1668 lines
46 KiB
C
1668 lines
46 KiB
C
/*
|
|
* Freescale GPMI NAND Flash Driver
|
|
*
|
|
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
|
|
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_mtd.h>
|
|
#include "gpmi-nand.h"
|
|
|
|
/* Resource names for the GPMI NAND driver. */
|
|
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
|
|
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
|
|
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
|
|
|
|
/* add our owner bbt descriptor */
|
|
static uint8_t scan_ff_pattern[] = { 0xff };
|
|
static struct nand_bbt_descr gpmi_bbt_descr = {
|
|
.options = 0,
|
|
.offs = 0,
|
|
.len = 1,
|
|
.pattern = scan_ff_pattern
|
|
};
|
|
|
|
/* We will use all the (page + OOB). */
|
|
static struct nand_ecclayout gpmi_hw_ecclayout = {
|
|
.eccbytes = 0,
|
|
.eccpos = { 0, },
|
|
.oobfree = { {.offset = 0, .length = 0} }
|
|
};
|
|
|
|
static irqreturn_t bch_irq(int irq, void *cookie)
|
|
{
|
|
struct gpmi_nand_data *this = cookie;
|
|
|
|
gpmi_clear_bch(this);
|
|
complete(&this->bch_done);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Calculate the ECC strength by hand:
|
|
* E : The ECC strength.
|
|
* G : the length of Galois Field.
|
|
* N : The chunk count of per page.
|
|
* O : the oobsize of the NAND chip.
|
|
* M : the metasize of per page.
|
|
*
|
|
* The formula is :
|
|
* E * G * N
|
|
* ------------ <= (O - M)
|
|
* 8
|
|
*
|
|
* So, we get E by:
|
|
* (O - M) * 8
|
|
* E <= -------------
|
|
* G * N
|
|
*/
|
|
static inline int get_ecc_strength(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
int ecc_strength;
|
|
|
|
ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
|
|
/ (geo->gf_len * geo->ecc_chunk_count);
|
|
|
|
/* We need the minor even number. */
|
|
return round_down(ecc_strength, 2);
|
|
}
|
|
|
|
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
|
|
/* Do the sanity check. */
|
|
if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
|
|
/* The mx23/mx28 only support the GF13. */
|
|
if (geo->gf_len == 14)
|
|
return false;
|
|
|
|
if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
|
|
return false;
|
|
} else if (GPMI_IS_MX6Q(this)) {
|
|
if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int common_nfc_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
unsigned int metadata_size;
|
|
unsigned int status_size;
|
|
unsigned int block_mark_bit_offset;
|
|
|
|
/*
|
|
* The size of the metadata can be changed, though we set it to 10
|
|
* bytes now. But it can't be too large, because we have to save
|
|
* enough space for BCH.
|
|
*/
|
|
geo->metadata_size = 10;
|
|
|
|
/* The default for the length of Galois Field. */
|
|
geo->gf_len = 13;
|
|
|
|
/* The default for chunk size. */
|
|
geo->ecc_chunk_size = 512;
|
|
while (geo->ecc_chunk_size < mtd->oobsize) {
|
|
geo->ecc_chunk_size *= 2; /* keep C >= O */
|
|
geo->gf_len = 14;
|
|
}
|
|
|
|
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
|
|
|
|
/* We use the same ECC strength for all chunks. */
|
|
geo->ecc_strength = get_ecc_strength(this);
|
|
if (!gpmi_check_ecc(this)) {
|
|
dev_err(this->dev,
|
|
"We can not support this nand chip."
|
|
" Its required ecc strength(%d) is beyond our"
|
|
" capability(%d).\n", geo->ecc_strength,
|
|
(GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
|
|
: MXS_ECC_STRENGTH_MAX));
|
|
return -EINVAL;
|
|
}
|
|
|
|
geo->page_size = mtd->writesize + mtd->oobsize;
|
|
geo->payload_size = mtd->writesize;
|
|
|
|
/*
|
|
* The auxiliary buffer contains the metadata and the ECC status. The
|
|
* metadata is padded to the nearest 32-bit boundary. The ECC status
|
|
* contains one byte for every ECC chunk, and is also padded to the
|
|
* nearest 32-bit boundary.
|
|
*/
|
|
metadata_size = ALIGN(geo->metadata_size, 4);
|
|
status_size = ALIGN(geo->ecc_chunk_count, 4);
|
|
|
|
geo->auxiliary_size = metadata_size + status_size;
|
|
geo->auxiliary_status_offset = metadata_size;
|
|
|
|
if (!this->swap_block_mark)
|
|
return 0;
|
|
|
|
/*
|
|
* We need to compute the byte and bit offsets of
|
|
* the physical block mark within the ECC-based view of the page.
|
|
*
|
|
* NAND chip with 2K page shows below:
|
|
* (Block Mark)
|
|
* | |
|
|
* | D |
|
|
* |<---->|
|
|
* V V
|
|
* +---+----------+-+----------+-+----------+-+----------+-+
|
|
* | M | data |E| data |E| data |E| data |E|
|
|
* +---+----------+-+----------+-+----------+-+----------+-+
|
|
*
|
|
* The position of block mark moves forward in the ECC-based view
|
|
* of page, and the delta is:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M)
|
|
* 8
|
|
*
|
|
* With the formula to compute the ECC strength, and the condition
|
|
* : C >= O (C is the ecc chunk size)
|
|
*
|
|
* It's easy to deduce to the following result:
|
|
*
|
|
* E * G (O - M) C - M C - M
|
|
* ----------- <= ------- <= -------- < ---------
|
|
* 8 N N (N - 1)
|
|
*
|
|
* So, we get:
|
|
*
|
|
* E * G * (N - 1)
|
|
* D = (---------------- + M) < C
|
|
* 8
|
|
*
|
|
* The above inequality means the position of block mark
|
|
* within the ECC-based view of the page is still in the data chunk,
|
|
* and it's NOT in the ECC bits of the chunk.
