size of the flash, with
|
|
* a minimum calibrated to an old 2MB flash. We could try to
|
|
* pull these from CFI/SFDP, but these values should be good
|
|
* enough for now.
|
|
*/
|
|
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
|
|
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
|
|
(unsigned long)(mtd->size / SZ_2M));
|
|
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
/* REVISIT in some cases we could speed up erasing large regions
|
|
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
|
|
* to use "small sector erase", but that's not always optimal.
|
|
*/
|
|
|
|
/* "sector"-at-a-time erase */
|
|
} else if (spi_nor_has_uniform_erase(nor)) {
|
|
while (len) {
|
|
ret = spi_nor_write_enable(nor);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
ret = spi_nor_erase_sector(nor, addr);
|
|
if (ret)
|
|
goto erase_err;
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto erase_err;
|
|
}
|
|
|
|
/* erase multiple sectors */
|
|
} else {
|
|
ret = spi_nor_erase_multi_sectors(nor, addr, len);
|
|
if (ret)
|
|
goto erase_err;
|
|
}
|
|
|
|
ret = spi_nor_write_disable(nor);
|
|
|
|
erase_err:
|
|
spi_nor_unlock_and_unprep(nor);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
|
|
{
|
|
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
|
|
|
|
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
|
|
return mask | SR_BP3_BIT6;
|
|
|
|
if (nor->flags & SNOR_F_HAS_4BIT_BP)
|
|
return mask | SR_BP3;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
|
|
{
|
|
if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
|
|
return SR_TB_BIT6;
|
|
else
|
|
return SR_TB_BIT5;
|
|
}
|
|
|
|
static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
|
|
{
|
|
unsigned int bp_slots, bp_slots_needed;
|
|
u8 mask = spi_nor_get_sr_bp_mask(nor);
|
|
|
|
/* Reserved one for "protect none" and one for "protect all". */
|
|
bp_slots = (1 << hweight8(mask)) - 2;
|
|
bp_slots_needed = ilog2(nor->info->n_sectors);
|
|
|
|
if (bp_slots_needed > bp_slots)
|
|
return nor->info->sector_size <<
|
|
(bp_slots_needed - bp_slots);
|
|
else
|
|
return nor->info->sector_size;
|
|
}
|
|
|
|
static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
|
|
uint64_t *len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
u64 min_prot_len;
|
|
u8 mask = spi_nor_get_sr_bp_mask(nor);
|
|
u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
|
|
u8 bp, val = sr & mask;
|
|
|
|
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
|
|
val = (val & ~SR_BP3_BIT6) | SR_BP3;
|
|
|
|
bp = val >> SR_BP_SHIFT;
|
|
|
|
if (!bp) {
|
|
/* No protection */
|
|
*ofs = 0;
|
|
*len = 0;
|
|
return;
|
|
}
|
|
|
|
min_prot_len = spi_nor_get_min_prot_length_sr(nor);
|
|
*len = min_prot_len << (bp - 1);
|
|
|
|
if (*len > mtd->size)
|
|
*len = mtd->size;
|
|
|
|
if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
|
|
*ofs = 0;
|
|
else
|
|
*ofs = mtd->size - *len;
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
|
|
* @locked is false); 0 otherwise
|
|
*/
|
|
static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
|
|
uint64_t len, u8 sr, bool locked)
|
|
{
|
|
loff_t lock_offs;
|
|
uint64_t lock_len;
|
|
|
|
if (!len)
|
|
return 1;
|
|
|
|
spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
|
|
|
|
if (locked)
|
|
/* Requested range is a sub-range of locked range */
|
|
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
|
|
else
|
|
/* Requested range does not overlap with locked range */
|
|
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
|
|
}
|
|
|
|
static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
|
|
u8 sr)
|
|
{
|
|
return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
|
|
}
|
|
|
|
static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
|
|
u8 sr)
|
|
{
|
|
return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
|
|
}
|
|
|
|
/*
|
|
* Lock a region of the flash. Compatible with ST Micro and similar flash.
|
|
* Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
|
|
* register
|
|
* (SR). Does not support these features found in newer SR bitfields:
|
|
* - SEC: sector/block protect - only handle SEC=0 (block protect)
|
|
* - CMP: complement protect - only support CMP=0 (range is not complemented)
|
|
*
|
|
* Support for the following is provided conditionally for some flash:
|
|
* - TB: top/bottom protect
|
|
*
|
|
* Sample table portion for 8MB flash (Winbond w25q64fw):
|
|
*
|
|
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
|
|
* --------------------------------------------------------------------------
|
|
* X | X | 0 | 0 | 0 | NONE | NONE
|
|
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
|
|
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
|
|
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
|
|
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
|
|
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
|
|
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
|
|
* X | X | 1 | 1 | 1 | 8 MB | ALL
|
|
* ------|-------|-------|-------|-------|---------------|-------------------
|
|
* 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
|
|
* 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
|
|
* 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
|
|
* 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
|
|
* 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
|
|
* 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
|
|
*
|
|
* Returns negative on errors, 0 on success.
|
|
*/
|
|
static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
u64 min_prot_len;
|
|
int ret, status_old, status_new;
|
|
u8 mask = spi_nor_get_sr_bp_mask(nor);
|
|
u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
|
|
u8 pow, val;
|
|
loff_t lock_len;
|
|
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
|
|
bool use_top;
|
|
|
|
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status_old = nor->bouncebuf[0];
|
|
|
|
/* If nothing in our range is unlocked, we don't need to do anything */
|
|
if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
|
|
return 0;
|
|
|
|
/* If anything below us is unlocked, we can't use 'bottom' protection */
|
|
if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
|
|
can_be_bottom = false;
|
|
|
|
/* If anything above us is unlocked, we can't use 'top' protection */
|
|
if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
|
|
status_old))
|
|
can_be_top = false;
|
|
|
|
if (!can_be_bottom && !can_be_top)
|
|
return -EINVAL;
|
|
|
|
/* Prefer top, if both are valid */
|
|
use_top = can_be_top;
|
|
|
|
/* lock_len: length of region that should end up locked */
|
|
if (use_top)
|
|
lock_len = mtd->size - ofs;
|
|
else
|
|
lock_len = ofs + len;
|
|
|
|
if (lock_len == mtd->size) {
|
|
val = mask;
|
|
} else {
|
|
min_prot_len = spi_nor_get_min_prot_length_sr(nor);
|
|
pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
|
|
val = pow << SR_BP_SHIFT;
|
|
|
|
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
|
|
val = (val & ~SR_BP3) | SR_BP3_BIT6;
|
|
|
|
if (val & ~mask)
|
|
return -EINVAL;
|
|
|
|
/* Don't "lock" with no region! */
|
|
if (!(val & mask))
|
|
return -EINVAL;
|
|
}
|
|
|
|
status_new = (status_old & ~mask & ~tb_mask) | val;
|
|
|
|
/* Disallow further writes if WP pin is asserted */
|
|
status_new |= SR_SRWD;
|
|
|
|
if (!use_top)
|
|
status_new |= tb_mask;
|
|
|
|
/* Don't bother if they're the same */
|
|
if (status_new == status_old)
|
|
return 0;
|
|
|
|
/* Only modify protection if it will not unlock other areas */
|
|
if ((status_new & mask) < (status_old & mask))
|
|
return -EINVAL;
|
|
|
|
return spi_nor_write_sr_and_check(nor, status_new);
|
|
}
|
|
|
|
/*
|
|
* Unlock a region of the flash. See spi_nor_sr_lock() for more info
|
|
*
|
|
* Returns negative on errors, 0 on success.
