linux_old1/tools/perf/builtin-timechart.c

1096 lines
23 KiB
C

/*
* builtin-timechart.c - make an svg timechart of system activity
*
* (C) Copyright 2009 Intel Corporation
*
* Authors:
* Arjan van de Ven <arjan@linux.intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include "builtin.h"
#include "util/util.h"
#include "util/color.h"
#include <linux/list.h>
#include "util/cache.h"
#include "util/evsel.h"
#include <linux/rbtree.h>
#include "util/symbol.h"
#include "util/callchain.h"
#include "util/strlist.h"
#include "perf.h"
#include "util/header.h"
#include "util/parse-options.h"
#include "util/parse-events.h"
#include "util/event.h"
#include "util/session.h"
#include "util/svghelper.h"
#include "util/tool.h"
#define SUPPORT_OLD_POWER_EVENTS 1
#define PWR_EVENT_EXIT -1
static unsigned int numcpus;
static u64 min_freq; /* Lowest CPU frequency seen */
static u64 max_freq; /* Highest CPU frequency seen */
static u64 turbo_frequency;
static u64 first_time, last_time;
static bool power_only;
struct per_pid;
struct per_pidcomm;
struct cpu_sample;
struct power_event;
struct wake_event;
struct sample_wrapper;
/*
* Datastructure layout:
* We keep an list of "pid"s, matching the kernels notion of a task struct.
* Each "pid" entry, has a list of "comm"s.
* this is because we want to track different programs different, while
* exec will reuse the original pid (by design).
* Each comm has a list of samples that will be used to draw
* final graph.
*/
struct per_pid {
struct per_pid *next;
int pid;
int ppid;
u64 start_time;
u64 end_time;
u64 total_time;
int display;
struct per_pidcomm *all;
struct per_pidcomm *current;
};
struct per_pidcomm {
struct per_pidcomm *next;
u64 start_time;
u64 end_time;
u64 total_time;
int Y;
int display;
long state;
u64 state_since;
char *comm;
struct cpu_sample *samples;
};
struct sample_wrapper {
struct sample_wrapper *next;
u64 timestamp;
unsigned char data[0];
};
#define TYPE_NONE 0
#define TYPE_RUNNING 1
#define TYPE_WAITING 2
#define TYPE_BLOCKED 3
struct cpu_sample {
struct cpu_sample *next;
u64 start_time;
u64 end_time;
int type;
int cpu;
};
static struct per_pid *all_data;
#define CSTATE 1
#define PSTATE 2
struct power_event {
struct power_event *next;
int type;
int state;
u64 start_time;
u64 end_time;
int cpu;
};
struct wake_event {
struct wake_event *next;
int waker;
int wakee;
u64 time;
};
static struct power_event *power_events;
static struct wake_event *wake_events;
struct process_filter;
struct process_filter {
char *name;
int pid;
struct process_filter *next;
};
static struct process_filter *process_filter;
static struct per_pid *find_create_pid(int pid)
{
struct per_pid *cursor = all_data;
while (cursor) {
if (cursor->pid == pid)
return cursor;
cursor = cursor->next;
}
cursor = zalloc(sizeof(*cursor));
assert(cursor != NULL);
cursor->pid = pid;
cursor->next = all_data;
all_data = cursor;
return cursor;
}
static void pid_set_comm(int pid, char *comm)
{
struct per_pid *p;
struct per_pidcomm *c;
p = find_create_pid(pid);
c = p->all;
while (c) {
if (c->comm && strcmp(c->comm, comm) == 0) {
p->current = c;
return;
}
if (!c->comm) {
c->comm = strdup(comm);
p->current = c;
return;
}
c = c->next;
}
c = zalloc(sizeof(*c));
assert(c != NULL);
c->comm = strdup(comm);
p->current = c;
c->next = p->all;
p->all = c;
}
static void pid_fork(int pid, int ppid, u64 timestamp)
{
struct per_pid *p, *pp;
p = find_create_pid(pid);
pp = find_create_pid(ppid);
p->ppid = ppid;
if (pp->current && pp->current->comm && !p->current)
pid_set_comm(pid, pp->current->comm);
p->start_time = timestamp;
if (p->current) {
p->current->start_time = timestamp;
p->current->state_since = timestamp;
}
}
static void pid_exit(int pid, u64 timestamp)
