linux_old1/drivers/net/mlx4/alloc.c

437 lines
10 KiB
C

/*
* Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/bitmap.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include "mlx4.h"
u32 mlx4_bitmap_alloc(struct mlx4_bitmap *bitmap)
{
u32 obj;
spin_lock(&bitmap->lock);
obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last);
if (obj >= bitmap->max) {
bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
& bitmap->mask;
obj = find_first_zero_bit(bitmap->table, bitmap->max);
}
if (obj < bitmap->max) {
set_bit(obj, bitmap->table);
bitmap->last = (obj + 1);
if (bitmap->last == bitmap->max)
bitmap->last = 0;
obj |= bitmap->top;
} else
obj = -1;
spin_unlock(&bitmap->lock);
return obj;
}
void mlx4_bitmap_free(struct mlx4_bitmap *bitmap, u32 obj)
{
mlx4_bitmap_free_range(bitmap, obj, 1);
}
static unsigned long find_aligned_range(unsigned long *bitmap,
u32 start, u32 nbits,
int len, int align)
{
unsigned long end, i;
again:
start = ALIGN(start, align);
while ((start < nbits) && test_bit(start, bitmap))
start += align;
if (start >= nbits)
return -1;
end = start+len;
if (end > nbits)
return -1;
for (i = start + 1; i < end; i++) {
if (test_bit(i, bitmap)) {
start = i + 1;
goto again;
}
}
return start;
}
u32 mlx4_bitmap_alloc_range(struct mlx4_bitmap *bitmap, int cnt, int align)
{
u32 obj, i;
if (likely(cnt == 1 && align == 1))
return mlx4_bitmap_alloc(bitmap);
spin_lock(&bitmap->lock);
obj = find_aligned_range(bitmap->table, bitmap->last,
bitmap->max, cnt, align);
if (obj >= bitmap->max) {
bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
& bitmap->mask;
obj = find_aligned_range(bitmap->table, 0, bitmap->max,
cnt, align);
}
if (obj < bitmap->max) {
for (i = 0; i < cnt; i++)
set_bit(obj + i, bitmap->table);
if (obj == bitmap->last) {
bitmap->last = (obj + cnt);
if (bitmap->last >= bitmap->max)
bitmap->last = 0;
}
obj |= bitmap->top;
} else
obj = -1;
spin_unlock(&bitmap->lock);
return obj;
}
void mlx4_bitmap_free_range(struct mlx4_bitmap *bitmap, u32 obj, int cnt)
{
u32 i;
obj &= bitmap->max + bitmap->reserved_top - 1;
spin_lock(&bitmap->lock);
for (i = 0; i < cnt; i++)
clear_bit(obj + i, bitmap->table);
bitmap->last = min(bitmap->last, obj);
bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
& bitmap->mask;
spin_unlock(&bitmap->lock);
}
int mlx4_bitmap_init(struct mlx4_bitmap *bitmap, u32 num, u32 mask,
u32 reserved_bot, u32 reserved_top)
{
int i;
/* num must be a power of 2 */
if (num != roundup_pow_of_two(num))
return -EINVAL;
bitmap->last = 0;
bitmap->top = 0;
bitmap->max = num - reserved_top;
bitmap->mask = mask;
bitmap->reserved_top = reserved_top;
spin_lock_init(&bitmap->lock);
bitmap->table = kzalloc(BITS_TO_LONGS(bitmap->max) *
sizeof (long), GFP_KERNEL);
if (!bitmap->table)
return -ENOMEM;
for (i = 0; i < reserved_bot; ++i)
set_bit(i, bitmap->table);
return 0;
}
void mlx4_bitmap_cleanup(struct mlx4_bitmap *bitmap)
{
kfree(bitmap->table);
}
/*
* Handling for queue buffers -- we allocate a bunch of memory and
* register it in a memory region at HCA virtual address 0. If the
* requested size is > max_direct, we split the allocation into
* multiple pages, so we don't require too much contiguous memory.