|
|
*
|
|
* Use the following to compute the bit position of the
|
|
* physical block mark within the ECC-based view of the page:
|
|
* (page_size - D) * 8
|
|
*
|
|
* --Huang Shijie
|
|
*/
|
|
block_mark_bit_offset = mtd->writesize * 8 -
|
|
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
|
|
+ geo->metadata_size * 8);
|
|
|
|
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
|
|
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
|
|
return 0;
|
|
}
|
|
|
|
struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
|
|
{
|
|
int chipnr = this->current_chip;
|
|
|
|
return this->dma_chans[chipnr];
|
|
}
|
|
|
|
/* Can we use the upper's buffer directly for DMA? */
|
|
void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
|
|
{
|
|
struct scatterlist *sgl = &this->data_sgl;
|
|
int ret;
|
|
|
|
this->direct_dma_map_ok = true;
|
|
|
|
/* first try to map the upper buffer directly */
|
|
sg_init_one(sgl, this->upper_buf, this->upper_len);
|
|
ret = dma_map_sg(this->dev, sgl, 1, dr);
|
|
if (ret == 0) {
|
|
/* We have to use our own DMA buffer. */
|
|
sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
|
|
|
|
if (dr == DMA_TO_DEVICE)
|
|
memcpy(this->data_buffer_dma, this->upper_buf,
|
|
this->upper_len);
|
|
|
|
ret = dma_map_sg(this->dev, sgl, 1, dr);
|
|
if (ret == 0)
|
|
pr_err("DMA mapping failed.\n");
|
|
|
|
this->direct_dma_map_ok = false;
|
|
}
|
|
}
|
|
|
|
/* This will be called after the DMA operation is finished. */
|
|
static void dma_irq_callback(void *param)
|
|
{
|
|
struct gpmi_nand_data *this = param;
|
|
struct completion *dma_c = &this->dma_done;
|
|
|
|
complete(dma_c);
|
|
|
|
switch (this->dma_type) {
|
|
case DMA_FOR_COMMAND:
|
|
dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
|
|
break;
|
|
|
|
case DMA_FOR_READ_DATA:
|
|
dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
|
|
if (this->direct_dma_map_ok == false)
|
|
memcpy(this->upper_buf, this->data_buffer_dma,
|
|
this->upper_len);
|
|
break;
|
|
|
|
case DMA_FOR_WRITE_DATA:
|
|
dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
|
|
break;
|
|
|
|
case DMA_FOR_READ_ECC_PAGE:
|
|
case DMA_FOR_WRITE_ECC_PAGE:
|
|
/* We have to wait the BCH interrupt to finish. */
|
|
break;
|
|
|
|
default:
|
|
pr_err("in wrong DMA operation.\n");
|
|
}
|
|
}
|
|
|
|
int start_dma_without_bch_irq(struct gpmi_nand_data *this,
|
|
struct dma_async_tx_descriptor *desc)
|
|
{
|
|
struct completion *dma_c = &this->dma_done;
|
|
int err;
|
|
|
|
init_completion(dma_c);
|
|
|
|
desc->callback = dma_irq_callback;
|
|
desc->callback_param = this;
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(get_dma_chan(this));
|
|
|
|
/* Wait for the interrupt from the DMA block. */
|
|
err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
|
|
if (!err) {
|
|
pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
|
|
gpmi_dump_info(this);
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is used in BCH reading or BCH writing pages.
|
|
* It will wait for the BCH interrupt as long as ONE second.
|
|
* Actually, we must wait for two interrupts :
|
|
* [1] firstly the DMA interrupt and
|
|
* [2] secondly the BCH interrupt.
|
|
*/
|
|
int start_dma_with_bch_irq(struct gpmi_nand_data *this,
|
|
struct dma_async_tx_descriptor *desc)
|
|
{
|
|
struct completion *bch_c = &this->bch_done;
|
|
int err;
|
|
|
|
/* Prepare to receive an interrupt from the BCH block. */
|
|
init_completion(bch_c);
|
|
|
|
/* start the DMA */
|
|
start_dma_without_bch_irq(this, desc);
|
|
|
|
/* Wait for the interrupt from the BCH block. */
|
|
err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
|
|
if (!err) {
|
|
pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
|
|
gpmi_dump_info(this);
|
|
return -ETIMEDOUT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int acquire_register_block(struct gpmi_nand_data *this,
|
|
const char *res_name)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct resources *res = &this->resources;
|
|
struct resource *r;
|
|
void __iomem *p;
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
|
|
if (!r) {
|
|
pr_err("Can't get resource for %s\n", res_name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
p = ioremap(r->start, resource_size(r));
|
|
if (!p) {
|
|
pr_err("Can't remap %s\n", res_name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
|
|
res->gpmi_regs = p;
|
|
else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
|
|
res->bch_regs = p;
|
|
else
|
|
pr_err("unknown resource name : %s\n", res_name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void release_register_block(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *res = &this->resources;
|
|
if (res->gpmi_regs)
|
|
iounmap(res->gpmi_regs);
|
|
if (res->bch_regs)
|
|
iounmap(res->bch_regs);
|
|
res->gpmi_regs = NULL;
|
|
res->bch_regs = NULL;
|
|
}
|
|
|
|
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct resources *res = &this->resources;
|
|
const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
|
|
struct resource *r;
|
|
int err;
|
|
|
|
r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
|
|
if (!r) {
|
|
pr_err("Can't get resource for %s\n", res_name);
|
|
return -ENXIO;
|
|
}
|
|
|
|
err = request_irq(r->start, irq_h, 0, res_name, this);
|
|
if (err) {
|
|
pr_err("Can't own %s\n", res_name);
|
|
return err;
|
|
}
|
|
|
|
res->bch_low_interrupt = r->start;
|
|
res->bch_high_interrupt = r->end;
|
|
return 0;
|
|
}
|
|
|
|
static void release_bch_irq(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *res = &this->resources;
|
|
int i = res->bch_low_interrupt;
|
|
|
|
for (; i <= res->bch_high_interrupt; i++)
|
|
free_irq(i, this);
|
|
}
|
|
|
|