{
struct per_pid *p;
p = find_create_pid(pid);
p->end_time = timestamp;
if (p->current)
p->current->end_time = timestamp;
}
static void
pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
{
struct per_pid *p;
struct per_pidcomm *c;
struct cpu_sample *sample;
p = find_create_pid(pid);
c = p->current;
if (!c) {
c = zalloc(sizeof(*c));
assert(c != NULL);
p->current = c;
c->next = p->all;
p->all = c;
}
sample = zalloc(sizeof(*sample));
assert(sample != NULL);
sample->start_time = start;
sample->end_time = end;
sample->type = type;
sample->next = c->samples;
sample->cpu = cpu;
c->samples = sample;
if (sample->type == TYPE_RUNNING && end > start && start > 0) {
c->total_time += (end-start);
p->total_time += (end-start);
}
if (c->start_time == 0 || c->start_time > start)
c->start_time = start;
if (p->start_time == 0 || p->start_time > start)
p->start_time = start;
}
#define MAX_CPUS 4096
static u64 cpus_cstate_start_times[MAX_CPUS];
static int cpus_cstate_state[MAX_CPUS];
static u64 cpus_pstate_start_times[MAX_CPUS];
static u64 cpus_pstate_state[MAX_CPUS];
static int process_comm_event(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
pid_set_comm(event->comm.tid, event->comm.comm);
return 0;
}
static int process_fork_event(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
return 0;
}
static int process_exit_event(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
pid_exit(event->fork.pid, event->fork.time);
return 0;
}
struct trace_entry {
unsigned short type;
unsigned char flags;
unsigned char preempt_count;
int pid;
int lock_depth;
};
#ifdef SUPPORT_OLD_POWER_EVENTS
static int use_old_power_events;
struct power_entry_old {
struct trace_entry te;
u64 type;
u64 value;
u64 cpu_id;
};
#endif
struct power_processor_entry {
struct trace_entry te;
u32 state;
u32 cpu_id;
};
#define TASK_COMM_LEN 16
struct wakeup_entry {
struct trace_entry te;
char comm[TASK_COMM_LEN];
int pid;
int prio;
int success;
};
/*
* trace_flag_type is an enumeration that holds different
* states when a trace occurs. These are:
* IRQS_OFF - interrupts were disabled
* IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
* NEED_RESCED - reschedule is requested
* HARDIRQ - inside an interrupt handler
* SOFTIRQ - inside a softirq handler
*/
enum trace_flag_type {
TRACE_FLAG_IRQS_OFF = 0x01,
TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
TRACE_FLAG_NEED_RESCHED = 0x04,
TRACE_FLAG_HARDIRQ = 0x08,
TRACE_FLAG_SOFTIRQ = 0x10,
};
struct sched_switch {
struct trace_entry te;
char prev_comm[TASK_COMM_LEN];
int prev_pid;
int prev_prio;
long prev_state; /* Arjan weeps. */
char next_comm[TASK_COMM_LEN];
int next_pid;
int next_prio;
};
static void c_state_start(int cpu, u64 timestamp, int state)
{
cpus_cstate_start_times[cpu] = timestamp;
cpus_cstate_state[cpu] = state;
}
static void c_state_end(int cpu, u64 timestamp)
{
struct power_event *pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_cstate_state[cpu];
pwr->start_time = cpus_cstate_start_times[cpu];
pwr->end_time = timestamp;
pwr->cpu = cpu;
pwr->type = CSTATE;
pwr->next = power_events;
power_events = pwr;
}
static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
{
struct power_event *pwr;
if (new_freq > 8000000) /* detect invalid data */
return;
pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_pstate_state[cpu];
pwr->start_time = cpus_pstate_start_times[cpu];
pwr->end_time = timestamp;
pwr->cpu = cpu;
pwr->type = PSTATE;
pwr->next = power_events;
if (!pwr->start_time)
pwr->start_time = first_time;
power_events = pwr;
cpus_pstate_state[cpu] = new_freq;
cpus_pstate_start_times[cpu] = timestamp;
if ((u64)new_freq > max_freq)
max_freq = new_freq;
if (new_freq < min_freq || min_freq == 0)
