linux_old1/arch/x86/kernel/io_apic_64.c

2963 lines
71 KiB
C

/*
* Intel IO-APIC support for multi-Pentium hosts.
*
* Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
*
* Many thanks to Stig Venaas for trying out countless experimental
* patches and reporting/debugging problems patiently!
*
* (c) 1999, Multiple IO-APIC support, developed by
* Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
* Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
* further tested and cleaned up by Zach Brown <zab@redhat.com>
* and Ingo Molnar <mingo@redhat.com>
*
* Fixes
* Maciej W. Rozycki : Bits for genuine 82489DX APICs;
* thanks to Eric Gilmore
* and Rolf G. Tews
* for testing these extensively
* Paul Diefenbaugh : Added full ACPI support
*/
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/mc146818rtc.h>
#include <linux/acpi.h>
#include <linux/sysdev.h>
#include <linux/msi.h>
#include <linux/htirq.h>
#include <linux/dmar.h>
#include <linux/jiffies.h>
#ifdef CONFIG_ACPI
#include <acpi/acpi_bus.h>
#endif
#include <linux/bootmem.h>
#include <linux/dmar.h>
#include <asm/idle.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/desc.h>
#include <asm/proto.h>
#include <asm/acpi.h>
#include <asm/dma.h>
#include <asm/i8259.h>
#include <asm/nmi.h>
#include <asm/msidef.h>
#include <asm/hypertransport.h>
#include <asm/irq_remapping.h>
#include <mach_ipi.h>
#include <mach_apic.h>
struct irq_cfg {
cpumask_t domain;
cpumask_t old_domain;
unsigned move_cleanup_count;
u8 vector;
u8 move_in_progress : 1;
};
/* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
static struct irq_cfg irq_cfg[NR_IRQS] __read_mostly = {
[0] = { .domain = CPU_MASK_ALL, .vector = IRQ0_VECTOR, },
[1] = { .domain = CPU_MASK_ALL, .vector = IRQ1_VECTOR, },
[2] = { .domain = CPU_MASK_ALL, .vector = IRQ2_VECTOR, },
[3] = { .domain = CPU_MASK_ALL, .vector = IRQ3_VECTOR, },
[4] = { .domain = CPU_MASK_ALL, .vector = IRQ4_VECTOR, },
[5] = { .domain = CPU_MASK_ALL, .vector = IRQ5_VECTOR, },
[6] = { .domain = CPU_MASK_ALL, .vector = IRQ6_VECTOR, },
[7] = { .domain = CPU_MASK_ALL, .vector = IRQ7_VECTOR, },
[8] = { .domain = CPU_MASK_ALL, .vector = IRQ8_VECTOR, },
[9] = { .domain = CPU_MASK_ALL, .vector = IRQ9_VECTOR, },
[10] = { .domain = CPU_MASK_ALL, .vector = IRQ10_VECTOR, },
[11] = { .domain = CPU_MASK_ALL, .vector = IRQ11_VECTOR, },
[12] = { .domain = CPU_MASK_ALL, .vector = IRQ12_VECTOR, },
[13] = { .domain = CPU_MASK_ALL, .vector = IRQ13_VECTOR, },
[14] = { .domain = CPU_MASK_ALL, .vector = IRQ14_VECTOR, },
[15] = { .domain = CPU_MASK_ALL, .vector = IRQ15_VECTOR, },
};
static int assign_irq_vector(int irq, cpumask_t mask);
int first_system_vector = 0xfe;
char system_vectors[NR_VECTORS] = { [0 ... NR_VECTORS-1] = SYS_VECTOR_FREE};
#define __apicdebuginit __init
int sis_apic_bug; /* not actually supported, dummy for compile */
static int no_timer_check;
static int disable_timer_pin_1 __initdata;
int timer_through_8259 __initdata;
/* Where if anywhere is the i8259 connect in external int mode */
static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
static DEFINE_SPINLOCK(ioapic_lock);
DEFINE_SPINLOCK(vector_lock);
/*
* # of IRQ routing registers
*/
int nr_ioapic_registers[MAX_IO_APICS];
/* I/O APIC RTE contents at the OS boot up */
struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
/* I/O APIC entries */
struct mp_config_ioapic mp_ioapics[MAX_IO_APICS];
int nr_ioapics;
/* MP IRQ source entries */
struct mp_config_intsrc mp_irqs[MAX_IRQ_SOURCES];
/* # of MP IRQ source entries */
int mp_irq_entries;
DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
/*
* Rough estimation of how many shared IRQs there are, can
* be changed anytime.
