linux_old1/sound/atmel/abdac.c

615 lines
15 KiB
C

/*
* Driver for the Atmel on-chip Audio Bitstream DAC (ABDAC)
*
* Copyright (C) 2006-2009 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/bitmap.h>
#include <linux/dw_dmac.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/atmel-abdac.h>
/* DAC register offsets */
#define DAC_DATA 0x0000
#define DAC_CTRL 0x0008
#define DAC_INT_MASK 0x000c
#define DAC_INT_EN 0x0010
#define DAC_INT_DIS 0x0014
#define DAC_INT_CLR 0x0018
#define DAC_INT_STATUS 0x001c
/* Bitfields in CTRL */
#define DAC_SWAP_OFFSET 30
#define DAC_SWAP_SIZE 1
#define DAC_EN_OFFSET 31
#define DAC_EN_SIZE 1
/* Bitfields in INT_MASK/INT_EN/INT_DIS/INT_STATUS/INT_CLR */
#define DAC_UNDERRUN_OFFSET 28
#define DAC_UNDERRUN_SIZE 1
#define DAC_TX_READY_OFFSET 29
#define DAC_TX_READY_SIZE 1
/* Bit manipulation macros */
#define DAC_BIT(name) \
(1 << DAC_##name##_OFFSET)
#define DAC_BF(name, value) \
(((value) & ((1 << DAC_##name##_SIZE) - 1)) \
<< DAC_##name##_OFFSET)
#define DAC_BFEXT(name, value) \
(((value) >> DAC_##name##_OFFSET) \
& ((1 << DAC_##name##_SIZE) - 1))
#define DAC_BFINS(name, value, old) \
(((old) & ~(((1 << DAC_##name##_SIZE) - 1) \
<< DAC_##name##_OFFSET)) \
| DAC_BF(name, value))
/* Register access macros */
#define dac_readl(port, reg) \
__raw_readl((port)->regs + DAC_##reg)
#define dac_writel(port, reg, value) \
__raw_writel((value), (port)->regs + DAC_##reg)
/*
* ABDAC supports a maximum of 6 different rates from a generic clock. The
* generic clock has a power of two divider, which gives 6 steps from 192 kHz
* to 5112 Hz.
*/
#define MAX_NUM_RATES 6
/* ALSA seems to use rates between 192000 Hz and 5112 Hz. */
#define RATE_MAX 192000
#define RATE_MIN 5112
enum {
DMA_READY = 0,
};
struct atmel_abdac_dma {
struct dma_chan *chan;
struct dw_cyclic_desc *cdesc;
};
struct atmel_abdac {
struct clk *pclk;
struct clk *sample_clk;
struct platform_device *pdev;
struct atmel_abdac_dma dma;
struct snd_pcm_hw_constraint_list constraints_rates;
struct snd_pcm_substream *substream;
struct snd_card *card;
struct snd_pcm *pcm;
void __iomem *regs;
unsigned long flags;
unsigned int rates[MAX_NUM_RATES];
unsigned int rates_num;
int irq;
};
#define get_dac(card) ((struct atmel_abdac *)(card)->private_data)
/* This function is called by the DMA driver. */
static void atmel_abdac_dma_period_done(void *arg)
{
struct atmel_abdac *dac = arg;
snd_pcm_period_elapsed(dac->substream);
}
static int atmel_abdac_prepare_dma(struct atmel_abdac *dac,
struct snd_pcm_substream *substream,
enum dma_data_direction direction)
{
struct dma_chan *chan = dac->dma.chan;
struct dw_cyclic_desc *cdesc;
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long buffer_len, period_len;
/*
* We don't do DMA on "complex" transfers, i.e. with
* non-halfword-aligned buffers or lengths.