min_freq = new_freq;
if (new_freq == max_freq - 1000)
turbo_frequency = max_freq;
}
static void
sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
{
struct per_pid *p;
struct wakeup_entry *wake = (void *)te;
struct wake_event *we = zalloc(sizeof(*we));
if (!we)
return;
we->time = timestamp;
we->waker = pid;
if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
we->waker = -1;
we->wakee = wake->pid;
we->next = wake_events;
wake_events = we;
p = find_create_pid(we->wakee);
if (p && p->current && p->current->state == TYPE_NONE) {
p->current->state_since = timestamp;
p->current->state = TYPE_WAITING;
}
if (p && p->current && p->current->state == TYPE_BLOCKED) {
pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
p->current->state_since = timestamp;
p->current->state = TYPE_WAITING;
}
}
static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
{
struct per_pid *p = NULL, *prev_p;
struct sched_switch *sw = (void *)te;
prev_p = find_create_pid(sw->prev_pid);
p = find_create_pid(sw->next_pid);
if (prev_p->current && prev_p->current->state != TYPE_NONE)
pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
if (p && p->current) {
if (p->current->state != TYPE_NONE)
pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
p->current->state_since = timestamp;
p->current->state = TYPE_RUNNING;
}
if (prev_p->current) {
prev_p->current->state = TYPE_NONE;
prev_p->current->state_since = timestamp;
if (sw->prev_state & 2)
prev_p->current->state = TYPE_BLOCKED;
if (sw->prev_state == 0)
prev_p->current->state = TYPE_WAITING;
}
}
static int process_sample_event(struct perf_tool *tool __maybe_unused,
union perf_event *event __maybe_unused,
struct perf_sample *sample,
struct perf_evsel *evsel,
struct machine *machine __maybe_unused)
{
struct trace_entry *te;
if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
if (!first_time || first_time > sample->time)
first_time = sample->time;
if (last_time < sample->time)
last_time = sample->time;
}
te = (void *)sample->raw_data;
if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
char *event_str;
#ifdef SUPPORT_OLD_POWER_EVENTS
struct power_entry_old *peo;
peo = (void *)te;
#endif
/*
* FIXME: use evsel, its already mapped from id to perf_evsel,
* remove perf_header__find_event infrastructure bits.
* Mapping all these "power:cpu_idle" strings to the tracepoint
* ID and then just comparing against evsel->attr.config.
*
* e.g.:
*
* if (evsel->attr.config == power_cpu_idle_id)
*/
event_str = perf_header__find_event(te->type);
if (!event_str)
return 0;
if (sample->cpu > numcpus)
numcpus = sample->cpu;
if (strcmp(event_str, "power:cpu_idle") == 0) {
struct power_processor_entry *ppe = (void *)te;
if (ppe->state == (u32)PWR_EVENT_EXIT)
c_state_end(ppe->cpu_id, sample->time);
else
c_state_start(ppe->cpu_id, sample->time,
ppe->state);
}
else if (strcmp(event_str, "power:cpu_frequency") == 0) {
struct power_processor_entry *ppe = (void *)te;
p_state_change(ppe->cpu_id, sample->time, ppe->state);
}
else if (strcmp(event_str, "sched:sched_wakeup") == 0)
sched_wakeup(sample->cpu, sample->time, sample->pid, te);
else if (strcmp(event_str, "sched:sched_switch") == 0)
sched_switch(sample->cpu, sample->time, te);
#ifdef SUPPORT_OLD_POWER_EVENTS
if (use_old_power_events) {
if (strcmp(event_str, "power:power_start") == 0)
c_state_start(peo->cpu_id, sample->time,
peo->value);
else if (strcmp(event_str, "power:power_end") == 0)
c_state_end(sample->cpu, sample->time);
else if (strcmp(event_str,
"power:power_frequency") == 0)
p_state_change(peo->cpu_id, sample->time,
peo->value);
}
#endif
}
return 0;
}
/*
* After the last sample we need to wrap up the current C/P state
* and close out each CPU for these.