*/
#define MAX_PLUS_SHARED_IRQS NR_IRQS
#define PIN_MAP_SIZE (MAX_PLUS_SHARED_IRQS + NR_IRQS)
/*
* This is performance-critical, we want to do it O(1)
*
* the indexing order of this array favors 1:1 mappings
* between pins and IRQs.
*/
static struct irq_pin_list {
short apic, pin, next;
} irq_2_pin[PIN_MAP_SIZE];
struct io_apic {
unsigned int index;
unsigned int unused[3];
unsigned int data;
};
static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
{
return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
+ (mp_ioapics[idx].mp_apicaddr & ~PAGE_MASK);
}
static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
writel(reg, &io_apic->index);
return readl(&io_apic->data);
}
static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
writel(reg, &io_apic->index);
writel(value, &io_apic->data);
}
/*
* Re-write a value: to be used for read-modify-write
* cycles where the read already set up the index register.
*/
static inline void io_apic_modify(unsigned int apic, unsigned int value)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
writel(value, &io_apic->data);
}
static bool io_apic_level_ack_pending(unsigned int irq)
{
struct irq_pin_list *entry;
unsigned long flags;
spin_lock_irqsave(&ioapic_lock, flags);
entry = irq_2_pin + irq;
for (;;) {
unsigned int reg;
int pin;
pin = entry->pin;
if (pin == -1)
break;
reg = io_apic_read(entry->apic, 0x10 + pin*2);
/* Is the remote IRR bit set? */
if (reg & IO_APIC_REDIR_REMOTE_IRR) {
spin_unlock_irqrestore(&ioapic_lock, flags);
return true;
}
if (!entry->next)
break;
entry = irq_2_pin + entry->next;
}
spin_unlock_irqrestore(&ioapic_lock, flags);
return false;
}
/*
* Synchronize the IO-APIC and the CPU by doing
* a dummy read from the IO-APIC
*/
static inline void io_apic_sync(unsigned int apic)
{
struct io_apic __iomem *io_apic = io_apic_base(apic);
readl(&io_apic->data);
}
#define __DO_ACTION(R, ACTION, FINAL) \
\
{ \
int pin; \
struct irq_pin_list *entry = irq_2_pin + irq; \
\
BUG_ON(irq >= NR_IRQS); \
for (;;) { \
unsigned int reg; \
pin = entry->pin; \
if (pin == -1) \
break; \
reg = io_apic_read(entry->apic, 0x10 + R + pin*2); \
reg ACTION; \
io_apic_modify(entry->apic, reg); \
FINAL; \
if (!entry->next) \
break; \
entry = irq_2_pin + entry->next; \
} \
}
union entry_union {
struct { u32 w1, w2; };
struct IO_APIC_route_entry entry;
};
static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
{
union entry_union eu;
unsigned long flags;
spin_lock_irqsave(&ioapic_lock, flags);
eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
spin_unlock_irqrestore(&ioapic_lock, flags);
return eu.entry;
}
/*
* When we write a new IO APIC routing entry, we need to write the high
* word first! If the mask bit in the low word is clear, we will enable
* the interrupt, and we need to make sure the entry is fully populated
* before that happens.