*/
if (runtime->dma_addr & 1 || runtime->buffer_size & 1) {
dev_dbg(&dac->pdev->dev, "too complex transfer\n");
return -EINVAL;
}
buffer_len = frames_to_bytes(runtime, runtime->buffer_size);
period_len = frames_to_bytes(runtime, runtime->period_size);
cdesc = dw_dma_cyclic_prep(chan, runtime->dma_addr, buffer_len,
period_len, DMA_MEM_TO_DEV);
if (IS_ERR(cdesc)) {
dev_dbg(&dac->pdev->dev, "could not prepare cyclic DMA\n");
return PTR_ERR(cdesc);
}
cdesc->period_callback = atmel_abdac_dma_period_done;
cdesc->period_callback_param = dac;
dac->dma.cdesc = cdesc;
set_bit(DMA_READY, &dac->flags);
return 0;
}
static struct snd_pcm_hardware atmel_abdac_hw = {
.info = (SNDRV_PCM_INFO_MMAP
| SNDRV_PCM_INFO_MMAP_VALID
| SNDRV_PCM_INFO_INTERLEAVED
| SNDRV_PCM_INFO_BLOCK_TRANSFER
| SNDRV_PCM_INFO_RESUME
| SNDRV_PCM_INFO_PAUSE),
.formats = (SNDRV_PCM_FMTBIT_S16_BE),
.rates = (SNDRV_PCM_RATE_KNOT),
.rate_min = RATE_MIN,
.rate_max = RATE_MAX,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 64 * 4096,
.period_bytes_min = 4096,
.period_bytes_max = 4096,
.periods_min = 6,
.periods_max = 64,
};
static int atmel_abdac_open(struct snd_pcm_substream *substream)
{
struct atmel_abdac *dac = snd_pcm_substream_chip(substream);
dac->substream = substream;
atmel_abdac_hw.rate_max = dac->rates[dac->rates_num - 1];
atmel_abdac_hw.rate_min = dac->rates[0];
substream->runtime->hw = atmel_abdac_hw;
return snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &dac->constraints_rates);
}
static int atmel_abdac_close(struct snd_pcm_substream *substream)
{
struct atmel_abdac *dac = snd_pcm_substream_chip(substream);
dac->substream = NULL;
return 0;
}
static int atmel_abdac_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct atmel_abdac *dac = snd_pcm_substream_chip(substream);
int retval;
retval = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
if (retval < 0)
return retval;
/* snd_pcm_lib_malloc_pages returns 1 if buffer is changed. */
if (retval == 1)
if (test_and_clear_bit(DMA_READY, &dac->flags))
dw_dma_cyclic_free(dac->dma.chan);
return retval;
}
static int atmel_abdac_hw_free(struct snd_pcm_substream *substream)
{
struct atmel_abdac *dac = snd_pcm_substream_chip(substream);
if (test_and_clear_bit(DMA_READY, &dac->flags))
dw_dma_cyclic_free(dac->dma.chan);
return snd_pcm_lib_free_pages(substream);
}
static int atmel_abdac_prepare(struct snd_pcm_substream *substream)
{
struct atmel_abdac *dac = snd_pcm_substream_chip(substream);
int retval;
retval = clk_set_rate(dac->sample_clk, 256 * substream->runtime->rate);
if (retval)
return retval;
if (!test_bit(DMA_READY, &dac->flags))
retval = atmel_abdac_prepare_dma(dac, substream, DMA_TO_DEVICE);
return retval;
}
static int atmel_abdac_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct atmel_abdac *dac = snd_pcm_substream_chip(substream);
int retval = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: /* fall through */
case SNDRV_PCM_TRIGGER_RESUME: /* fall through */
case SNDRV_PCM_TRIGGER_START:
clk_enable(dac->sample_clk);
retval = dw_dma_cyclic_start(dac->dma.chan);
if (retval)
goto out;
dac_writel(dac, CTRL, DAC_BIT(EN));
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH: /* fall through */
case SNDRV_PCM_TRIGGER_SUSPEND: /* fall through */
case SNDRV_PCM_TRIGGER_STOP:
dw_dma_cyclic_stop(dac->dma.chan);
dac_writel(dac, DATA, 0);
dac_writel(dac, CTRL, 0);
clk_disable(dac->sample_clk);
break;
default:
retval = -EINVAL;
break;
}
out:
return retval;
}
static snd_pcm_uframes_t
atmel_abdac_pointer(struct snd_pcm_substream *substream)
{
struct atmel_abdac *dac = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t frames;
unsigned long bytes;
bytes = dw_dma_get_src_addr(dac->dma.chan);
bytes -= runtime->dma_addr;