static void release_dma_channels(struct gpmi_nand_data *this)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < DMA_CHANS; i++)
|
|
if (this->dma_chans[i]) {
|
|
dma_release_channel(this->dma_chans[i]);
|
|
this->dma_chans[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static int acquire_dma_channels(struct gpmi_nand_data *this)
|
|
{
|
|
struct platform_device *pdev = this->pdev;
|
|
struct dma_chan *dma_chan;
|
|
|
|
/* request dma channel */
|
|
dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
|
|
if (!dma_chan) {
|
|
pr_err("Failed to request DMA channel.\n");
|
|
goto acquire_err;
|
|
}
|
|
|
|
this->dma_chans[0] = dma_chan;
|
|
return 0;
|
|
|
|
acquire_err:
|
|
release_dma_channels(this);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void gpmi_put_clks(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *r = &this->resources;
|
|
struct clk *clk;
|
|
int i;
|
|
|
|
for (i = 0; i < GPMI_CLK_MAX; i++) {
|
|
clk = r->clock[i];
|
|
if (clk) {
|
|
clk_put(clk);
|
|
r->clock[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
|
|
"gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
|
|
};
|
|
|
|
static int gpmi_get_clks(struct gpmi_nand_data *this)
|
|
{
|
|
struct resources *r = &this->resources;
|
|
char **extra_clks = NULL;
|
|
struct clk *clk;
|
|
int i;
|
|
|
|
/* The main clock is stored in the first. */
|
|
r->clock[0] = clk_get(this->dev, "gpmi_io");
|
|
if (IS_ERR(r->clock[0]))
|
|
goto err_clock;
|
|
|
|
/* Get extra clocks */
|
|
if (GPMI_IS_MX6Q(this))
|
|
extra_clks = extra_clks_for_mx6q;
|
|
if (!extra_clks)
|
|
return 0;
|
|
|
|
for (i = 1; i < GPMI_CLK_MAX; i++) {
|
|
if (extra_clks[i - 1] == NULL)
|
|
break;
|
|
|
|
clk = clk_get(this->dev, extra_clks[i - 1]);
|
|
if (IS_ERR(clk))
|
|
goto err_clock;
|
|
|
|
r->clock[i] = clk;
|
|
}
|
|
|
|
if (GPMI_IS_MX6Q(this))
|
|
/*
|
|
* Set the default value for the gpmi clock in mx6q:
|
|
*
|
|
* If you want to use the ONFI nand which is in the
|
|
* Synchronous Mode, you should change the clock as you need.
|
|
*/
|
|
clk_set_rate(r->clock[0], 22000000);
|
|
|
|
return 0;
|
|
|
|
err_clock:
|
|
dev_dbg(this->dev, "failed in finding the clocks.\n");
|
|
gpmi_put_clks(this);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int acquire_resources(struct gpmi_nand_data *this)
|
|
{
|
|
struct pinctrl *pinctrl;
|
|
int ret;
|
|
|
|
ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_bch_irq(this, bch_irq);
|
|
if (ret)
|
|
goto exit_regs;
|
|
|
|
ret = acquire_dma_channels(this);
|
|
if (ret)
|
|
goto exit_dma_channels;
|
|
|
|
pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
|
|
if (IS_ERR(pinctrl)) {
|
|
ret = PTR_ERR(pinctrl);
|
|
goto exit_pin;
|
|
}
|
|
|
|
ret = gpmi_get_clks(this);
|
|
if (ret)
|
|
goto exit_clock;
|
|
return 0;
|
|
|
|
exit_clock:
|
|
exit_pin:
|
|
release_dma_channels(this);
|
|
exit_dma_channels:
|
|
release_bch_irq(this);
|
|
exit_regs:
|
|
release_register_block(this);
|
|
return ret;
|
|
}
|
|
|
|
static void release_resources(struct gpmi_nand_data *this)
|
|
{
|
|
gpmi_put_clks(this);
|
|
release_register_block(this);
|
|
release_bch_irq(this);
|
|
release_dma_channels(this);
|
|
}
|
|
|
|
static int init_hardware(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* This structure contains the "safe" GPMI timing that should succeed
|
|
* with any NAND Flash device
|
|
* (although, with less-than-optimal performance).
|
|
*/
|
|
struct nand_timing safe_timing = {
|
|
.data_setup_in_ns = 80,
|
|
.data_hold_in_ns = 60,
|
|
.address_setup_in_ns = 25,
|
|
.gpmi_sample_delay_in_ns = 6,
|
|
.tREA_in_ns = -1,
|
|
.tRLOH_in_ns = -1,
|
|
.tRHOH_in_ns = -1,
|
|
};
|
|
|
|
/* Initialize the hardwares. */
|
|
ret = gpmi_init(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
this->timing = safe_timing;
|
|
return 0;
|
|
}
|
|
|
|
static int read_page_prepare(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void **use_virt, dma_addr_t *use_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (virt_addr_valid(destination)) {
|
|
dma_addr_t dest_phys;
|
|
|
|
dest_phys = dma_map_single(dev, destination,
|
|
length, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(dev, dest_phys)) {
|
|
if (alt_size < length) {
|
|
pr_err("%s, Alternate buffer is too small\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
goto map_failed;
|
|
}
|
|
*use_virt = destination;
|
|
*use_phys = dest_phys;
|
|
this->direct_dma_map_ok = true;
|
|
return 0;
|
|
}
|
|
|
|
map_failed:
|
|
*use_virt = alt_virt;
|
|
*use_phys = alt_phys;
|
|
this->direct_dma_map_ok = false;
|
|
return 0;
|
|
}
|
|
|
|
static inline void read_page_end(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
if (this->direct_dma_map_ok)
|
|
dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline void read_page_swap_end(struct gpmi_nand_data *this,
|
|
void *destination, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
if (!this->direct_dma_map_ok)
|
|
memcpy(destination, alt_virt, length);
|
|
}
|
|
|
|
static int send_page_prepare(struct gpmi_nand_data *this,
|
|
const void *source, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
const void **use_virt, dma_addr_t *use_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (virt_addr_valid(source)) {
|
|
dma_addr_t source_phys;
|
|
|
|
source_phys = dma_map_single(dev, (void *)source, length,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, source_phys)) {
|
|
if (alt_size < length) {
|
|
pr_err("%s, Alternate buffer is too small\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
goto map_failed;
|
|
}
|
|
*use_virt = source;
|
|
*use_phys = source_phys;
|
|
return 0;
|
|
}
|
|
map_failed:
|
|
/*
|
|
* Copy the content of the source buffer into the alternate
|
|
* buffer and set up the return values accordingly.