|
|
*/
|
|
static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
u64 min_prot_len;
|
|
int ret, status_old, status_new;
|
|
u8 mask = spi_nor_get_sr_bp_mask(nor);
|
|
u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
|
|
u8 pow, val;
|
|
loff_t lock_len;
|
|
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
|
|
bool use_top;
|
|
|
|
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
status_old = nor->bouncebuf[0];
|
|
|
|
/* If nothing in our range is locked, we don't need to do anything */
|
|
if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
|
|
return 0;
|
|
|
|
/* If anything below us is locked, we can't use 'top' protection */
|
|
if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
|
|
can_be_top = false;
|
|
|
|
/* If anything above us is locked, we can't use 'bottom' protection */
|
|
if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
|
|
status_old))
|
|
can_be_bottom = false;
|
|
|
|
if (!can_be_bottom && !can_be_top)
|
|
return -EINVAL;
|
|
|
|
/* Prefer top, if both are valid */
|
|
use_top = can_be_top;
|
|
|
|
/* lock_len: length of region that should remain locked */
|
|
if (use_top)
|
|
lock_len = mtd->size - (ofs + len);
|
|
else
|
|
lock_len = ofs;
|
|
|
|
if (lock_len == 0) {
|
|
val = 0; /* fully unlocked */
|
|
} else {
|
|
min_prot_len = spi_nor_get_min_prot_length_sr(nor);
|
|
pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
|
|
val = pow << SR_BP_SHIFT;
|
|
|
|
if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
|
|
val = (val & ~SR_BP3) | SR_BP3_BIT6;
|
|
|
|
/* Some power-of-two sizes are not supported */
|
|
if (val & ~mask)
|
|
return -EINVAL;
|
|
}
|
|
|
|
status_new = (status_old & ~mask & ~tb_mask) | val;
|
|
|
|
/* Don't protect status register if we're fully unlocked */
|
|
if (lock_len == 0)
|
|
status_new &= ~SR_SRWD;
|
|
|
|
if (!use_top)
|
|
status_new |= tb_mask;
|
|
|
|
/* Don't bother if they're the same */
|
|
if (status_new == status_old)
|
|
return 0;
|
|
|
|
/* Only modify protection if it will not lock other areas */
|
|
if ((status_new & mask) > (status_old & mask))
|
|
return -EINVAL;
|
|
|
|
return spi_nor_write_sr_and_check(nor, status_new);
|
|
}
|
|
|
|
/*
|
|
* Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
|
|
* for more info.
|
|
*
|
|
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
|
|
* negative on errors.
|
|
*/
|
|
static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
|
|
{
|
|
int ret;
|
|
|
|
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
|
|
}
|
|
|
|
static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
|
|
.lock = spi_nor_sr_lock,
|
|
.unlock = spi_nor_sr_unlock,
|
|
.is_locked = spi_nor_sr_is_locked,
|
|
};
|
|
|
|
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->params->locking_ops->lock(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->params->locking_ops->unlock(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
int ret;
|
|
|
|
ret = spi_nor_lock_and_prep(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nor->params->locking_ops->is_locked(nor, ofs, len);
|
|
|
|
spi_nor_unlock_and_unprep(nor);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
|
|
* Register 1.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
ret = spi_nor_read_sr(nor, nor->bouncebuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
|
|
return 0;
|
|
|
|
nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
|
|
|
|
return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
|
|
* Register 2.
|
|
* @nor: pointer to a 'struct spi_nor'.
|
|
*
|
|
* Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->flags & SNOR_F_NO_READ_CR)
|
|
return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
|
|
|
|
ret = spi_nor_read_cr(nor, nor->bouncebuf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
|
|
return 0;
|
|
|
|
nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
|
|
|
|
return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* Set the Quad Enable (QE) bit in the Status Register 2.
|
|
*
|
|
* This is one of the procedures to set the QE bit described in the SFDP
|
|
* (JESD216 rev B) specification but no manufacturer using this procedure has
|
|
* been identified yet, hence the name of the function.
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
|
|
{
|
|
u8 *sr2 = nor->bouncebuf;
|
|
int ret;
|
|
u8 sr2_written;
|
|
|
|
/* Check current Quad Enable bit value. */
|
|
ret = spi_nor_read_sr2(nor, sr2);
|
|
if (ret)
|
|
return ret;
|
|
if (*sr2 & SR2_QUAD_EN_BIT7)
|
|
return 0;
|
|
|
|
/* Update the Quad Enable bit. */
|
|
*sr2 |= SR2_QUAD_EN_BIT7;
|
|
|
|
ret = spi_nor_write_sr2(nor, sr2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sr2_written = *sr2;
|
|
|
|
/* Read back and check it. */
|
|
ret = spi_nor_read_sr2(nor, sr2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (*sr2 != sr2_written) {
|
|
dev_dbg(nor->dev, "SR2: Read back test failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_nor_manufacturer *manufacturers[] = {
|
|
&spi_nor_atmel,
|
|
&spi_nor_catalyst,
|
|
&spi_nor_eon,
|
|
&spi_nor_esmt,
|
|
&spi_nor_everspin,
|
|
&spi_nor_fujitsu,
|
|
&spi_nor_gigadevice,
|
|
&spi_nor_intel,
|
|
&spi_nor_issi,
|
|
&spi_nor_macronix,
|
|
&spi_nor_micron,
|
|
&spi_nor_st,
|
|
&spi_nor_spansion,
|
|
&spi_nor_sst,
|
|
&spi_nor_winbond,
|
|
&spi_nor_xilinx,
|
|
&spi_nor_xmc,
|
|
};
|
|
|
|
static const struct flash_info *
|
|
spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
|
|
const u8 *id)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < nparts; i++) {
|
|
if (parts[i].id_len &&
|
|
!memcmp(parts[i].id, id, parts[i].id_len))
|
|
return &parts[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
|
|
{
|
|
const struct flash_info *info;
|
|
u8 *id = nor->bouncebuf;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (nor->spimem) {
|
|
struct spi_mem_op op =
|
|
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
|
|
SPI_MEM_OP_NO_ADDR,
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
|
|
|
|
ret = spi_mem_exec_op(nor->spimem, &op);
|
|
} else {
|
|
ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
|
|
SPI_NOR_MAX_ID_LEN);
|
|
}
|
|
if (ret) {
|
|
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
|
|
info = spi_nor_search_part_by_id(manufacturers[i]->parts,
|
|
manufacturers[i]->nparts,
|
|
id);
|
|
if (info) {
|
|
nor->manufacturer = manufacturers[i];
|
|
return info;
|
|
}
|
|
}
|
|
|
|
dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
|
|
SPI_NOR_MAX_ID_LEN, id);
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
ssize_t ret;
|
|
|
|
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while (len) {
|
|
loff_t addr = from;
|
|
|
|
addr = spi_nor_convert_addr(nor, addr);
|
|
|
|
ret = spi_nor_read_data(nor, addr, len, buf);
|
|
if (ret == 0) {
|
|
/* We shouldn't see 0-length reads */
|
|
ret = -EIO;
|
|
goto read_err;
|
|
}
|
|
if (ret < 0)
|
|
goto read_err;
|
|
|
|
WARN_ON(ret > len);
|
|
*retlen += ret;
|
|
buf += ret;
|
|
from += ret;
|
|
len -= ret;
|
|
}
|
|
ret = 0;
|
|
|
|
read_err:
|
|
spi_nor_unlock_and_unprep(nor);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the nor chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
size_t page_offset, page_remain, i;
|
|
ssize_t ret;
|
|
|
|
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
|
|
|
ret = spi_nor_lock_and_prep(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < len; ) {
|
|
ssize_t written;
|
|
loff_t addr = to + i;
|
|
|
|
/*
|
|
* If page_size is a power of two, the offset can be quickly
|
|
* calculated with an AND operation. On the other cases we
|
|
* need to do a modulus operation (more expensive).