frames = bytes_to_frames(runtime, bytes);
if (frames >= runtime->buffer_size)
frames -= runtime->buffer_size;
return frames;
}
static irqreturn_t abdac_interrupt(int irq, void *dev_id)
{
struct atmel_abdac *dac = dev_id;
u32 status;
status = dac_readl(dac, INT_STATUS);
if (status & DAC_BIT(UNDERRUN)) {
dev_err(&dac->pdev->dev, "underrun detected\n");
dac_writel(dac, INT_CLR, DAC_BIT(UNDERRUN));
} else {
dev_err(&dac->pdev->dev, "spurious interrupt (status=0x%x)\n",
status);
dac_writel(dac, INT_CLR, status);
}
return IRQ_HANDLED;
}
static struct snd_pcm_ops atmel_abdac_ops = {
.open = atmel_abdac_open,
.close = atmel_abdac_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = atmel_abdac_hw_params,
.hw_free = atmel_abdac_hw_free,
.prepare = atmel_abdac_prepare,
.trigger = atmel_abdac_trigger,
.pointer = atmel_abdac_pointer,
};
static int atmel_abdac_pcm_new(struct atmel_abdac *dac)
{
struct snd_pcm_hardware hw = atmel_abdac_hw;
struct snd_pcm *pcm;
int retval;
retval = snd_pcm_new(dac->card, dac->card->shortname,
dac->pdev->id, 1, 0, &pcm);
if (retval)
return retval;
strcpy(pcm->name, dac->card->shortname);
pcm->private_data = dac;
pcm->info_flags = 0;
dac->pcm = pcm;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &atmel_abdac_ops);
retval = snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
&dac->pdev->dev, hw.periods_min * hw.period_bytes_min,
hw.buffer_bytes_max);
return retval;
}
static bool filter(struct dma_chan *chan, void *slave)
{
struct dw_dma_slave *dws = slave;
if (dws->dma_dev == chan->device->dev) {
chan->private = dws;
return true;
} else
return false;
}
static int set_sample_rates(struct atmel_abdac *dac)
{
long new_rate = RATE_MAX;
int retval = -EINVAL;
int index = 0;
/* we start at 192 kHz and work our way down to 5112 Hz */
while (new_rate >= RATE_MIN && index < (MAX_NUM_RATES + 1)) {
new_rate = clk_round_rate(dac->sample_clk, 256 * new_rate);
if (new_rate <= 0)
break;
/* make sure we are below the ABDAC clock */
if (index < MAX_NUM_RATES &&
new_rate <= clk_get_rate(dac->pclk)) {
dac->rates[index] = new_rate / 256;
index++;
}
/* divide by 256 and then by two to get next rate */
new_rate /= 256 * 2;
}
if (index) {
int i;
/* reverse array, smallest go first */
for (i = 0; i < (index / 2); i++) {
unsigned int tmp = dac->rates[index - 1 - i];
dac->rates[index - 1 - i] = dac->rates[i];
dac->rates[i] = tmp;
}
dac->constraints_rates.count = index;
dac->constraints_rates.list = dac->rates;
dac->constraints_rates.mask = 0;
dac->rates_num = index;
retval = 0;
}
return retval;
}
static int atmel_abdac_probe(struct platform_device *pdev)
{
struct snd_card *card;
struct atmel_abdac *dac;
struct resource *regs;
struct atmel_abdac_pdata *pdata;
struct clk *pclk;
struct clk *sample_clk;
int retval;
int irq;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs) {
dev_dbg(&pdev->dev, "no memory resource\n");
return -ENXIO;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_dbg(&pdev->dev, "could not get IRQ number\n");
return irq;
}
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_dbg(&pdev->dev, "no platform data\n");
return -ENXIO;
}
pclk = clk_get(&pdev->dev, "pclk");
if (IS_ERR(pclk)) {
dev_dbg(&pdev->dev, "no peripheral clock\n");
return PTR_ERR(pclk);
}
sample_clk = clk_get(&pdev->dev, "sample_clk");
if (IS_ERR(sample_clk)) {
dev_dbg(&pdev->dev, "no sample clock\n");
retval = PTR_ERR(sample_clk);
goto out_put_pclk;
}
clk_enable(pclk);
retval = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
THIS_MODULE, sizeof(struct atmel_abdac), &card);
if (retval) {
dev_dbg(&pdev->dev, "could not create sound card device\n");
goto out_put_sample_clk;
}
dac = get_dac(card);
dac->irq = irq;
dac->card = card;
dac->pclk = pclk;
dac->sample_clk = sample_clk;
dac->pdev = pdev;