|
|
*/
|
|
memcpy(alt_virt, source, length);
|
|
|
|
*use_virt = alt_virt;
|
|
*use_phys = alt_phys;
|
|
return 0;
|
|
}
|
|
|
|
static void send_page_end(struct gpmi_nand_data *this,
|
|
const void *source, unsigned length,
|
|
void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
|
|
const void *used_virt, dma_addr_t used_phys)
|
|
{
|
|
struct device *dev = this->dev;
|
|
if (used_virt == source)
|
|
dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
|
|
if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
|
|
dma_free_coherent(dev, this->page_buffer_size,
|
|
this->page_buffer_virt,
|
|
this->page_buffer_phys);
|
|
kfree(this->cmd_buffer);
|
|
kfree(this->data_buffer_dma);
|
|
|
|
this->cmd_buffer = NULL;
|
|
this->data_buffer_dma = NULL;
|
|
this->page_buffer_virt = NULL;
|
|
this->page_buffer_size = 0;
|
|
}
|
|
|
|
/* Allocate the DMA buffers */
|
|
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
|
|
{
|
|
struct bch_geometry *geo = &this->bch_geometry;
|
|
struct device *dev = this->dev;
|
|
|
|
/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
|
|
this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
|
|
if (this->cmd_buffer == NULL)
|
|
goto error_alloc;
|
|
|
|
/* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
|
|
this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
|
|
if (this->data_buffer_dma == NULL)
|
|
goto error_alloc;
|
|
|
|
/*
|
|
* [3] Allocate the page buffer.
|
|
*
|
|
* Both the payload buffer and the auxiliary buffer must appear on
|
|
* 32-bit boundaries. We presume the size of the payload buffer is a
|
|
* power of two and is much larger than four, which guarantees the
|
|
* auxiliary buffer will appear on a 32-bit boundary.
|
|
*/
|
|
this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
|
|
this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
|
|
&this->page_buffer_phys, GFP_DMA);
|
|
if (!this->page_buffer_virt)
|
|
goto error_alloc;
|
|
|
|
|
|
/* Slice up the page buffer. */
|
|
this->payload_virt = this->page_buffer_virt;
|
|
this->payload_phys = this->page_buffer_phys;
|
|
this->auxiliary_virt = this->payload_virt + geo->payload_size;
|
|
this->auxiliary_phys = this->payload_phys + geo->payload_size;
|
|
return 0;
|
|
|
|
error_alloc:
|
|
gpmi_free_dma_buffer(this);
|
|
pr_err("Error allocating DMA buffers!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
int ret;
|
|
|
|
/*
|
|
* Every operation begins with a command byte and a series of zero or
|
|
* more address bytes. These are distinguished by either the Address
|
|
* Latch Enable (ALE) or Command Latch Enable (CLE) signals being
|
|
* asserted. When MTD is ready to execute the command, it will deassert
|
|
* both latch enables.
|
|
*
|
|
* Rather than run a separate DMA operation for every single byte, we
|
|
* queue them up and run a single DMA operation for the entire series
|
|
* of command and data bytes. NAND_CMD_NONE means the END of the queue.
|
|
*/
|
|
if ((ctrl & (NAND_ALE | NAND_CLE))) {
|
|
if (data != NAND_CMD_NONE)
|
|
this->cmd_buffer[this->command_length++] = data;
|
|
return;
|
|
}
|
|
|
|
if (!this->command_length)
|
|
return;
|
|
|
|
ret = gpmi_send_command(this);
|
|
if (ret)
|
|
pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
|
|
|
|
this->command_length = 0;
|
|
}
|
|
|
|
static int gpmi_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
return gpmi_is_ready(this, this->current_chip);
|
|
}
|
|
|
|
static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
if ((this->current_chip < 0) && (chipnr >= 0))
|
|
gpmi_begin(this);
|
|
else if ((this->current_chip >= 0) && (chipnr < 0))
|
|
gpmi_end(this);
|
|
|
|
this->current_chip = chipnr;
|
|
}
|
|
|
|
static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
pr_debug("len is %d\n", len);
|
|
this->upper_buf = buf;
|
|
this->upper_len = len;
|
|
|
|
gpmi_read_data(this);
|
|
}
|
|
|
|
static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
pr_debug("len is %d\n", len);
|
|
this->upper_buf = (uint8_t *)buf;
|
|
this->upper_len = len;
|
|
|
|
gpmi_send_data(this);
|
|
}
|
|
|
|
static uint8_t gpmi_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
uint8_t *buf = this->data_buffer_dma;
|
|
|
|
gpmi_read_buf(mtd, buf, 1);
|
|
return buf[0];
|
|
}
|
|
|
|
/*
|
|
* Handles block mark swapping.
|
|
* It can be called in swapping the block mark, or swapping it back,
|
|
* because the the operations are the same.
|
|
*/
|
|
static void block_mark_swapping(struct gpmi_nand_data *this,
|
|
void *payload, void *auxiliary)
|
|
{
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
unsigned char *p;
|
|
unsigned char *a;
|
|
unsigned int bit;
|
|
unsigned char mask;
|
|
unsigned char from_data;
|
|
unsigned char from_oob;
|
|
|
|
if (!this->swap_block_mark)
|
|
return;
|
|
|
|
/*
|
|
* If control arrives here, we're swapping. Make some convenience
|
|
* variables.
|
|
*/
|
|
bit = nfc_geo->block_mark_bit_offset;
|
|
p = payload + nfc_geo->block_mark_byte_offset;
|
|
a = auxiliary;
|
|
|
|
/*
|
|
* Get the byte from the data area that overlays the block mark. Since
|
|
* the ECC engine applies its own view to the bits in the page, the
|
|
* physical block mark won't (in general) appear on a byte boundary in
|
|
* the data.