*/
static void end_sample_processing(void)
{
u64 cpu;
struct power_event *pwr;
for (cpu = 0; cpu <= numcpus; cpu++) {
/* C state */
#if 0
pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_cstate_state[cpu];
pwr->start_time = cpus_cstate_start_times[cpu];
pwr->end_time = last_time;
pwr->cpu = cpu;
pwr->type = CSTATE;
pwr->next = power_events;
power_events = pwr;
#endif
/* P state */
pwr = zalloc(sizeof(*pwr));
if (!pwr)
return;
pwr->state = cpus_pstate_state[cpu];
pwr->start_time = cpus_pstate_start_times[cpu];
pwr->end_time = last_time;
pwr->cpu = cpu;
pwr->type = PSTATE;
pwr->next = power_events;
if (!pwr->start_time)
pwr->start_time = first_time;
if (!pwr->state)
pwr->state = min_freq;
power_events = pwr;
}
}
/*
* Sort the pid datastructure
*/
static void sort_pids(void)
{
struct per_pid *new_list, *p, *cursor, *prev;
/* sort by ppid first, then by pid, lowest to highest */
new_list = NULL;
while (all_data) {
p = all_data;
all_data = p->next;
p->next = NULL;
if (new_list == NULL) {
new_list = p;
p->next = NULL;
continue;
}
prev = NULL;
cursor = new_list;
while (cursor) {
if (cursor->ppid > p->ppid ||
(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
/* must insert before */
if (prev) {
p->next = prev->next;
prev->next = p;
cursor = NULL;
continue;
} else {
p->next = new_list;
new_list = p;
cursor = NULL;
continue;
}
}
prev = cursor;
cursor = cursor->next;
if (!cursor)
prev->next = p;
}
}
all_data = new_list;
}
static void draw_c_p_states(void)
{
struct power_event *pwr;
pwr = power_events;
/*
* two pass drawing so that the P state bars are on top of the C state blocks
*/
while (pwr) {
if (pwr->type == CSTATE)
svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
pwr = pwr->next;
}
pwr = power_events;
while (pwr) {
if (pwr->type == PSTATE) {
if (!pwr->state)
pwr->state = min_freq;
svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
}
pwr = pwr->next;
}
}
static void draw_wakeups(void)
{
struct wake_event *we;
struct per_pid *p;
struct per_pidcomm *c;
we = wake_events;
while (we) {
int from = 0, to = 0;
char *task_from = NULL, *task_to = NULL;
/* locate the column of the waker and wakee */
p = all_data;
while (p) {
if (p->pid == we->waker || p->pid == we->wakee) {
c = p->all;
while (c) {
if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
if (p->pid == we->waker && !from) {
from = c->Y;
task_from = strdup(c->comm);
}
if (p->pid == we->wakee && !to) {
to = c->Y;
task_to = strdup(c->comm);
}
}
c = c->next;
}
c = p->all;
while (c) {
if (p->pid == we->waker && !from) {
from = c->Y;
task_from = strdup(c->comm);
}
if (p->pid == we->wakee && !to) {
to = c->Y;
task_to = strdup(c->comm);
}
c = c->next;
}
}
p = p->next;
}
if (!task_from) {
task_from = malloc(40);
sprintf(task_from, "[%i]", we->waker);
}
if (!task_to) {
task_to = malloc(40);
sprintf(task_to, "[%i]", we->wakee);
}
if (we->waker == -1)
svg_interrupt(we->time, to);
else if (from && to && abs(from - to) == 1)
svg_wakeline(we->time, from, to);
else
svg_partial_wakeline(we->time, from, task_from, to, task_to);
we = we->next;
free(task_from);
free(task_to);
}
}
static void draw_cpu_usage(void)
{
struct per_pid *p;
struct per_pidcomm *c;
struct cpu_sample *sample;
p = all_data;
while (p) {
c = p->all;
while (c) {
sample = c->samples;
while (sample) {