|
|
* Power of two numbers have only one bit set and we can use
|
|
* the instruction hweight32 to detect if we need to do a
|
|
* modulus (do_div()) or not.
|
|
*/
|
|
if (hweight32(nor->page_size) == 1) {
|
|
page_offset = addr & (nor->page_size - 1);
|
|
} else {
|
|
uint64_t aux = addr;
|
|
|
|
page_offset = do_div(aux, nor->page_size);
|
|
}
|
|
/* the size of data remaining on the first page */
|
|
page_remain = min_t(size_t,
|
|
nor->page_size - page_offset, len - i);
|
|
|
|
addr = spi_nor_convert_addr(nor, addr);
|
|
|
|
ret = spi_nor_write_enable(nor);
|
|
if (ret)
|
|
goto write_err;
|
|
|
|
ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
|
|
if (ret < 0)
|
|
goto write_err;
|
|
written = ret;
|
|
|
|
ret = spi_nor_wait_till_ready(nor);
|
|
if (ret)
|
|
goto write_err;
|
|
*retlen += written;
|
|
i += written;
|
|
}
|
|
|
|
write_err:
|
|
spi_nor_unlock_and_unprep(nor);
|
|
return ret;
|
|
}
|
|
|
|
static int spi_nor_check(struct spi_nor *nor)
|
|
{
|
|
if (!nor->dev ||
|
|
(!nor->spimem && !nor->controller_ops) ||
|
|
(!nor->spimem && nor->controller_ops &&
|
|
(!nor->controller_ops->read ||
|
|
!nor->controller_ops->write ||
|
|
!nor->controller_ops->read_reg ||
|
|
!nor->controller_ops->write_reg))) {
|
|
pr_err("spi-nor: please fill all the necessary fields!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nor->spimem && nor->controller_ops) {
|
|
dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spi_nor_set_read_settings(struct spi_nor_read_command *read,
|
|
u8 num_mode_clocks,
|
|
u8 num_wait_states,
|
|
u8 opcode,
|
|
enum spi_nor_protocol proto)
|
|
{
|
|
read->num_mode_clocks = num_mode_clocks;
|
|
read->num_wait_states = num_wait_states;
|
|
read->opcode = opcode;
|
|
read->proto = proto;
|
|
}
|
|
|
|
void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
|
|
enum spi_nor_protocol proto)
|
|
{
|
|
pp->opcode = opcode;
|
|
pp->proto = proto;
|
|
}
|
|
|
|
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (table[i][0] == (int)hwcaps)
|
|
return table[i][1];
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
int spi_nor_hwcaps_read2cmd(u32 hwcaps)
|
|
{
|
|
static const int hwcaps_read2cmd[][2] = {
|
|
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
|
|
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
|
|
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
|
|
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
|
|
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
|
|
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
|
|
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
|
|
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
|
|
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
|
|
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
|
|
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
|
|
{ SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
|
|
{ SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
|
|
{ SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
|
|
{ SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
|
|
};
|
|
|
|
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
|
|
ARRAY_SIZE(hwcaps_read2cmd));
|
|
}
|
|
|
|
static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
|
|
{
|
|
static const int hwcaps_pp2cmd[][2] = {
|
|
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
|
|
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
|
|
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
|
|
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
|
|
{ SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
|
|
{ SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
|
|
{ SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
|
|
};
|
|
|
|
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
|
|
ARRAY_SIZE(hwcaps_pp2cmd));
|
|
}
|
|
|
|
/**
|
|
* spi_nor_spimem_check_op - check if the operation is supported
|
|
* by controller
|
|
*@nor: pointer to a 'struct spi_nor'
|
|
*@op: pointer to op template to be checked
|
|
*
|
|
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
|
|
*/
|
|
static int spi_nor_spimem_check_op(struct spi_nor *nor,
|
|
struct spi_mem_op *op)
|
|
{
|
|
/*
|
|
* First test with 4 address bytes. The opcode itself might
|
|
* be a 3B addressing opcode but we don't care, because
|
|
* SPI controller implementation should not check the opcode,
|
|
* but just the sequence.
|
|
*/
|
|
op->addr.nbytes = 4;
|
|
if (!spi_mem_supports_op(nor->spimem, op)) {
|
|
if (nor->mtd.size > SZ_16M)
|
|
return -ENOTSUPP;
|
|
|
|
/* If flash size <= 16MB, 3 address bytes are sufficient */
|
|
op->addr.nbytes = 3;
|
|
if (!spi_mem_supports_op(nor->spimem, op))
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_spimem_check_readop - check if the read op is supported
|
|
* by controller
|
|
*@nor: pointer to a 'struct spi_nor'
|
|
*@read: pointer to op template to be checked
|
|
*
|
|
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
|
|
*/
|
|
static int spi_nor_spimem_check_readop(struct spi_nor *nor,
|
|
const struct spi_nor_read_command *read)
|
|
{
|
|
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
|
|
SPI_MEM_OP_ADDR(3, 0, 1),
|
|
SPI_MEM_OP_DUMMY(0, 1),
|
|
SPI_MEM_OP_DATA_IN(0, NULL, 1));
|
|
|
|
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
|
|
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
|
|
op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
|
|
op.dummy.buswidth = op.addr.buswidth;
|
|
op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
|
|
op.dummy.buswidth / 8;
|
|
|
|
return spi_nor_spimem_check_op(nor, &op);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_spimem_check_pp - check if the page program op is supported
|
|
* by controller
|
|
*@nor: pointer to a 'struct spi_nor'
|
|
*@pp: pointer to op template to be checked
|
|
*
|
|
* Returns 0 if operation is supported, -ENOTSUPP otherwise.