|
|
*/
|
|
from_data = (p[0] >> bit) | (p[1] << (8 - bit));
|
|
|
|
/* Get the byte from the OOB. */
|
|
from_oob = a[0];
|
|
|
|
/* Swap them. */
|
|
a[0] = from_data;
|
|
|
|
mask = (0x1 << bit) - 1;
|
|
p[0] = (p[0] & mask) | (from_oob << bit);
|
|
|
|
mask = ~0 << bit;
|
|
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
|
|
}
|
|
|
|
static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
void *payload_virt;
|
|
dma_addr_t payload_phys;
|
|
void *auxiliary_virt;
|
|
dma_addr_t auxiliary_phys;
|
|
unsigned int i;
|
|
unsigned char *status;
|
|
unsigned int max_bitflips = 0;
|
|
int ret;
|
|
|
|
pr_debug("page number is : %d\n", page);
|
|
ret = read_page_prepare(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
&payload_virt, &payload_phys);
|
|
if (ret) {
|
|
pr_err("Inadequate DMA buffer\n");
|
|
ret = -ENOMEM;
|
|
return ret;
|
|
}
|
|
auxiliary_virt = this->auxiliary_virt;
|
|
auxiliary_phys = this->auxiliary_phys;
|
|
|
|
/* go! */
|
|
ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
|
|
read_page_end(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
if (ret) {
|
|
pr_err("Error in ECC-based read: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* handle the block mark swapping */
|
|
block_mark_swapping(this, payload_virt, auxiliary_virt);
|
|
|
|
/* Loop over status bytes, accumulating ECC status. */
|
|
status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
|
|
|
|
for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
|
|
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
|
|
continue;
|
|
|
|
if (*status == STATUS_UNCORRECTABLE) {
|
|
mtd->ecc_stats.failed++;
|
|
continue;
|
|
}
|
|
mtd->ecc_stats.corrected += *status;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, *status);
|
|
}
|
|
|
|
if (oob_required) {
|
|
/*
|
|
* It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
|
|
* for details about our policy for delivering the OOB.
|
|
*
|
|
* We fill the caller's buffer with set bits, and then copy the
|
|
* block mark to th caller's buffer. Note that, if block mark
|
|
* swapping was necessary, it has already been done, so we can
|
|
* rely on the first byte of the auxiliary buffer to contain
|
|
* the block mark.
|
|
*/
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
|
|
}
|
|
|
|
read_page_swap_end(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required)
|
|
{
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
struct bch_geometry *nfc_geo = &this->bch_geometry;
|
|
const void *payload_virt;
|
|
dma_addr_t payload_phys;
|
|
const void *auxiliary_virt;
|
|
dma_addr_t auxiliary_phys;
|
|
int ret;
|
|
|
|
pr_debug("ecc write page.\n");
|
|
if (this->swap_block_mark) {
|
|
/*
|
|
* If control arrives here, we're doing block mark swapping.
|
|
* Since we can't modify the caller's buffers, we must copy them
|
|
* into our own.
|
|
*/
|
|
memcpy(this->payload_virt, buf, mtd->writesize);
|
|
payload_virt = this->payload_virt;
|
|
payload_phys = this->payload_phys;
|
|
|
|
memcpy(this->auxiliary_virt, chip->oob_poi,
|
|
nfc_geo->auxiliary_size);
|
|
auxiliary_virt = this->auxiliary_virt;
|
|
auxiliary_phys = this->auxiliary_phys;
|
|
|
|
/* Handle block mark swapping. */
|
|
block_mark_swapping(this,
|
|
(void *) payload_virt, (void *) auxiliary_virt);
|
|
} else {
|
|
/*
|
|
* If control arrives here, we're not doing block mark swapping,
|
|
* so we can to try and use the caller's buffers.
|
|
*/
|
|
ret = send_page_prepare(this,
|
|
buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
&payload_virt, &payload_phys);
|
|
if (ret) {
|
|
pr_err("Inadequate payload DMA buffer\n");
|
|
return 0;
|
|
}
|
|
|
|
ret = send_page_prepare(this,
|
|
chip->oob_poi, mtd->oobsize,
|
|
this->auxiliary_virt, this->auxiliary_phys,
|
|
nfc_geo->auxiliary_size,
|
|
&auxiliary_virt, &auxiliary_phys);
|
|
if (ret) {
|
|
pr_err("Inadequate auxiliary DMA buffer\n");
|
|
goto exit_auxiliary;
|
|
}
|
|
}
|
|
|
|
/* Ask the NFC. */
|
|
ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
|
|
if (ret)
|
|
pr_err("Error in ECC-based write: %d\n", ret);
|
|
|
|
if (!this->swap_block_mark) {
|
|
send_page_end(this, chip->oob_poi, mtd->oobsize,
|
|
this->auxiliary_virt, this->auxiliary_phys,
|
|
nfc_geo->auxiliary_size,
|
|
auxiliary_virt, auxiliary_phys);
|
|
exit_auxiliary:
|
|
send_page_end(this, buf, mtd->writesize,
|
|
this->payload_virt, this->payload_phys,
|
|
nfc_geo->payload_size,
|
|
payload_virt, payload_phys);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* There are several places in this driver where we have to handle the OOB and
|
|
* block marks. This is the function where things are the most complicated, so
|
|
* this is where we try to explain it all. All the other places refer back to
|
|
* here.
|
|
*
|
|
* These are the rules, in order of decreasing importance:
|
|
*
|
|
* 1) Nothing the caller does can be allowed to imperil the block mark.
|
|
*
|
|
* 2) In read operations, the first byte of the OOB we return must reflect the
|
|
* true state of the block mark, no matter where that block mark appears in
|
|
* the physical page.
|
|
*
|
|
* 3) ECC-based read operations return an OOB full of set bits (since we never
|
|
* allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
|
|
* return).
|
|
*
|
|
* 4) "Raw" read operations return a direct view of the physical bytes in the
|
|
* page, using the conventional definition of which bytes are data and which
|
|
* are OOB. This gives the caller a way to see the actual, physical bytes
|
|
* in the page, without the distortions applied by our ECC engine.
|
|
*
|
|
*
|
|
* What we do for this specific read operation depends on two questions:
|
|
*
|
|
* 1) Are we doing a "raw" read, or an ECC-based read?
|
|
*
|
|
* 2) Are we using block mark swapping or transcription?
|
|
*
|
|
* There are four cases, illustrated by the following Karnaugh map:
|
|
*
|
|
* | Raw | ECC-based |
|
|
* -------------+-------------------------+-------------------------+
|
|
* | Read the conventional | |
|
|
* | OOB at the end of the | |
|
|
* Swapping | page and return it. It | |
|
|
* | contains exactly what | |
|
|
* | we want. | Read the block mark and |
|
|
* -------------+-------------------------+ return it in a buffer |
|
|
* | Read the conventional | full of set bits. |
|
|
* | OOB at the end of the | |
|
|
* | page and also the block | |
|
|
* Transcribing | mark in the metadata. | |
|
|
* | Copy the block mark | |
|
|
* | into the first byte of | |
|
|
* | the OOB. | |
|
|
* -------------+-------------------------+-------------------------+
|
|
*
|
|
* Note that we break rule #4 in the Transcribing/Raw case because we're not
|
|
* giving an accurate view of the actual, physical bytes in the page (we're
|
|
* overwriting the block mark). That's OK because it's more important to follow
|
|
* rule #2.