retval = set_sample_rates(dac);
if (retval < 0) {
dev_dbg(&pdev->dev, "could not set supported rates\n");
goto out_free_card;
}
dac->regs = ioremap(regs->start, resource_size(regs));
if (!dac->regs) {
dev_dbg(&pdev->dev, "could not remap register memory\n");
retval = -ENOMEM;
goto out_free_card;
}
/* make sure the DAC is silent and disabled */
dac_writel(dac, DATA, 0);
dac_writel(dac, CTRL, 0);
retval = request_irq(irq, abdac_interrupt, 0, "abdac", dac);
if (retval) {
dev_dbg(&pdev->dev, "could not request irq\n");
goto out_unmap_regs;
}
snd_card_set_dev(card, &pdev->dev);
if (pdata->dws.dma_dev) {
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
dac->dma.chan = dma_request_channel(mask, filter, &pdata->dws);
if (dac->dma.chan) {
struct dma_slave_config dma_conf = {
.dst_addr = regs->start + DAC_DATA,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.src_maxburst = 1,
.dst_maxburst = 1,
.direction = DMA_MEM_TO_DEV,
.device_fc = false,
};
dmaengine_slave_config(dac->dma.chan, &dma_conf);
}
}
if (!pdata->dws.dma_dev || !dac->dma.chan) {
dev_dbg(&pdev->dev, "DMA not available\n");
retval = -ENODEV;
goto out_unset_card_dev;
}
strcpy(card->driver, "Atmel ABDAC");
strcpy(card->shortname, "Atmel ABDAC");
sprintf(card->longname, "Atmel Audio Bitstream DAC");
retval = atmel_abdac_pcm_new(dac);
if (retval) {
dev_dbg(&pdev->dev, "could not register ABDAC pcm device\n");
goto out_release_dma;
}
retval = snd_card_register(card);
if (retval) {
dev_dbg(&pdev->dev, "could not register sound card\n");
goto out_release_dma;
}
platform_set_drvdata(pdev, card);
dev_info(&pdev->dev, "Atmel ABDAC at 0x%p using %s\n",
dac->regs, dev_name(&dac->dma.chan->dev->device));
return retval;
out_release_dma:
dma_release_channel(dac->dma.chan);
dac->dma.chan = NULL;
out_unset_card_dev:
snd_card_set_dev(card, NULL);
free_irq(irq, dac);
out_unmap_regs:
iounmap(dac->regs);
out_free_card:
snd_card_free(card);
out_put_sample_clk:
clk_put(sample_clk);
clk_disable(pclk);
out_put_pclk:
clk_put(pclk);
return retval;
}
#ifdef CONFIG_PM_SLEEP
static int atmel_abdac_suspend(struct device *pdev)
{
struct snd_card *card = dev_get_drvdata(pdev);
struct atmel_abdac *dac = card->private_data;
dw_dma_cyclic_stop(dac->dma.chan);
clk_disable(dac->sample_clk);
clk_disable(dac->pclk);
return 0;
}
static int atmel_abdac_resume(struct device *pdev)
{
struct snd_card *card = dev_get_drvdata(pdev);
struct atmel_abdac *dac = card->private_data;
clk_enable(dac->pclk);
clk_enable(dac->sample_clk);
if (test_bit(DMA_READY, &dac->flags))
dw_dma_cyclic_start(dac->dma.chan);
return 0;
}
static SIMPLE_DEV_PM_OPS(atmel_abdac_pm, atmel_abdac_suspend, atmel_abdac_resume);
#define ATMEL_ABDAC_PM_OPS &atmel_abdac_pm
#else
#define ATMEL_ABDAC_PM_OPS NULL
#endif
static int atmel_abdac_remove(struct platform_device *pdev)
{
struct snd_card *card = platform_get_drvdata(pdev);
struct atmel_abdac *dac = get_dac(card);
clk_put(dac->sample_clk);
clk_disable(dac->pclk);
clk_put(dac->pclk);
dma_release_channel(dac->dma.chan);
dac->dma.chan = NULL;
snd_card_set_dev(card, NULL);
iounmap(dac->regs);
free_irq(dac->irq, dac);
snd_card_free(card);
return 0;
}
static struct platform_driver atmel_abdac_driver = {
.remove = atmel_abdac_remove,
.driver = {
.name = "atmel_abdac",
.owner = THIS_MODULE,
.pm = ATMEL_ABDAC_PM_OPS,
},
};
static int __init atmel_abdac_init(void)
{
return platform_driver_probe(&atmel_abdac_driver,
atmel_abdac_probe);
}
module_init(atmel_abdac_init);
static void __exit atmel_abdac_exit(void)
{
platform_driver_unregister(&atmel_abdac_driver);
}
module_exit(atmel_abdac_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Driver for Atmel Audio Bitstream DAC (ABDAC)");
MODULE_AUTHOR("Hans-Christian Egtvedt <egtvedt@samfundet.no>");