|
|
*/
|
|
static int spi_nor_spimem_check_pp(struct spi_nor *nor,
|
|
const struct spi_nor_pp_command *pp)
|
|
{
|
|
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
|
|
SPI_MEM_OP_ADDR(3, 0, 1),
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(0, NULL, 1));
|
|
|
|
op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
|
|
op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
|
|
op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
|
|
|
|
return spi_nor_spimem_check_op(nor, &op);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
|
|
* based on SPI controller capabilities
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
* @hwcaps: pointer to resulting capabilities after adjusting
|
|
* according to controller and flash's capability
|
|
*/
|
|
static void
|
|
spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
|
|
{
|
|
struct spi_nor_flash_parameter *params = nor->params;
|
|
unsigned int cap;
|
|
|
|
/* DTR modes are not supported yet, mask them all. */
|
|
*hwcaps &= ~SNOR_HWCAPS_DTR;
|
|
|
|
/* X-X-X modes are not supported yet, mask them all. */
|
|
*hwcaps &= ~SNOR_HWCAPS_X_X_X;
|
|
|
|
for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
|
|
int rdidx, ppidx;
|
|
|
|
if (!(*hwcaps & BIT(cap)))
|
|
continue;
|
|
|
|
rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
|
|
if (rdidx >= 0 &&
|
|
spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
|
|
*hwcaps &= ~BIT(cap);
|
|
|
|
ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
|
|
if (ppidx < 0)
|
|
continue;
|
|
|
|
if (spi_nor_spimem_check_pp(nor,
|
|
¶ms->page_programs[ppidx]))
|
|
*hwcaps &= ~BIT(cap);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spi_nor_set_erase_type() - set a SPI NOR erase type
|
|
* @erase: pointer to a structure that describes a SPI NOR erase type
|
|
* @size: the size of the sector/block erased by the erase type
|
|
* @opcode: the SPI command op code to erase the sector/block
|
|
*/
|
|
void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
|
|
u8 opcode)
|
|
{
|
|
erase->size = size;
|
|
erase->opcode = opcode;
|
|
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
|
|
erase->size_shift = ffs(erase->size) - 1;
|
|
erase->size_mask = (1 << erase->size_shift) - 1;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_init_uniform_erase_map() - Initialize uniform erase map
|
|
* @map: the erase map of the SPI NOR
|
|
* @erase_mask: bitmask encoding erase types that can erase the entire
|
|
* flash memory
|
|
* @flash_size: the spi nor flash memory size
|
|
*/
|
|
void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
|
|
u8 erase_mask, u64 flash_size)
|
|
{
|
|
/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
|
|
map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
|
|
SNOR_LAST_REGION;
|
|
map->uniform_region.size = flash_size;
|
|
map->regions = &map->uniform_region;
|
|
map->uniform_erase_type = erase_mask;
|
|
}
|
|
|
|
int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
|
|
const struct sfdp_parameter_header *bfpt_header,
|
|
const struct sfdp_bfpt *bfpt,
|
|
struct spi_nor_flash_parameter *params)
|
|
{
|
|
int ret;
|
|
|
|
if (nor->manufacturer && nor->manufacturer->fixups &&
|
|
nor->manufacturer->fixups->post_bfpt) {
|
|
ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
|
|
bfpt, params);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (nor->info->fixups && nor->info->fixups->post_bfpt)
|
|
return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
|
|
params);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_select_read(struct spi_nor *nor,
|
|
u32 shared_hwcaps)
|
|
{
|
|
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
|
|
const struct spi_nor_read_command *read;
|
|
|
|
if (best_match < 0)
|
|
return -EINVAL;
|
|
|
|
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
|
|
if (cmd < 0)
|
|
return -EINVAL;
|
|
|
|
read = &nor->params->reads[cmd];
|
|
nor->read_opcode = read->opcode;
|
|
nor->read_proto = read->proto;
|
|
|
|
/*
|
|
* In the spi-nor framework, we don't need to make the difference
|
|
* between mode clock cycles and wait state clock cycles.
|
|
* Indeed, the value of the mode clock cycles is used by a QSPI
|
|
* flash memory to know whether it should enter or leave its 0-4-4
|
|
* (Continuous Read / XIP) mode.
|
|
* eXecution In Place is out of the scope of the mtd sub-system.
|
|
* Hence we choose to merge both mode and wait state clock cycles
|
|
* into the so called dummy clock cycles.
|
|
*/
|
|
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_select_pp(struct spi_nor *nor,
|
|
u32 shared_hwcaps)
|
|
{
|
|
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
|
|
const struct spi_nor_pp_command *pp;
|
|
|
|
if (best_match < 0)
|
|
return -EINVAL;
|
|
|
|
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
|
|
if (cmd < 0)
|
|
return -EINVAL;
|
|
|
|
pp = &nor->params->page_programs[cmd];
|
|
nor->program_opcode = pp->opcode;
|
|
nor->write_proto = pp->proto;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_select_uniform_erase() - select optimum uniform erase type
|
|
* @map: the erase map of the SPI NOR
|
|
* @wanted_size: the erase type size to search for. Contains the value of
|
|
* info->sector_size or of the "small sector" size in case
|
|
* CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
|
|
*
|
|
* Once the optimum uniform sector erase command is found, disable all the
|
|
* other.
|
|
*
|
|
* Return: pointer to erase type on success, NULL otherwise.
|
|
*/
|
|
static const struct spi_nor_erase_type *
|
|
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
|
|
const u32 wanted_size)
|
|
{
|
|
const struct spi_nor_erase_type *tested_erase, *erase = NULL;
|
|
int i;
|
|
u8 uniform_erase_type = map->uniform_erase_type;
|
|
|
|
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
|
|
if (!(uniform_erase_type & BIT(i)))
|
|
continue;
|
|
|
|
tested_erase = &map->erase_type[i];
|
|
|
|
/*
|
|
* If the current erase size is the one, stop here:
|
|
* we have found the right uniform Sector Erase command.
|
|
*/
|
|
if (tested_erase->size == wanted_size) {
|
|
erase = tested_erase;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, the current erase size is still a valid canditate.
|
|
* Select the biggest valid candidate.
|
|
*/
|
|
if (!erase && tested_erase->size)
|
|
erase = tested_erase;
|
|
/* keep iterating to find the wanted_size */
|
|
}
|
|
|
|
if (!erase)
|
|
return NULL;
|
|
|
|
/* Disable all other Sector Erase commands. */
|
|
map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
|
|
map->uniform_erase_type |= BIT(erase - map->erase_type);
|
|
return erase;
|
|
}
|
|
|
|
static int spi_nor_select_erase(struct spi_nor *nor)
|
|
{
|
|
struct spi_nor_erase_map *map = &nor->params->erase_map;
|
|
const struct spi_nor_erase_type *erase = NULL;
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
u32 wanted_size = nor->info->sector_size;
|
|
int i;
|
|
|
|
/*
|
|
* The previous implementation handling Sector Erase commands assumed
|
|
* that the SPI flash memory has an uniform layout then used only one
|
|
* of the supported erase sizes for all Sector Erase commands.
|
|
* So to be backward compatible, the new implementation also tries to
|
|
* manage the SPI flash memory as uniform with a single erase sector
|
|
* size, when possible.
|
|
*/
|
|
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
|
|
/* prefer "small sector" erase if possible */
|
|
wanted_size = 4096u;
|
|
#endif
|
|
|
|
if (spi_nor_has_uniform_erase(nor)) {
|
|
erase = spi_nor_select_uniform_erase(map, wanted_size);
|
|
if (!erase)
|
|
return -EINVAL;
|
|
nor->erase_opcode = erase->opcode;
|
|
mtd->erasesize = erase->size;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For non-uniform SPI flash memory, set mtd->erasesize to the
|
|
* maximum erase sector size. No need to set nor->erase_opcode.
|
|
*/
|
|
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
|
|
if (map->erase_type[i].size) {
|
|
erase = &map->erase_type[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!erase)
|
|
return -EINVAL;
|
|
|
|
mtd->erasesize = erase->size;
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_default_setup(struct spi_nor *nor,
|
|
const struct spi_nor_hwcaps *hwcaps)
|
|
{
|
|
struct spi_nor_flash_parameter *params = nor->params;
|
|
u32 ignored_mask, shared_mask;
|
|
int err;
|
|
|
|
/*
|
|
* Keep only the hardware capabilities supported by both the SPI
|
|
* controller and the SPI flash memory.