|
|
*
|
|
* It turns out that knowing whether we want an "ECC-based" or "raw" read is not
|
|
* easy. When reading a page, for example, the NAND Flash MTD code calls our
|
|
* ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
|
|
* ECC-based or raw view of the page is implicit in which function it calls
|
|
* (there is a similar pair of ECC-based/raw functions for writing).
|
|
*
|
|
* FIXME: The following paragraph is incorrect, now that there exist
|
|
* ecc.read_oob_raw and ecc.write_oob_raw functions.
|
|
*
|
|
* Since MTD assumes the OOB is not covered by ECC, there is no pair of
|
|
* ECC-based/raw functions for reading or or writing the OOB. The fact that the
|
|
* caller wants an ECC-based or raw view of the page is not propagated down to
|
|
* this driver.
|
|
*/
|
|
static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
|
int page)
|
|
{
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
|
|
pr_debug("page number is %d\n", page);
|
|
/* clear the OOB buffer */
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
|
|
/* Read out the conventional OOB. */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/*
|
|
* Now, we want to make sure the block mark is correct. In the
|
|
* Swapping/Raw case, we already have it. Otherwise, we need to
|
|
* explicitly read it.
|
|
*/
|
|
if (!this->swap_block_mark) {
|
|
/* Read the block mark into the first byte of the OOB buffer. */
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
|
chip->oob_poi[0] = chip->read_byte(mtd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
|
|
{
|
|
/*
|
|
* The BCH will use all the (page + oob).
|
|
* Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
|
|
* But it can not stop some ioctls such MEMWRITEOOB which uses
|
|
* MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
|
|
* these ioctls too.
|
|
*/
|
|
return -EPERM;
|
|
}
|
|
|
|
static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
int block, ret = 0;
|
|
uint8_t *block_mark;
|
|
int column, page, status, chipnr;
|
|
|
|
/* Get block number */
|
|
block = (int)(ofs >> chip->bbt_erase_shift);
|
|
if (chip->bbt)
|
|
chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
|
|
|
|
/* Do we have a flash based bad block table ? */
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH)
|
|
ret = nand_update_bbt(mtd, ofs);
|
|
else {
|
|
chipnr = (int)(ofs >> chip->chip_shift);
|
|
chip->select_chip(mtd, chipnr);
|
|
|
|
column = this->swap_block_mark ? mtd->writesize : 0;
|
|
|
|
/* Write the block mark. */
|
|
block_mark = this->data_buffer_dma;
|
|
block_mark[0] = 0; /* bad block marker */
|
|
|
|
/* Shift to get page */
|
|
page = (int)(ofs >> chip->page_shift);
|
|
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
|
|
chip->write_buf(mtd, block_mark, 1);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
ret = -EIO;
|
|
|
|
chip->select_chip(mtd, -1);
|
|
}
|
|
if (!ret)
|
|
mtd->ecc_stats.badblocks++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
struct boot_rom_geometry *geometry = &this->rom_geometry;
|
|
|
|
/*
|
|
* Set the boot block stride size.
|
|
*
|
|
* In principle, we should be reading this from the OTP bits, since
|
|
* that's where the ROM is going to get it. In fact, we don't have any
|
|
* way to read the OTP bits, so we go with the default and hope for the
|
|
* best.
|
|
*/
|
|
geometry->stride_size_in_pages = 64;
|
|
|
|
/*
|
|
* Set the search area stride exponent.
|
|
*
|
|
* In principle, we should be reading this from the OTP bits, since
|
|
* that's where the ROM is going to get it. In fact, we don't have any
|
|
* way to read the OTP bits, so we go with the default and hope for the
|
|
* best.
|
|
*/
|
|
geometry->search_area_stride_exponent = 2;
|
|
return 0;
|
|
}
|
|
|
|
static const char *fingerprint = "STMP";
|
|
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
|
|
{
|
|
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
|
|
struct device *dev = this->dev;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = &this->nand;
|
|
unsigned int search_area_size_in_strides;
|
|
unsigned int stride;
|
|
unsigned int page;
|
|
uint8_t *buffer = chip->buffers->databuf;
|
|
int saved_chip_number;
|
|
int found_an_ncb_fingerprint = false;
|
|
|
|
/* Compute the number of strides in a search area. */
|
|
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
|
|
|
|
saved_chip_number = this->current_chip;
|
|
chip->select_chip(mtd, 0);
|
|
|
|
/*
|
|
* Loop through the first search area, looking for the NCB fingerprint.
|
|
*/
|
|
dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
|
|
|
|
for (stride = 0; stride < search_area_size_in_strides; stride++) {
|
|
/* Compute the page addresses. */
|
|
page = stride * rom_geo->stride_size_in_pages;
|
|
|
|
dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
|
|
|
|
/*
|
|
* Read the NCB fingerprint. The fingerprint is four bytes long
|
|
* and starts in the 12th byte of the page.