if (sample->type == TYPE_RUNNING)
svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
sample = sample->next;
}
c = c->next;
}
p = p->next;
}
}
static void draw_process_bars(void)
{
struct per_pid *p;
struct per_pidcomm *c;
struct cpu_sample *sample;
int Y = 0;
Y = 2 * numcpus + 2;
p = all_data;
while (p) {
c = p->all;
while (c) {
if (!c->display) {
c->Y = 0;
c = c->next;
continue;
}
svg_box(Y, c->start_time, c->end_time, "process");
sample = c->samples;
while (sample) {
if (sample->type == TYPE_RUNNING)
svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
if (sample->type == TYPE_BLOCKED)
svg_box(Y, sample->start_time, sample->end_time, "blocked");
if (sample->type == TYPE_WAITING)
svg_waiting(Y, sample->start_time, sample->end_time);
sample = sample->next;
}
if (c->comm) {
char comm[256];
if (c->total_time > 5000000000) /* 5 seconds */
sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
else
sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
svg_text(Y, c->start_time, comm);
}
c->Y = Y;
Y++;
c = c->next;
}
p = p->next;
}
}
static void add_process_filter(const char *string)
{
int pid = strtoull(string, NULL, 10);
struct process_filter *filt = malloc(sizeof(*filt));
if (!filt)
return;
filt->name = strdup(string);
filt->pid = pid;
filt->next = process_filter;
process_filter = filt;
}
static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
{
struct process_filter *filt;
if (!process_filter)
return 1;
filt = process_filter;
while (filt) {
if (filt->pid && p->pid == filt->pid)
return 1;
if (strcmp(filt->name, c->comm) == 0)
return 1;
filt = filt->next;
}
return 0;
}
static int determine_display_tasks_filtered(void)
{
struct per_pid *p;
struct per_pidcomm *c;
int count = 0;
p = all_data;
while (p) {
p->display = 0;
if (p->start_time == 1)
p->start_time = first_time;
/* no exit marker, task kept running to the end */
if (p->end_time == 0)
p->end_time = last_time;
c = p->all;
while (c) {
c->display = 0;
if (c->start_time == 1)
c->start_time = first_time;
if (passes_filter(p, c)) {
c->display = 1;
p->display = 1;
count++;
}
if (c->end_time == 0)
c->end_time = last_time;
c = c->next;
}
p = p->next;
}
return count;
}
static int determine_display_tasks(u64 threshold)
{
struct per_pid *p;
struct per_pidcomm *c;
int count = 0;
if (process_filter)
return determine_display_tasks_filtered();
p = all_data;
while (p) {
p->display = 0;
if (p->start_time == 1)
p->start_time = first_time;
/* no exit marker, task kept running to the end */
if (p->end_time == 0)
p->end_time = last_time;
if (p->total_time >= threshold && !power_only)
p->display = 1;
c = p->all;
while (c) {
c->display = 0;
if (c->start_time == 1)
c->start_time = first_time;
if (c->total_time >= threshold && !power_only) {
c->display = 1;
count++;
}
if (c->end_time == 0)
c->end_time = last_time;
c = c->next;
}
p = p->next;
}
return count;
}
#define TIME_THRESH 10000000
static void write_svg_file(const char *filename)
{
u64 i;
int count;
numcpus++;
count = determine_display_tasks(TIME_THRESH);
/* We'd like to show at least 15 tasks; be less picky if we have fewer */
if (count < 15)
count = determine_display_tasks(TIME_THRESH / 10);
open_svg(filename, numcpus, count, first_time, last_time);
svg_time_grid();
svg_legenda();
for (i = 0; i < numcpus; i++)
svg_cpu_box(i, max_freq, turbo_frequency);