|
|
*/
|
|
shared_mask = hwcaps->mask & params->hwcaps.mask;
|
|
|
|
if (nor->spimem) {
|
|
/*
|
|
* When called from spi_nor_probe(), all caps are set and we
|
|
* need to discard some of them based on what the SPI
|
|
* controller actually supports (using spi_mem_supports_op()).
|
|
*/
|
|
spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
|
|
} else {
|
|
/*
|
|
* SPI n-n-n protocols are not supported when the SPI
|
|
* controller directly implements the spi_nor interface.
|
|
* Yet another reason to switch to spi-mem.
|
|
*/
|
|
ignored_mask = SNOR_HWCAPS_X_X_X;
|
|
if (shared_mask & ignored_mask) {
|
|
dev_dbg(nor->dev,
|
|
"SPI n-n-n protocols are not supported.\n");
|
|
shared_mask &= ~ignored_mask;
|
|
}
|
|
}
|
|
|
|
/* Select the (Fast) Read command. */
|
|
err = spi_nor_select_read(nor, shared_mask);
|
|
if (err) {
|
|
dev_dbg(nor->dev,
|
|
"can't select read settings supported by both the SPI controller and memory.\n");
|
|
return err;
|
|
}
|
|
|
|
/* Select the Page Program command. */
|
|
err = spi_nor_select_pp(nor, shared_mask);
|
|
if (err) {
|
|
dev_dbg(nor->dev,
|
|
"can't select write settings supported by both the SPI controller and memory.\n");
|
|
return err;
|
|
}
|
|
|
|
/* Select the Sector Erase command. */
|
|
err = spi_nor_select_erase(nor);
|
|
if (err) {
|
|
dev_dbg(nor->dev,
|
|
"can't select erase settings supported by both the SPI controller and memory.\n");
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_setup(struct spi_nor *nor,
|
|
const struct spi_nor_hwcaps *hwcaps)
|
|
{
|
|
if (!nor->params->setup)
|
|
return 0;
|
|
|
|
return nor->params->setup(nor, hwcaps);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
|
|
* settings based on MFR register and ->default_init() hook.
|
|
* @nor: pointer to a 'struct spi-nor'.
|
|
*/
|
|
static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
|
|
{
|
|
if (nor->manufacturer && nor->manufacturer->fixups &&
|
|
nor->manufacturer->fixups->default_init)
|
|
nor->manufacturer->fixups->default_init(nor);
|
|
|
|
if (nor->info->fixups && nor->info->fixups->default_init)
|
|
nor->info->fixups->default_init(nor);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
|
|
* based on JESD216 SFDP standard.
|
|
* @nor: pointer to a 'struct spi-nor'.
|
|
*
|
|
* The method has a roll-back mechanism: in case the SFDP parsing fails, the
|
|
* legacy flash parameters and settings will be restored.
|
|
*/
|
|
static void spi_nor_sfdp_init_params(struct spi_nor *nor)
|
|
{
|
|
struct spi_nor_flash_parameter sfdp_params;
|
|
|
|
memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
|
|
|
|
if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
|
|
nor->addr_width = 0;
|
|
nor->flags &= ~SNOR_F_4B_OPCODES;
|
|
} else {
|
|
memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* spi_nor_info_init_params() - Initialize the flash's parameters and settings
|
|
* based on nor->info data.
|
|
* @nor: pointer to a 'struct spi-nor'.
|
|
*/
|
|
static void spi_nor_info_init_params(struct spi_nor *nor)
|
|
{
|
|
struct spi_nor_flash_parameter *params = nor->params;
|
|
struct spi_nor_erase_map *map = ¶ms->erase_map;
|
|
const struct flash_info *info = nor->info;
|
|
struct device_node *np = spi_nor_get_flash_node(nor);
|
|
u8 i, erase_mask;
|
|
|
|
/* Initialize legacy flash parameters and settings. */
|
|
params->quad_enable = spi_nor_sr2_bit1_quad_enable;
|
|
params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
|
|
params->setup = spi_nor_default_setup;
|
|
/* Default to 16-bit Write Status (01h) Command */
|
|
nor->flags |= SNOR_F_HAS_16BIT_SR;
|
|
|
|
/* Set SPI NOR sizes. */
|
|
params->size = (u64)info->sector_size * info->n_sectors;
|
|
params->page_size = info->page_size;
|
|
|
|
if (!(info->flags & SPI_NOR_NO_FR)) {
|
|
/* Default to Fast Read for DT and non-DT platform devices. */
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
|
|
|
|
/* Mask out Fast Read if not requested at DT instantiation. */
|
|
if (np && !of_property_read_bool(np, "m25p,fast-read"))
|
|
params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
|
|
}
|
|
|
|
/* (Fast) Read settings. */
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
|
|
0, 0, SPINOR_OP_READ,
|
|
SNOR_PROTO_1_1_1);
|
|
|
|
if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
|
|
0, 8, SPINOR_OP_READ_FAST,
|
|
SNOR_PROTO_1_1_1);
|
|
|
|
if (info->flags & SPI_NOR_DUAL_READ) {
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
|
|
0, 8, SPINOR_OP_READ_1_1_2,
|
|
SNOR_PROTO_1_1_2);
|
|
}
|
|
|
|
if (info->flags & SPI_NOR_QUAD_READ) {
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
|
|
0, 8, SPINOR_OP_READ_1_1_4,
|
|
SNOR_PROTO_1_1_4);
|
|
}
|
|
|
|
if (info->flags & SPI_NOR_OCTAL_READ) {
|
|
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
|
|
spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
|
|
0, 8, SPINOR_OP_READ_1_1_8,
|
|
SNOR_PROTO_1_1_8);
|
|
}
|
|
|
|
/* Page Program settings. */
|
|
params->hwcaps.mask |= SNOR_HWCAPS_PP;
|
|
spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
|
|
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
|
|
|
|
/*
|
|
* Sector Erase settings. Sort Erase Types in ascending order, with the
|
|
* smallest erase size starting at BIT(0).
|
|
*/
|
|
erase_mask = 0;
|
|
i = 0;
|
|
if (info->flags & SECT_4K_PMC) {
|
|
erase_mask |= BIT(i);
|
|
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
|
|
SPINOR_OP_BE_4K_PMC);
|
|
i++;
|
|
} else if (info->flags & SECT_4K) {
|
|
erase_mask |= BIT(i);
|
|
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
|
|
SPINOR_OP_BE_4K);
|
|
i++;
|
|
}
|
|
erase_mask |= BIT(i);
|
|
spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
|
|
SPINOR_OP_SE);
|
|
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
|
|
* after SFDP has been parsed (is also called for SPI NORs that do not
|
|
* support RDSFDP).