|
|
*/
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
|
|
chip->read_buf(mtd, buffer, strlen(fingerprint));
|
|
|
|
/* Look for the fingerprint. */
|
|
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
|
|
found_an_ncb_fingerprint = true;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
chip->select_chip(mtd, saved_chip_number);
|
|
|
|
if (found_an_ncb_fingerprint)
|
|
dev_dbg(dev, "\tFound a fingerprint\n");
|
|
else
|
|
dev_dbg(dev, "\tNo fingerprint found\n");
|
|
return found_an_ncb_fingerprint;
|
|
}
|
|
|
|
/* Writes a transcription stamp. */
|
|
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = &this->nand;
|
|
unsigned int block_size_in_pages;
|
|
unsigned int search_area_size_in_strides;
|
|
unsigned int search_area_size_in_pages;
|
|
unsigned int search_area_size_in_blocks;
|
|
unsigned int block;
|
|
unsigned int stride;
|
|
unsigned int page;
|
|
uint8_t *buffer = chip->buffers->databuf;
|
|
int saved_chip_number;
|
|
int status;
|
|
|
|
/* Compute the search area geometry. */
|
|
block_size_in_pages = mtd->erasesize / mtd->writesize;
|
|
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
|
|
search_area_size_in_pages = search_area_size_in_strides *
|
|
rom_geo->stride_size_in_pages;
|
|
search_area_size_in_blocks =
|
|
(search_area_size_in_pages + (block_size_in_pages - 1)) /
|
|
block_size_in_pages;
|
|
|
|
dev_dbg(dev, "Search Area Geometry :\n");
|
|
dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
|
|
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
|
|
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
|
|
|
|
/* Select chip 0. */
|
|
saved_chip_number = this->current_chip;
|
|
chip->select_chip(mtd, 0);
|
|
|
|
/* Loop over blocks in the first search area, erasing them. */
|
|
dev_dbg(dev, "Erasing the search area...\n");
|
|
|
|
for (block = 0; block < search_area_size_in_blocks; block++) {
|
|
/* Compute the page address. */
|
|
page = block * block_size_in_pages;
|
|
|
|
/* Erase this block. */
|
|
dev_dbg(dev, "\tErasing block 0x%x\n", block);
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
|
|
chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
|
|
|
|
/* Wait for the erase to finish. */
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
dev_err(dev, "[%s] Erase failed.\n", __func__);
|
|
}
|
|
|
|
/* Write the NCB fingerprint into the page buffer. */
|
|
memset(buffer, ~0, mtd->writesize);
|
|
memset(chip->oob_poi, ~0, mtd->oobsize);
|
|
memcpy(buffer + 12, fingerprint, strlen(fingerprint));
|
|
|
|
/* Loop through the first search area, writing NCB fingerprints. */
|
|
dev_dbg(dev, "Writing NCB fingerprints...\n");
|
|
for (stride = 0; stride < search_area_size_in_strides; stride++) {
|
|
/* Compute the page addresses. */
|
|
page = stride * rom_geo->stride_size_in_pages;
|
|
|
|
/* Write the first page of the current stride. */
|
|
dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
|
|
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
|
|
chip->ecc.write_page_raw(mtd, chip, buffer, 0);
|
|
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
|
|
|
/* Wait for the write to finish. */
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
dev_err(dev, "[%s] Write failed.\n", __func__);
|
|
}
|
|
|
|
/* Deselect chip 0. */
|
|
chip->select_chip(mtd, saved_chip_number);
|
|
return 0;
|
|
}
|
|
|
|
static int mx23_boot_init(struct gpmi_nand_data *this)
|
|
{
|
|
struct device *dev = this->dev;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_info *mtd = &this->mtd;
|
|
unsigned int block_count;
|
|
unsigned int block;
|
|
int chipnr;
|
|
int page;
|
|
loff_t byte;
|
|
uint8_t block_mark;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If control arrives here, we can't use block mark swapping, which
|
|
* means we're forced to use transcription. First, scan for the
|
|
* transcription stamp. If we find it, then we don't have to do
|
|
* anything -- the block marks are already transcribed.
|
|
*/
|
|
if (mx23_check_transcription_stamp(this))
|
|
return 0;
|
|
|
|
/*
|
|
* If control arrives here, we couldn't find a transcription stamp, so
|
|
* so we presume the block marks are in the conventional location.
|
|
*/
|
|
dev_dbg(dev, "Transcribing bad block marks...\n");
|
|
|
|
/* Compute the number of blocks in the entire medium. */
|
|
block_count = chip->chipsize >> chip->phys_erase_shift;
|
|
|
|
/*
|
|
* Loop over all the blocks in the medium, transcribing block marks as
|
|
* we go.
|
|
*/
|
|
for (block = 0; block < block_count; block++) {
|
|
/*
|
|
* Compute the chip, page and byte addresses for this block's
|
|
* conventional mark.
|
|
*/
|
|
chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
|
|
page = block << (chip->phys_erase_shift - chip->page_shift);
|
|
byte = block << chip->phys_erase_shift;
|
|
|
|
/* Send the command to read the conventional block mark. */
|
|
chip->select_chip(mtd, chipnr);
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
|
|
block_mark = chip->read_byte(mtd);
|
|
chip->select_chip(mtd, -1);
|
|
|
|
/*
|
|
* Check if the block is marked bad. If so, we need to mark it
|
|
* again, but this time the result will be a mark in the
|
|
* location where we transcribe block marks.
|
|
*/
|
|
if (block_mark != 0xff) {
|
|
dev_dbg(dev, "Transcribing mark in block %u\n", block);
|
|
ret = chip->block_markbad(mtd, byte);
|
|
if (ret)
|
|
dev_err(dev, "Failed to mark block bad with "
|
|
"ret %d\n", ret);
|
|
}
|
|
}
|
|
|
|
/* Write the stamp that indicates we've transcribed the block marks. */
|
|
mx23_write_transcription_stamp(this);
|
|
return 0;
|
|
}
|
|
|
|
static int nand_boot_init(struct gpmi_nand_data *this)
|
|
{
|
|
nand_boot_set_geometry(this);
|
|
|
|
/* This is ROM arch-specific initilization before the BBT scanning. */
|
|
if (GPMI_IS_MX23(this))
|
|
return mx23_boot_init(this);
|
|
return 0;
|
|
}
|
|
|
|
static int gpmi_set_geometry(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/* Free the temporary DMA memory for reading ID. */
|
|
gpmi_free_dma_buffer(this);
|
|
|
|
/* Set up the NFC geometry which is used by BCH. */
|
|
ret = bch_set_geometry(this);
|
|
if (ret) {
|
|
pr_err("Error setting BCH geometry : %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Alloc the new DMA buffers according to the pagesize and oobsize */
|
|
return gpmi_alloc_dma_buffer(this);
|
|
}
|
|
|
|
static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
|
|
{
|
|
int ret;
|
|
|
|
/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
|
|
if (GPMI_IS_MX23(this))
|
|
this->swap_block_mark = false;
|
|
else
|
|
this->swap_block_mark = true;
|
|
|
|
/* Set up the medium geometry */
|
|
ret = gpmi_set_geometry(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Adjust the ECC strength according to the chip. */
|
|
this->nand.ecc.strength = this->bch_geometry.ecc_strength;
|
|
this->mtd.ecc_strength = this->bch_geometry.ecc_strength;
|
|
this->mtd.bitflip_threshold = this->bch_geometry.ecc_strength;
|
|
|
|
/* NAND boot init, depends on the gpmi_set_geometry(). */
|
|
return nand_boot_init(this);
|
|
}
|
|
|
|
static int gpmi_scan_bbt(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd->priv;
|
|
struct gpmi_nand_data *this = chip->priv;
|
|
int ret;
|
|
|
|
/* Prepare for the BBT scan. */
|
|
ret = gpmi_pre_bbt_scan(this);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Can we enable the extra features? such as EDO or Sync mode.