*/
static void
__ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
{
union entry_union eu;
eu.entry = e;
io_apic_write(apic, 0x11 + 2*pin, eu.w2);
io_apic_write(apic, 0x10 + 2*pin, eu.w1);
}
static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
{
unsigned long flags;
spin_lock_irqsave(&ioapic_lock, flags);
__ioapic_write_entry(apic, pin, e);
spin_unlock_irqrestore(&ioapic_lock, flags);
}
/*
* When we mask an IO APIC routing entry, we need to write the low
* word first, in order to set the mask bit before we change the
* high bits!
*/
static void ioapic_mask_entry(int apic, int pin)
{
unsigned long flags;
union entry_union eu = { .entry.mask = 1 };
spin_lock_irqsave(&ioapic_lock, flags);
io_apic_write(apic, 0x10 + 2*pin, eu.w1);
io_apic_write(apic, 0x11 + 2*pin, eu.w2);
spin_unlock_irqrestore(&ioapic_lock, flags);
}
#ifdef CONFIG_SMP
static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, u8 vector)
{
int apic, pin;
struct irq_pin_list *entry = irq_2_pin + irq;
BUG_ON(irq >= NR_IRQS);
for (;;) {
unsigned int reg;
apic = entry->apic;
pin = entry->pin;
if (pin == -1)
break;
/*
* With interrupt-remapping, destination information comes
* from interrupt-remapping table entry.
*/
if (!irq_remapped(irq))
io_apic_write(apic, 0x11 + pin*2, dest);
reg = io_apic_read(apic, 0x10 + pin*2);
reg &= ~IO_APIC_REDIR_VECTOR_MASK;
reg |= vector;
io_apic_modify(apic, reg);
if (!entry->next)
break;
entry = irq_2_pin + entry->next;
}
}
static void set_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
{
struct irq_cfg *cfg = irq_cfg + irq;
unsigned long flags;
unsigned int dest;
cpumask_t tmp;
cpus_and(tmp, mask, cpu_online_map);
if (cpus_empty(tmp))
return;
if (assign_irq_vector(irq, mask))
return;
cpus_and(tmp, cfg->domain, mask);
dest = cpu_mask_to_apicid(tmp);
/*
* Only the high 8 bits are valid.
*/
dest = SET_APIC_LOGICAL_ID(dest);
spin_lock_irqsave(&ioapic_lock, flags);
__target_IO_APIC_irq(irq, dest, cfg->vector);
irq_desc[irq].affinity = mask;
spin_unlock_irqrestore(&ioapic_lock, flags);
}
#endif
/*
* The common case is 1:1 IRQ<->pin mappings. Sometimes there are
* shared ISA-space IRQs, so we have to support them. We are super
* fast in the common case, and fast for shared ISA-space IRQs.
*/
static void add_pin_to_irq(unsigned int irq, int apic, int pin)
{
static int first_free_entry = NR_IRQS;
struct irq_pin_list *entry = irq_2_pin + irq;
BUG_ON(irq >= NR_IRQS);
while (entry->next)
entry = irq_2_pin + entry->next;
if (entry->pin != -1) {
entry->next = first_free_entry;
entry = irq_2_pin + entry->next;
if (++first_free_entry >= PIN_MAP_SIZE)
panic("io_apic.c: ran out of irq_2_pin entries!");
}
entry->apic = apic;
entry->pin = pin;
}
/*
* Reroute an IRQ to a different pin.