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* Typically used to tweak various parameters that could not be extracted by
|
|
* other means (i.e. when information provided by the SFDP/flash_info tables
|
|
* are incomplete or wrong).
|
|
*/
|
|
static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
|
|
{
|
|
if (nor->manufacturer && nor->manufacturer->fixups &&
|
|
nor->manufacturer->fixups->post_sfdp)
|
|
nor->manufacturer->fixups->post_sfdp(nor);
|
|
|
|
if (nor->info->fixups && nor->info->fixups->post_sfdp)
|
|
nor->info->fixups->post_sfdp(nor);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_late_init_params() - Late initialization of default flash parameters.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* Used to set default flash parameters and settings when the ->default_init()
|
|
* hook or the SFDP parser let voids.
|
|
*/
|
|
static void spi_nor_late_init_params(struct spi_nor *nor)
|
|
{
|
|
/*
|
|
* NOR protection support. When locking_ops are not provided, we pick
|
|
* the default ones.
|
|
*/
|
|
if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
|
|
nor->params->locking_ops = &spi_nor_sr_locking_ops;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_init_params() - Initialize the flash's parameters and settings.
|
|
* @nor: pointer to a 'struct spi-nor'.
|
|
*
|
|
* The flash parameters and settings are initialized based on a sequence of
|
|
* calls that are ordered by priority:
|
|
*
|
|
* 1/ Default flash parameters initialization. The initializations are done
|
|
* based on nor->info data:
|
|
* spi_nor_info_init_params()
|
|
*
|
|
* which can be overwritten by:
|
|
* 2/ Manufacturer flash parameters initialization. The initializations are
|
|
* done based on MFR register, or when the decisions can not be done solely
|
|
* based on MFR, by using specific flash_info tweeks, ->default_init():
|
|
* spi_nor_manufacturer_init_params()
|
|
*
|
|
* which can be overwritten by:
|
|
* 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
|
|
* should be more accurate that the above.
|
|
* spi_nor_sfdp_init_params()
|
|
*
|
|
* Please note that there is a ->post_bfpt() fixup hook that can overwrite
|
|
* the flash parameters and settings immediately after parsing the Basic
|
|
* Flash Parameter Table.
|
|
*
|
|
* which can be overwritten by:
|
|
* 4/ Post SFDP flash parameters initialization. Used to tweak various
|
|
* parameters that could not be extracted by other means (i.e. when
|
|
* information provided by the SFDP/flash_info tables are incomplete or
|
|
* wrong).
|
|
* spi_nor_post_sfdp_fixups()
|
|
*
|
|
* 5/ Late default flash parameters initialization, used when the
|
|
* ->default_init() hook or the SFDP parser do not set specific params.
|
|
* spi_nor_late_init_params()
|
|
*/
|
|
static int spi_nor_init_params(struct spi_nor *nor)
|
|
{
|
|
nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
|
|
if (!nor->params)
|
|
return -ENOMEM;
|
|
|
|
spi_nor_info_init_params(nor);
|
|
|
|
spi_nor_manufacturer_init_params(nor);
|
|
|
|
if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
|
|
!(nor->info->flags & SPI_NOR_SKIP_SFDP))
|
|
spi_nor_sfdp_init_params(nor);
|
|
|
|
spi_nor_post_sfdp_fixups(nor);
|
|
|
|
spi_nor_late_init_params(nor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* spi_nor_quad_enable() - enable Quad I/O if needed.
|
|
* @nor: pointer to a 'struct spi_nor'
|
|
*
|
|
* Return: 0 on success, -errno otherwise.
|
|
*/
|
|
static int spi_nor_quad_enable(struct spi_nor *nor)
|
|
{
|
|
if (!nor->params->quad_enable)
|
|
return 0;
|
|
|
|
if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
|
|
spi_nor_get_protocol_width(nor->write_proto) == 4))
|
|
return 0;
|
|
|
|
return nor->params->quad_enable(nor);
|
|
}
|
|
|
|
/**
|
|
* spi_nor_unlock_all() - Unlocks the entire flash memory array.
|
|
* @nor: pointer to a 'struct spi_nor'.
|
|
*
|
|
* Some SPI NOR flashes are write protected by default after a power-on reset
|
|
* cycle, in order to avoid inadvertent writes during power-up. Backward
|
|
* compatibility imposes to unlock the entire flash memory array at power-up
|
|
* by default.
|
|
*/
|
|
static int spi_nor_unlock_all(struct spi_nor *nor)
|
|
{
|
|
if (nor->flags & SNOR_F_HAS_LOCK)
|
|
return spi_nor_unlock(&nor->mtd, 0, nor->params->size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_nor_init(struct spi_nor *nor)
|
|
{
|
|
int err;
|
|
|
|
err = spi_nor_quad_enable(nor);
|
|
if (err) {
|
|
dev_dbg(nor->dev, "quad mode not supported\n");
|
|
return err;
|
|
}
|
|
|
|
err = spi_nor_unlock_all(nor);
|
|
if (err) {
|
|
dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
|
|
return err;
|
|
}
|
|
|
|
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
|
|
/*
|
|
* If the RESET# pin isn't hooked up properly, or the system
|
|
* otherwise doesn't perform a reset command in the boot
|
|
* sequence, it's impossible to 100% protect against unexpected
|
|
* reboots (e.g., crashes). Warn the user (or hopefully, system
|
|
* designer) that this is bad.
|
|
*/
|
|
WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
|
|
"enabling reset hack; may not recover from unexpected reboots\n");
|
|
nor->params->set_4byte_addr_mode(nor, true);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* mtd resume handler */
|
|
static void spi_nor_resume(struct mtd_info *mtd)
|
|
{
|
|
struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
struct device *dev = nor->dev;
|
|
int ret;
|
|
|
|
/* re-initialize the nor chip */
|
|
ret = spi_nor_init(nor);
|
|
if (ret)
|
|
dev_err(dev, "resume() failed\n");
|
|
}
|
|
|
|
void spi_nor_restore(struct spi_nor *nor)
|
|
{
|
|
/* restore the addressing mode */
|
|
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
|
|
nor->flags & SNOR_F_BROKEN_RESET)
|
|
nor->params->set_4byte_addr_mode(nor, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_nor_restore);
|
|
|
|
static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
|
|
const char *name)
|
|
{
|
|
unsigned int i, j;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
|
|
for (j = 0; j < manufacturers[i]->nparts; j++) {
|
|
if (!strcmp(name, manufacturers[i]->parts[j].name)) {
|
|
nor->manufacturer = manufacturers[i];
|
|
return &manufacturers[i]->parts[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int spi_nor_set_addr_width(struct spi_nor *nor)
|
|
{
|
|
if (nor->addr_width) {
|
|
/* already configured from SFDP */
|
|
} else if (nor->info->addr_width) {
|
|
nor->addr_width = nor->info->addr_width;
|
|
} else if (nor->mtd.size > 0x1000000) {
|
|
/* enable 4-byte addressing if the device exceeds 16MiB */
|
|
nor->addr_width = 4;
|
|
} else {
|
|
nor->addr_width = 3;
|
|
}
|
|
|
|
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
|
|
dev_dbg(nor->dev, "address width is too large: %u\n",
|
|
nor->addr_width);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Set 4byte opcodes when possible. */
|
|
if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
|
|
!(nor->flags & SNOR_F_HAS_4BAIT))
|
|
spi_nor_set_4byte_opcodes(nor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spi_nor_debugfs_init(struct spi_nor *nor,
|
|
const struct flash_info *info)
|
|
{
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
|
|
mtd->dbg.partname = info->name;
|
|
mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
|
|
info->id_len, info->id);
|
|
}
|
|
|
|
static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
|
|
const char *name)
|
|
{
|
|
const struct flash_info *info = NULL;
|
|
|
|
if (name)
|
|
info = spi_nor_match_id(nor, name);
|
|
/* Try to auto-detect if chip name wasn't specified or not found */
|
|
if (!info)
|
|
info = spi_nor_read_id(nor);
|
|
if (IS_ERR_OR_NULL(info))
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
/*
|
|
* If caller has specified name of flash model that can normally be
|
|
* detected using JEDEC, let's verify it.