|
|
*
|
|
* We do not check the return value now. That's means if we fail in
|
|
* enable the extra features, we still can run in the normal way.
|
|
*/
|
|
gpmi_extra_init(this);
|
|
|
|
/* use the default BBT implementation */
|
|
return nand_default_bbt(mtd);
|
|
}
|
|
|
|
static void gpmi_nfc_exit(struct gpmi_nand_data *this)
|
|
{
|
|
nand_release(&this->mtd);
|
|
gpmi_free_dma_buffer(this);
|
|
}
|
|
|
|
static int gpmi_nfc_init(struct gpmi_nand_data *this)
|
|
{
|
|
struct mtd_info *mtd = &this->mtd;
|
|
struct nand_chip *chip = &this->nand;
|
|
struct mtd_part_parser_data ppdata = {};
|
|
int ret;
|
|
|
|
/* init current chip */
|
|
this->current_chip = -1;
|
|
|
|
/* init the MTD data structures */
|
|
mtd->priv = chip;
|
|
mtd->name = "gpmi-nand";
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
|
|
chip->priv = this;
|
|
chip->select_chip = gpmi_select_chip;
|
|
chip->cmd_ctrl = gpmi_cmd_ctrl;
|
|
chip->dev_ready = gpmi_dev_ready;
|
|
chip->read_byte = gpmi_read_byte;
|
|
chip->read_buf = gpmi_read_buf;
|
|
chip->write_buf = gpmi_write_buf;
|
|
chip->ecc.read_page = gpmi_ecc_read_page;
|
|
chip->ecc.write_page = gpmi_ecc_write_page;
|
|
chip->ecc.read_oob = gpmi_ecc_read_oob;
|
|
chip->ecc.write_oob = gpmi_ecc_write_oob;
|
|
chip->scan_bbt = gpmi_scan_bbt;
|
|
chip->badblock_pattern = &gpmi_bbt_descr;
|
|
chip->block_markbad = gpmi_block_markbad;
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 1;
|
|
chip->ecc.strength = 8;
|
|
chip->ecc.layout = &gpmi_hw_ecclayout;
|
|
if (of_get_nand_on_flash_bbt(this->dev->of_node))
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
|
|
|
|
/* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
|
|
this->bch_geometry.payload_size = 1024;
|
|
this->bch_geometry.auxiliary_size = 128;
|
|
ret = gpmi_alloc_dma_buffer(this);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
ret = nand_scan(mtd, 1);
|
|
if (ret) {
|
|
pr_err("Chip scan failed\n");
|
|
goto err_out;
|
|
}
|
|
|
|
ppdata.of_node = this->pdev->dev.of_node;
|
|
ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
|
|
if (ret)
|
|
goto err_out;
|
|
return 0;
|
|
|
|
err_out:
|
|
gpmi_nfc_exit(this);
|
|
return ret;
|
|
}
|
|
|
|
static const struct platform_device_id gpmi_ids[] = {
|
|
{ .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
|
|
{ .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
|
|
{ .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
|
|
{},
|
|
};
|
|
|
|
static const struct of_device_id gpmi_nand_id_table[] = {
|
|
{
|
|
.compatible = "fsl,imx23-gpmi-nand",
|
|
.data = (void *)&gpmi_ids[IS_MX23]
|
|
}, {
|
|
.compatible = "fsl,imx28-gpmi-nand",
|
|
.data = (void *)&gpmi_ids[IS_MX28]
|
|
}, {
|
|
.compatible = "fsl,imx6q-gpmi-nand",
|
|
.data = (void *)&gpmi_ids[IS_MX6Q]
|
|
}, {}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
|
|
|
|
static int gpmi_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct gpmi_nand_data *this;
|
|
const struct of_device_id *of_id;
|
|
int ret;
|
|
|
|
of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
|
|
if (of_id) {
|
|
pdev->id_entry = of_id->data;
|
|
} else {
|
|
pr_err("Failed to find the right device id.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
this = kzalloc(sizeof(*this), GFP_KERNEL);
|
|
if (!this) {
|
|
pr_err("Failed to allocate per-device memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, this);
|
|
this->pdev = pdev;
|
|
this->dev = &pdev->dev;
|
|
|
|
ret = acquire_resources(this);
|
|
if (ret)
|
|
goto exit_acquire_resources;
|
|
|
|
ret = init_hardware(this);
|
|
if (ret)
|
|
goto exit_nfc_init;
|
|
|
|
ret = gpmi_nfc_init(this);
|
|
if (ret)
|
|
goto exit_nfc_init;
|
|
|
|
dev_info(this->dev, "driver registered.\n");
|
|
|
|
return 0;
|
|
|
|
exit_nfc_init:
|
|
release_resources(this);
|
|
exit_acquire_resources:
|
|
platform_set_drvdata(pdev, NULL);
|
|
dev_err(this->dev, "driver registration failed: %d\n", ret);
|
|
kfree(this);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gpmi_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
|
|
|
|
gpmi_nfc_exit(this);
|
|
release_resources(this);
|
|
platform_set_drvdata(pdev, NULL);
|
|
kfree(this);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver gpmi_nand_driver = {
|
|
.driver = {
|
|
.name = "gpmi-nand",
|
|
.of_match_table = gpmi_nand_id_table,
|
|
},
|
|
.probe = gpmi_nand_probe,
|
|
.remove = gpmi_nand_remove,
|
|
.id_table = gpmi_ids,
|
|
};
|
|
module_platform_driver(gpmi_nand_driver);
|
|
|
|
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
|
|
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
|
|
MODULE_LICENSE("GPL");
|