*/
int mlx4_buf_alloc(struct mlx4_dev *dev, int size, int max_direct,
struct mlx4_buf *buf)
{
dma_addr_t t;
if (size <= max_direct) {
buf->nbufs = 1;
buf->npages = 1;
buf->page_shift = get_order(size) + PAGE_SHIFT;
buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev,
size, &t, GFP_KERNEL);
if (!buf->direct.buf)
return -ENOMEM;
buf->direct.map = t;
while (t & ((1 << buf->page_shift) - 1)) {
--buf->page_shift;
buf->npages *= 2;
}
memset(buf->direct.buf, 0, size);
} else {
int i;
buf->nbufs = (size + PAGE_SIZE - 1) / PAGE_SIZE;
buf->npages = buf->nbufs;
buf->page_shift = PAGE_SHIFT;
buf->page_list = kzalloc(buf->nbufs * sizeof *buf->page_list,
GFP_KERNEL);
if (!buf->page_list)
return -ENOMEM;
for (i = 0; i < buf->nbufs; ++i) {
buf->page_list[i].buf =
dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE,
&t, GFP_KERNEL);
if (!buf->page_list[i].buf)
goto err_free;
buf->page_list[i].map = t;
memset(buf->page_list[i].buf, 0, PAGE_SIZE);
}
if (BITS_PER_LONG == 64) {
struct page **pages;
pages = kmalloc(sizeof *pages * buf->nbufs, GFP_KERNEL);
if (!pages)
goto err_free;
for (i = 0; i < buf->nbufs; ++i)
pages[i] = virt_to_page(buf->page_list[i].buf);
buf->direct.buf = vmap(pages, buf->nbufs, VM_MAP, PAGE_KERNEL);
kfree(pages);
if (!buf->direct.buf)
goto err_free;
}
}
return 0;
err_free:
mlx4_buf_free(dev, size, buf);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(mlx4_buf_alloc);
void mlx4_buf_free(struct mlx4_dev *dev, int size, struct mlx4_buf *buf)
{
int i;
if (buf->nbufs == 1)
dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
buf->direct.map);
else {
if (BITS_PER_LONG == 64)
vunmap(buf->direct.buf);
for (i = 0; i < buf->nbufs; ++i)
if (buf->page_list[i].buf)
dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
buf->page_list[i].buf,
buf->page_list[i].map);
kfree(buf->page_list);
}
}
EXPORT_SYMBOL_GPL(mlx4_buf_free);
static struct mlx4_db_pgdir *mlx4_alloc_db_pgdir(struct device *dma_device)
{
struct mlx4_db_pgdir *pgdir;
pgdir = kzalloc(sizeof *pgdir, GFP_KERNEL);
if (!pgdir)
return NULL;
bitmap_fill(pgdir->order1, MLX4_DB_PER_PAGE / 2);
pgdir->bits[0] = pgdir->order0;
pgdir->bits[1] = pgdir->order1;
pgdir->db_page = dma_alloc_coherent(dma_device, PAGE_SIZE,
&pgdir->db_dma, GFP_KERNEL);
if (!pgdir->db_page) {
kfree(pgdir);
return NULL;
}
return pgdir;
}
static int mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir *pgdir,
struct mlx4_db *db, int order)
{
int o;
int i;
for (o = order; o <= 1; ++o) {
i = find_first_bit(pgdir->bits[o], MLX4_DB_PER_PAGE >> o);
if (i < MLX4_DB_PER_PAGE >> o)
goto found;
}
return -ENOMEM;
found:
clear_bit(i, pgdir->bits[o]);
i <<= o;
if (o > order)
set_bit(i ^ 1, pgdir->bits[order]);
db->u.pgdir = pgdir;
db->index = i;
db->db = pgdir->db_page + db->index;
db->dma = pgdir->db_dma + db->index * 4;
db->order = order;
return 0;
}
int mlx4_db_alloc(struct mlx4_dev *dev, struct mlx4_db *db, int order)
{
struct mlx4_priv *priv = mlx4_priv(dev);
struct mlx4_db_pgdir *pgdir;
int ret = 0;
mutex_lock(&priv->pgdir_mutex);
list_for_each_entry(pgdir, &priv->pgdir_list, list)
if (!mlx4_alloc_db_from_pgdir(pgdir, db, order))
goto out;
pgdir = mlx4_alloc_db_pgdir(&(dev->pdev->dev));
if (!pgdir) {
ret = -ENOMEM;
goto out;
}
list_add(&pgdir->list, &priv->pgdir_list);
/* This should never fail -- we just allocated an empty page: */
WARN_ON(mlx4_alloc_db_from_pgdir(pgdir, db, order));
out:
mutex_unlock(&priv->pgdir_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mlx4_db_alloc);
void mlx4_db_free(struct mlx4_dev *dev, struct mlx4_db *db)
{
struct mlx4_priv *priv = mlx4_priv(dev);
int o;
int i;
mutex_lock(&priv->pgdir_mutex);
o = db->order;
i = db->index;
if (db->order == 0 && test_bit(i ^ 1, db->u.pgdir->order0)) {
clear_bit(i ^ 1, db->u.pgdir->order0);
++o;
}
i >>= o;
set_bit(i, db->u.pgdir->bits[o]);
if (bitmap_full(db->u.pgdir->order1, MLX4_DB_PER_PAGE / 2)) {
dma_free_coherent(&(dev->pdev->dev), PAGE_SIZE,
db->u.pgdir->db_page, db->u.pgdir->db_dma);
list_del(&db->u.pgdir->list);
kfree(db->u.pgdir);
}
mutex_unlock(&priv->pgdir_mutex);
}
EXPORT_SYMBOL_GPL(mlx4_db_free);
int mlx4_alloc_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
int size, int max_direct)
{
int err;
err = mlx4_db_alloc(dev, &wqres->db, 1);
if (err)
return err;
*wqres->db.db = 0;
err = mlx4_buf_alloc(dev, size, max_direct, &wqres->buf);
if (err)
goto err_db;
err = mlx4_mtt_init(dev, wqres->buf.npages, wqres->buf.page_shift,
&wqres->mtt);
if (err)
goto err_buf;
err = mlx4_buf_write_mtt(dev, &wqres->mtt, &wqres->buf);
if (err)
goto err_mtt;
return 0;
err_mtt:
mlx4_mtt_cleanup(dev, &wqres->mtt);
err_buf:
mlx4_buf_free(dev, size, &wqres->buf);
err_db:
mlx4_db_free(dev, &wqres->db);
return err;
}
EXPORT_SYMBOL_GPL(mlx4_alloc_hwq_res);
void mlx4_free_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
int size)
{
mlx4_mtt_cleanup(dev, &wqres->mtt);
mlx4_buf_free(dev, size, &wqres->buf);
mlx4_db_free(dev, &wqres->db);
}
EXPORT_SYMBOL_GPL(mlx4_free_hwq_res);