|
|
*/
|
|
if (name && info->id_len) {
|
|
const struct flash_info *jinfo;
|
|
|
|
jinfo = spi_nor_read_id(nor);
|
|
if (IS_ERR(jinfo)) {
|
|
return jinfo;
|
|
} else if (jinfo != info) {
|
|
/*
|
|
* JEDEC knows better, so overwrite platform ID. We
|
|
* can't trust partitions any longer, but we'll let
|
|
* mtd apply them anyway, since some partitions may be
|
|
* marked read-only, and we don't want to lose that
|
|
* information, even if it's not 100% accurate.
|
|
*/
|
|
dev_warn(nor->dev, "found %s, expected %s\n",
|
|
jinfo->name, info->name);
|
|
info = jinfo;
|
|
}
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
int spi_nor_scan(struct spi_nor *nor, const char *name,
|
|
const struct spi_nor_hwcaps *hwcaps)
|
|
{
|
|
const struct flash_info *info;
|
|
struct device *dev = nor->dev;
|
|
struct mtd_info *mtd = &nor->mtd;
|
|
struct device_node *np = spi_nor_get_flash_node(nor);
|
|
int ret;
|
|
int i;
|
|
|
|
ret = spi_nor_check(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reset SPI protocol for all commands. */
|
|
nor->reg_proto = SNOR_PROTO_1_1_1;
|
|
nor->read_proto = SNOR_PROTO_1_1_1;
|
|
nor->write_proto = SNOR_PROTO_1_1_1;
|
|
|
|
/*
|
|
* We need the bounce buffer early to read/write registers when going
|
|
* through the spi-mem layer (buffers have to be DMA-able).
|
|
* For spi-mem drivers, we'll reallocate a new buffer if
|
|
* nor->page_size turns out to be greater than PAGE_SIZE (which
|
|
* shouldn't happen before long since NOR pages are usually less
|
|
* than 1KB) after spi_nor_scan() returns.
|
|
*/
|
|
nor->bouncebuf_size = PAGE_SIZE;
|
|
nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
|
|
GFP_KERNEL);
|
|
if (!nor->bouncebuf)
|
|
return -ENOMEM;
|
|
|
|
info = spi_nor_get_flash_info(nor, name);
|
|
if (IS_ERR(info))
|
|
return PTR_ERR(info);
|
|
|
|
nor->info = info;
|
|
|
|
spi_nor_debugfs_init(nor, info);
|
|
|
|
mutex_init(&nor->lock);
|
|
|
|
/*
|
|
* Make sure the XSR_RDY flag is set before calling
|
|
* spi_nor_wait_till_ready(). Xilinx S3AN share MFR
|
|
* with Atmel spi-nor
|
|
*/
|
|
if (info->flags & SPI_NOR_XSR_RDY)
|
|
nor->flags |= SNOR_F_READY_XSR_RDY;
|
|
|
|
if (info->flags & SPI_NOR_HAS_LOCK)
|
|
nor->flags |= SNOR_F_HAS_LOCK;
|
|
|
|
mtd->_write = spi_nor_write;
|
|
|
|
/* Init flash parameters based on flash_info struct and SFDP */
|
|
ret = spi_nor_init_params(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!mtd->name)
|
|
mtd->name = dev_name(dev);
|
|
mtd->priv = nor;
|
|
mtd->type = MTD_NORFLASH;
|
|
mtd->writesize = 1;
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
|
mtd->size = nor->params->size;
|
|
mtd->_erase = spi_nor_erase;
|
|
mtd->_read = spi_nor_read;
|
|
mtd->_resume = spi_nor_resume;
|
|
|
|
if (nor->params->locking_ops) {
|
|
mtd->_lock = spi_nor_lock;
|
|
mtd->_unlock = spi_nor_unlock;
|
|
mtd->_is_locked = spi_nor_is_locked;
|
|
}
|
|
|
|
if (info->flags & USE_FSR)
|
|
nor->flags |= SNOR_F_USE_FSR;
|
|
if (info->flags & SPI_NOR_HAS_TB) {
|
|
nor->flags |= SNOR_F_HAS_SR_TB;
|
|
if (info->flags & SPI_NOR_TB_SR_BIT6)
|
|
nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
|
|
}
|
|
|
|
if (info->flags & NO_CHIP_ERASE)
|
|
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
|
|
if (info->flags & USE_CLSR)
|
|
nor->flags |= SNOR_F_USE_CLSR;
|
|
|
|
if (info->flags & SPI_NOR_4BIT_BP) {
|
|
nor->flags |= SNOR_F_HAS_4BIT_BP;
|
|
if (info->flags & SPI_NOR_BP3_SR_BIT6)
|
|
nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
|
|
}
|
|
|
|
if (info->flags & SPI_NOR_NO_ERASE)
|
|
mtd->flags |= MTD_NO_ERASE;
|
|
|
|
mtd->dev.parent = dev;
|
|
nor->page_size = nor->params->page_size;
|
|
mtd->writebufsize = nor->page_size;
|
|
|
|
if (of_property_read_bool(np, "broken-flash-reset"))
|
|
nor->flags |= SNOR_F_BROKEN_RESET;
|
|
|
|
/*
|
|
* Configure the SPI memory:
|
|
* - select op codes for (Fast) Read, Page Program and Sector Erase.
|
|
* - set the number of dummy cycles (mode cycles + wait states).
|
|
* - set the SPI protocols for register and memory accesses.
|
|
*/
|
|
ret = spi_nor_setup(nor, hwcaps);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (info->flags & SPI_NOR_4B_OPCODES)
|
|
nor->flags |= SNOR_F_4B_OPCODES;
|
|
|
|
ret = spi_nor_set_addr_width(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Send all the required SPI flash commands to initialize device */
|
|
ret = spi_nor_init(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dev_info(dev, "%s (%lld Kbytes)\n", info->name,
|
|
(long long)mtd->size >> 10);
|
|
|
|
dev_dbg(dev,
|
|
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
|
|
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
|
|
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
|
|
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
|
|
|
|
if (mtd->numeraseregions)
|
|
for (i = 0; i < mtd->numeraseregions; i++)
|
|
dev_dbg(dev,
|
|
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
|
|
".erasesize = 0x%.8x (%uKiB), "
|
|
".numblocks = %d }\n",
|
|
i, (long long)mtd->eraseregions[i].offset,
|
|
mtd->eraseregions[i].erasesize,
|
|
mtd->eraseregions[i].erasesize / 1024,
|
|
mtd->eraseregions[i].numblocks);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_nor_scan);
|
|
|
|
static int spi_nor_create_read_dirmap(struct spi_nor *nor)
|
|
{
|
|
struct spi_mem_dirmap_info info = {
|
|
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
|
|
SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
|
|
SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
|
|
SPI_MEM_OP_DATA_IN(0, NULL, 1)),
|
|
.offset = 0,
|
|
.length = nor->mtd.size,
|
|
};
|
|
struct spi_mem_op *op = &info.op_tmpl;
|
|
|
|
/* get transfer protocols. */
|
|
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
|
|
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
|
|
op->dummy.buswidth = op->addr.buswidth;
|
|
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
|
|
|
|
/* convert the dummy cycles to the number of bytes */
|
|
op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
|
|
|
|
nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
|
|
&info);
|
|
return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
|
|
}
|
|
|
|
static int spi_nor_create_write_dirmap(struct spi_nor *nor)
|
|
{
|
|
struct spi_mem_dirmap_info info = {
|
|
.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
|
|
SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
|
|
SPI_MEM_OP_NO_DUMMY,
|
|
SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
|
|
.offset = 0,
|
|
.length = nor->mtd.size,
|
|
};
|
|
struct spi_mem_op *op = &info.op_tmpl;
|
|
|
|
/* get transfer protocols. */
|
|
op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
|
|
op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
|
|
op->dummy.buswidth = op->addr.buswidth;
|
|
op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
|
|
|
|
if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
|
|
op->addr.nbytes = 0;
|
|
|
|
nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
|
|
&info);
|
|
return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
|
|
}
|
|
|
|
static int spi_nor_probe(struct spi_mem *spimem)
|
|
{
|
|
struct spi_device *spi = spimem->spi;
|
|
struct flash_platform_data *data = dev_get_platdata(&spi->dev);
|
|
struct spi_nor *nor;
|
|
/*
|
|
* Enable all caps by default. The core will mask them after
|
|
* checking what's really supported using spi_mem_supports_op().