*/
static void __init replace_pin_at_irq(unsigned int irq,
int oldapic, int oldpin,
int newapic, int newpin)
{
struct irq_pin_list *entry = irq_2_pin + irq;
while (1) {
if (entry->apic == oldapic && entry->pin == oldpin) {
entry->apic = newapic;
entry->pin = newpin;
}
if (!entry->next)
break;
entry = irq_2_pin + entry->next;
}
}
#define DO_ACTION(name,R,ACTION, FINAL) \
\
static void name##_IO_APIC_irq (unsigned int irq) \
__DO_ACTION(R, ACTION, FINAL)
/* mask = 1 */
DO_ACTION(__mask, 0, |= IO_APIC_REDIR_MASKED, io_apic_sync(entry->apic))
/* mask = 0 */
DO_ACTION(__unmask, 0, &= ~IO_APIC_REDIR_MASKED, )
static void mask_IO_APIC_irq (unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ioapic_lock, flags);
__mask_IO_APIC_irq(irq);
spin_unlock_irqrestore(&ioapic_lock, flags);
}
static void unmask_IO_APIC_irq (unsigned int irq)
{
unsigned long flags;
spin_lock_irqsave(&ioapic_lock, flags);
__unmask_IO_APIC_irq(irq);
spin_unlock_irqrestore(&ioapic_lock, flags);
}
static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
{
struct IO_APIC_route_entry entry;
/* Check delivery_mode to be sure we're not clearing an SMI pin */
entry = ioapic_read_entry(apic, pin);
if (entry.delivery_mode == dest_SMI)
return;
/*
* Disable it in the IO-APIC irq-routing table:
*/
ioapic_mask_entry(apic, pin);
}
static void clear_IO_APIC (void)
{
int apic, pin;
for (apic = 0; apic < nr_ioapics; apic++)
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
clear_IO_APIC_pin(apic, pin);
}
/*
* Saves and masks all the unmasked IO-APIC RTE's
*/
int save_mask_IO_APIC_setup(void)
{
union IO_APIC_reg_01 reg_01;
unsigned long flags;
int apic, pin;
/*
* The number of IO-APIC IRQ registers (== #pins):
*/
for (apic = 0; apic < nr_ioapics; apic++) {
spin_lock_irqsave(&ioapic_lock, flags);
reg_01.raw = io_apic_read(apic, 1);
spin_unlock_irqrestore(&ioapic_lock, flags);
nr_ioapic_registers[apic] = reg_01.bits.entries+1;
}
for (apic = 0; apic < nr_ioapics; apic++) {
early_ioapic_entries[apic] =
kzalloc(sizeof(struct IO_APIC_route_entry) *
nr_ioapic_registers[apic], GFP_KERNEL);
if (!early_ioapic_entries[apic])
return -ENOMEM;
}
for (apic = 0; apic < nr_ioapics; apic++)
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
struct IO_APIC_route_entry entry;
entry = early_ioapic_entries[apic][pin] =
ioapic_read_entry(apic, pin);
if (!entry.mask) {
entry.mask = 1;
ioapic_write_entry(apic, pin, entry);
}
}
return 0;
}
void restore_IO_APIC_setup(void)
{
int apic, pin;
for (apic = 0; apic < nr_ioapics; apic++)
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
ioapic_write_entry(apic, pin,
early_ioapic_entries[apic][pin]);
}
void reinit_intr_remapped_IO_APIC(int intr_remapping)
{
/*
* for now plain restore of previous settings.
* TBD: In the case of OS enabling interrupt-remapping,
* IO-APIC RTE's need to be setup to point to interrupt-remapping
* table entries. for now, do a plain restore, and wait for
* the setup_IO_APIC_irqs() to do proper initialization.
*/
restore_IO_APIC_setup();
}
int skip_ioapic_setup;
int ioapic_force;
static int __init parse_noapic(char *str)
{
disable_ioapic_setup();
return 0;
}
early_param("noapic", parse_noapic);
/* Actually the next is obsolete, but keep it for paranoid reasons -AK */
static int __init disable_timer_pin_setup(char *arg)
{
disable_timer_pin_1 = 1;
return 1;
}
__setup("disable_timer_pin_1", disable_timer_pin_setup);
/*
* Find the IRQ entry number of a certain pin.