draw_cpu_usage();
draw_process_bars();
draw_c_p_states();
draw_wakeups();
svg_close();
}
static int __cmd_timechart(const char *output_name)
{
struct perf_tool perf_timechart = {
.comm = process_comm_event,
.fork = process_fork_event,
.exit = process_exit_event,
.sample = process_sample_event,
.ordered_samples = true,
};
struct perf_session *session = perf_session__new(input_name, O_RDONLY,
0, false, &perf_timechart);
int ret = -EINVAL;
if (session == NULL)
return -ENOMEM;
if (!perf_session__has_traces(session, "timechart record"))
goto out_delete;
ret = perf_session__process_events(session, &perf_timechart);
if (ret)
goto out_delete;
end_sample_processing();
sort_pids();
write_svg_file(output_name);
pr_info("Written %2.1f seconds of trace to %s.\n",
(last_time - first_time) / 1000000000.0, output_name);
out_delete:
perf_session__delete(session);
return ret;
}
static int __cmd_record(int argc, const char **argv)
{
#ifdef SUPPORT_OLD_POWER_EVENTS
const char * const record_old_args[] = {
"record", "-a", "-R", "-c", "1",
"-e", "power:power_start",
"-e", "power:power_end",
"-e", "power:power_frequency",
"-e", "sched:sched_wakeup",
"-e", "sched:sched_switch",
};
#endif
const char * const record_new_args[] = {
"record", "-a", "-R", "-c", "1",
"-e", "power:cpu_frequency",
"-e", "power:cpu_idle",
"-e", "sched:sched_wakeup",
"-e", "sched:sched_switch",
};
unsigned int rec_argc, i, j;
const char **rec_argv;
const char * const *record_args = record_new_args;
unsigned int record_elems = ARRAY_SIZE(record_new_args);
#ifdef SUPPORT_OLD_POWER_EVENTS
if (!is_valid_tracepoint("power:cpu_idle") &&
is_valid_tracepoint("power:power_start")) {
use_old_power_events = 1;
record_args = record_old_args;
record_elems = ARRAY_SIZE(record_old_args);
}
#endif
rec_argc = record_elems + argc - 1;
rec_argv = calloc(rec_argc + 1, sizeof(char *));
if (rec_argv == NULL)
return -ENOMEM;
for (i = 0; i < record_elems; i++)
rec_argv[i] = strdup(record_args[i]);
for (j = 1; j < (unsigned int)argc; j++, i++)
rec_argv[i] = argv[j];
return cmd_record(i, rec_argv, NULL);
}
static int
parse_process(const struct option *opt __maybe_unused, const char *arg,
int __maybe_unused unset)
{
if (arg)
add_process_filter(arg);
return 0;
}
int cmd_timechart(int argc, const char **argv,
const char *prefix __maybe_unused)
{
const char *output_name = "output.svg";
const struct option options[] = {
OPT_STRING('i', "input", &input_name, "file", "input file name"),
OPT_STRING('o', "output", &output_name, "file", "output file name"),
OPT_INTEGER('w', "width", &svg_page_width, "page width"),
OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
OPT_CALLBACK('p', "process", NULL, "process",
"process selector. Pass a pid or process name.",
parse_process),
OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
"Look for files with symbols relative to this directory"),
OPT_END()
};
const char * const timechart_usage[] = {
"perf timechart [<options>] {record}",
NULL
};
argc = parse_options(argc, argv, options, timechart_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
symbol__init();
if (argc && !strncmp(argv[0], "rec", 3))
return __cmd_record(argc, argv);
else if (argc)
usage_with_options(timechart_usage, options);
setup_pager();
return __cmd_timechart(output_name);
}