|
|
*/
|
|
const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
|
|
char *flash_name;
|
|
int ret;
|
|
|
|
nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
|
|
if (!nor)
|
|
return -ENOMEM;
|
|
|
|
nor->spimem = spimem;
|
|
nor->dev = &spi->dev;
|
|
spi_nor_set_flash_node(nor, spi->dev.of_node);
|
|
|
|
spi_mem_set_drvdata(spimem, nor);
|
|
|
|
if (data && data->name)
|
|
nor->mtd.name = data->name;
|
|
|
|
if (!nor->mtd.name)
|
|
nor->mtd.name = spi_mem_get_name(spimem);
|
|
|
|
/*
|
|
* For some (historical?) reason many platforms provide two different
|
|
* names in flash_platform_data: "name" and "type". Quite often name is
|
|
* set to "m25p80" and then "type" provides a real chip name.
|
|
* If that's the case, respect "type" and ignore a "name".
|
|
*/
|
|
if (data && data->type)
|
|
flash_name = data->type;
|
|
else if (!strcmp(spi->modalias, "spi-nor"))
|
|
flash_name = NULL; /* auto-detect */
|
|
else
|
|
flash_name = spi->modalias;
|
|
|
|
ret = spi_nor_scan(nor, flash_name, &hwcaps);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* None of the existing parts have > 512B pages, but let's play safe
|
|
* and add this logic so that if anyone ever adds support for such
|
|
* a NOR we don't end up with buffer overflows.
|
|
*/
|
|
if (nor->page_size > PAGE_SIZE) {
|
|
nor->bouncebuf_size = nor->page_size;
|
|
devm_kfree(nor->dev, nor->bouncebuf);
|
|
nor->bouncebuf = devm_kmalloc(nor->dev,
|
|
nor->bouncebuf_size,
|
|
GFP_KERNEL);
|
|
if (!nor->bouncebuf)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = spi_nor_create_read_dirmap(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = spi_nor_create_write_dirmap(nor);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
|
|
data ? data->nr_parts : 0);
|
|
}
|
|
|
|
static int spi_nor_remove(struct spi_mem *spimem)
|
|
{
|
|
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
|
|
|
|
spi_nor_restore(nor);
|
|
|
|
/* Clean up MTD stuff. */
|
|
return mtd_device_unregister(&nor->mtd);
|
|
}
|
|
|
|
static void spi_nor_shutdown(struct spi_mem *spimem)
|
|
{
|
|
struct spi_nor *nor = spi_mem_get_drvdata(spimem);
|
|
|
|
spi_nor_restore(nor);
|
|
}
|
|
|
|
/*
|
|
* Do NOT add to this array without reading the following:
|
|
*
|
|
* Historically, many flash devices are bound to this driver by their name. But
|
|
* since most of these flash are compatible to some extent, and their
|
|
* differences can often be differentiated by the JEDEC read-ID command, we
|
|
* encourage new users to add support to the spi-nor library, and simply bind
|
|
* against a generic string here (e.g., "jedec,spi-nor").
|
|
*
|
|
* Many flash names are kept here in this list (as well as in spi-nor.c) to
|
|
* keep them available as module aliases for existing platforms.
|
|
*/
|
|
static const struct spi_device_id spi_nor_dev_ids[] = {
|
|
/*
|
|
* Allow non-DT platform devices to bind to the "spi-nor" modalias, and
|
|
* hack around the fact that the SPI core does not provide uevent
|
|
* matching for .of_match_table
|
|
*/
|
|
{"spi-nor"},
|
|
|
|
/*
|
|
* Entries not used in DTs that should be safe to drop after replacing
|
|
* them with "spi-nor" in platform data.
|
|
*/
|
|
{"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
|
|
|
|
/*
|
|
* Entries that were used in DTs without "jedec,spi-nor" fallback and
|
|
* should be kept for backward compatibility.
|
|
*/
|
|
{"at25df321a"}, {"at25df641"}, {"at26df081a"},
|
|
{"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
|
|
{"mx25l25635e"},{"mx66l51235l"},
|
|
{"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
|
|
{"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
|
|
{"s25fl064k"},
|
|
{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
|
|
{"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
|
|
{"m25p64"}, {"m25p128"},
|
|
{"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
|
|
{"w25q80bl"}, {"w25q128"}, {"w25q256"},
|
|
|
|
/* Flashes that can't be detected using JEDEC */
|
|
{"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
|
|
{"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
|
|
{"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
|
|
|
|
/* Everspin MRAMs (non-JEDEC) */
|
|
{ "mr25h128" }, /* 128 Kib, 40 MHz */
|
|
{ "mr25h256" }, /* 256 Kib, 40 MHz */
|
|
{ "mr25h10" }, /* 1 Mib, 40 MHz */
|
|
{ "mr25h40" }, /* 4 Mib, 40 MHz */
|
|
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
|
|
|
|
static const struct of_device_id spi_nor_of_table[] = {
|
|
/*
|
|
* Generic compatibility for SPI NOR that can be identified by the
|
|
* JEDEC READ ID opcode (0x9F). Use this, if possible.
|
|
*/
|
|
{ .compatible = "jedec,spi-nor" },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, spi_nor_of_table);
|
|
|
|
/*
|
|
* REVISIT: many of these chips have deep power-down modes, which
|
|
* should clearly be entered on suspend() to minimize power use.
|
|
* And also when they're otherwise idle...
|
|
*/
|
|
static struct spi_mem_driver spi_nor_driver = {
|
|
.spidrv = {
|
|
.driver = {
|
|
.name = "spi-nor",
|
|
.of_match_table = spi_nor_of_table,
|
|
},
|
|
.id_table = spi_nor_dev_ids,
|
|
},
|
|
.probe = spi_nor_probe,
|
|
.remove = spi_nor_remove,
|
|
.shutdown = spi_nor_shutdown,
|
|
};
|
|
module_spi_mem_driver(spi_nor_driver);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
|
|
MODULE_AUTHOR("Mike Lavender");
|
|
MODULE_DESCRIPTION("framework for SPI NOR");
|