*/
static int find_irq_entry(int apic, int pin, int type)
{
int i;
for (i = 0; i < mp_irq_entries; i++)
if (mp_irqs[i].mp_irqtype == type &&
(mp_irqs[i].mp_dstapic == mp_ioapics[apic].mp_apicid ||
mp_irqs[i].mp_dstapic == MP_APIC_ALL) &&
mp_irqs[i].mp_dstirq == pin)
return i;
return -1;
}
/*
* Find the pin to which IRQ[irq] (ISA) is connected
*/
static int __init find_isa_irq_pin(int irq, int type)
{
int i;
for (i = 0; i < mp_irq_entries; i++) {
int lbus = mp_irqs[i].mp_srcbus;
if (test_bit(lbus, mp_bus_not_pci) &&
(mp_irqs[i].mp_irqtype == type) &&
(mp_irqs[i].mp_srcbusirq == irq))
return mp_irqs[i].mp_dstirq;
}
return -1;
}
static int __init find_isa_irq_apic(int irq, int type)
{
int i;
for (i = 0; i < mp_irq_entries; i++) {
int lbus = mp_irqs[i].mp_srcbus;
if (test_bit(lbus, mp_bus_not_pci) &&
(mp_irqs[i].mp_irqtype == type) &&
(mp_irqs[i].mp_srcbusirq == irq))
break;
}
if (i < mp_irq_entries) {
int apic;
for(apic = 0; apic < nr_ioapics; apic++) {
if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic)
return apic;
}
}
return -1;
}
/*
* Find a specific PCI IRQ entry.
* Not an __init, possibly needed by modules
*/
static int pin_2_irq(int idx, int apic, int pin);
int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
{
int apic, i, best_guess = -1;
apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
bus, slot, pin);
if (test_bit(bus, mp_bus_not_pci)) {
apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
return -1;
}
for (i = 0; i < mp_irq_entries; i++) {
int lbus = mp_irqs[i].mp_srcbus;
for (apic = 0; apic < nr_ioapics; apic++)
if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic ||
mp_irqs[i].mp_dstapic == MP_APIC_ALL)
break;
if (!test_bit(lbus, mp_bus_not_pci) &&
!mp_irqs[i].mp_irqtype &&
(bus == lbus) &&
(slot == ((mp_irqs[i].mp_srcbusirq >> 2) & 0x1f))) {
int irq = pin_2_irq(i,apic,mp_irqs[i].mp_dstirq);
if (!(apic || IO_APIC_IRQ(irq)))
continue;
if (pin == (mp_irqs[i].mp_srcbusirq & 3))
return irq;
/*
* Use the first all-but-pin matching entry as a
* best-guess fuzzy result for broken mptables.
*/
if (best_guess < 0)
best_guess = irq;
}
}
BUG_ON(best_guess >= NR_IRQS);
return best_guess;
}
/* ISA interrupts are always polarity zero edge triggered,
* when listed as conforming in the MP table. */
#define default_ISA_trigger(idx) (0)
#define default_ISA_polarity(idx) (0)
/* PCI interrupts are always polarity one level triggered,
* when listed as conforming in the MP table. */
#define default_PCI_trigger(idx) (1)
#define default_PCI_polarity(idx) (1)
static int MPBIOS_polarity(int idx)
{
int bus = mp_irqs[idx].mp_srcbus;
int polarity;
/*
* Determine IRQ line polarity (high active or low active):
*/
switch (mp_irqs[idx].mp_irqflag & 3)
{
case 0: /* conforms, ie. bus-type dependent polarity */
if (test_bit(bus, mp_bus_not_pci))
polarity = default_ISA_polarity(idx);
else
polarity = default_PCI_polarity(idx);
break;
case 1: /* high active */
{
polarity = 0;
break;
}
case 2: /* reserved */
{
printk(KERN_WARNING "broken BIOS!!\n");
polarity = 1;
break;
}
case 3: /* low active */
{
polarity = 1;
break;
}
default: /* invalid */
{
printk(KERN_WARNING "broken BIOS!!\n");
polarity = 1;
break;
}
}
return polarity;
}
static int MPBIOS_trigger(int idx)
{
int bus = mp_irqs[idx].mp_srcbus;
int trigger;
/*
* Determine IRQ trigger mode (edge or level sensitive):
*/
switch ((mp_irqs[idx].mp_irqflag>>2) & 3)
{
case 0: /* conforms, ie. bus-type dependent */
if (test_bit(bus, mp_bus_not_pci))
trigger = default_ISA_trigger(idx);
else
trigger = default_PCI_trigger(idx);
break;
case 1: /* edge */
{
trigger = 0;
break;
}
case 2: /* reserved */
{
printk(KERN_WARNING "broken BIOS!!\n");
trigger = 1;
break;
}
case 3: /* level */
{
trigger = 1;
break;
}
default: /* invalid */
{
printk(KERN_WARNING "broken BIOS!!\n");
trigger = 0;
break;
}
}
return trigger;
}
static inline int irq_polarity(int idx)
{
return MPBIOS_polarity(idx);
}
static inline int irq_trigger(int idx)
{
return MPBIOS_trigger(idx);
}
static int pin_2_irq(int idx, int apic, int pin)
{
int irq, i;
int bus = mp_irqs[idx].mp_srcbus;
/*
* Debugging check, we are in big trouble if this message pops up!
*/
if (mp_irqs[idx].mp_dstirq != pin)
printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
if (test_bit(bus, mp_bus_not_pci)) {
irq = mp_irqs[idx].mp_srcbusirq;
} else {
/*
* PCI IRQs are mapped in order
*/
i = irq = 0;
while (i < apic)
irq += nr_ioapic_registers[i++];
irq += pin;
}
BUG_ON(irq >= NR_IRQS);
return irq;
}
static int __assign_irq_vector(int irq, cpumask_t mask)
{
/*
* NOTE! The local APIC isn't very good at handling
* multiple interrupts at the same interrupt level.
* As the interrupt level is determined by taking the
* vector number and shifting that right by 4, we
* want to spread these out a bit so that they don't
* all fall in the same interrupt level.
*
* Also, we've got to be careful not to trash gate
* 0x80, because int 0x80 is hm, kind of importantish. ;)
*/
static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
unsigned int old_vector;
int cpu;
struct irq_cfg *cfg;
BUG_ON((unsigned)irq >= NR_IRQS);
cfg = &irq_cfg[irq];
/* Only try and allocate irqs on cpus that are present */
cpus_and(mask, mask, cpu_online_map);
if ((cfg->move_in_progress) || cfg->move_cleanup_count)
return -EBUSY;
old_vector = cfg->vector;
if (old_vector) {
cpumask_t tmp;
cpus_and(tmp, cfg->domain, mask);
if (!cpus_empty(tmp))
return 0;
}
for_each_cpu_mask_nr(cpu, mask) {
cpumask_t domain, new_mask;
int new_cpu;
int vector, offset;
domain = vector_allocation_domain(cpu);
cpus_and(new_mask, domain, cpu_online_map);
vector = current_vector;
offset = current_offset;
next:
vector += 8;
if (vector >= first_system_vector) {
/* If we run out of vectors on large boxen, must share them. */
offset = (offset + 1) % 8;
vector = FIRST_DEVICE_VECTOR + offset;
}
if (unlikely(current_vector == vector))
continue;
if (vector == IA32_SYSCALL_VECTOR)
goto next;
for_each_cpu_mask_nr(new_cpu, new_mask)
if (per_cpu(vector_irq, new_cpu)[vector] != -1)
goto next;
/* Found one! */
current_vector = vector;
current_offset = offset;
if (old_vector) {
cfg->move_in_progress = 1;
cfg->old_domain = cfg->domain;
}
for_each_cpu_mask_nr(new_cpu, new_mask)
per_cpu(vector_irq, new_cpu)[vector] = irq;
cfg->vector = vector;
cfg->domain = domain;
return 0;
}
return -ENOSPC;
}
static int assign_irq_vector(int irq, cpumask_t mask)
{
int err;
unsigned long flags;
spin_lock_irqsave(&vector_lock, flags);
err = __assign_irq_vector(irq, mask);
spin_unlock_irqrestore(&vector_lock, flags);
return err;
}
static void __clear_irq_vector(int irq)
{
struct irq_cfg *cfg;
cpumask_t mask;
int cpu, vector;
BUG_ON((unsigned)irq >= NR_IRQS);
cfg = &irq_cfg[irq];
BUG_ON(!cfg->vector);
vector = cfg->vector;
cpus_and(mask, cfg->domain, cpu_online_map);
for_each_cpu_mask_nr(cpu, mask)
per_cpu(vector_irq, cpu)[vector] = -1;
cfg->vector = 0;
cpus_clear(cfg->domain);
}
static void __setup_vector_irq(int cpu)
{
/* Initialize vector_irq on a new cpu */
/* This function must be called with vector_lock held */
int irq, vector;
/* Mark the inuse vectors */
for (irq = 0; irq < NR_IRQS; ++irq) {
if (!cpu_isset(cpu, irq_cfg[irq].domain))
continue;
vector = irq_cfg[irq].vector;
per_cpu(vector_irq, cpu)[vector] = irq;
}
/* Mark the free vectors */
for (vector = 0; vector < NR_VECTORS; ++vector) {
irq = per_cpu(vector_irq, cpu)[vector];
if (irq < 0)
continue;
if (!cpu_isset(cpu, irq_cfg[irq].domain))
per_cpu(vector_irq, cpu)[vector] = -1;
}
}
void setup_vector_irq(int cpu)
{
spin_lock(&vector_lock);
__setup_vector_irq(smp_processor_id());
spin_unlock(&vector_lock);
}
static struct irq_chip ioapic_chip;
#ifdef CONFIG_INTR_REMAP
static struct irq_chip ir_ioapic_chip;
#endif
static void ioapic_register_intr(int irq, unsigned long trigger)
{
if (trigger)
irq_desc[irq].status |= IRQ_LEVEL;
else
irq_desc[irq].status &= ~IRQ_LEVEL;
#ifdef CONFIG_INTR_REMAP
if (irq_remapped(irq)) {
irq_desc[irq].status |= IRQ_MOVE_PCNTXT;
if (trigger)
set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
handle_fasteoi_irq,
"fasteoi");
else
set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
handle_edge_irq, "edge");
return;
}
#endif
if (trigger)
set_irq_chip_and_handler_name(irq, &ioapic_chip,
handle_fasteoi_irq,
"fasteoi");
else
set_irq_chip_and_handler_name(irq, &ioapic_chip,
handle_edge_irq, "edge");
}
static int setup_ioapic_entry(int apic, int irq,
struct IO_APIC_route_entry *entry,
unsigned int destination, int trigger,
int polarity, int vector)
{
/*
* add it to the IO-APIC irq-routing table:
*/
memset(entry,0,sizeof(*entry));
#ifdef CONFIG_INTR_REMAP
if (intr_remapping_enabled) {
struct intel_iommu *iommu = map_ioapic_to_ir(apic);
struct irte irte;
struct IR_IO_APIC_route_entry *ir_entry =
(struct IR_IO_APIC_route_entry *) entry;
int index;
if (!iommu)
panic("No mapping iommu for ioapic %d\n", apic);
index = alloc_irte(iommu, irq, 1);
if (index < 0)
panic("Failed to allocate IRTE for ioapic %d\n", apic);
memset(&irte, 0, sizeof(irte));
irte.present = 1;
irte.dst_mode = INT_DEST_MODE;
irte.trigger_mode = trigger;
irte.dlvry_mode = INT_DELIVERY_MODE;
irte.vector = vector;
irte.dest_id = IRTE_DEST(destination);
modify_irte(irq, &irte);
ir_entry->index2 = (index >> 15) & 0x1;
ir_entry->zero = 0;
ir_entry->format = 1;
ir_entry->index = (index & 0x7fff);
} else
#endif
{
entry->delivery_mode = INT_DELIVERY_MODE;
entry->dest_mode = INT_DEST_MODE;
entry->dest = destination;
}
entry->mask = 0; /* enable IRQ */
entry->trigger = trigger;
entry->polarity = polarity;
entry->vector = vector;
/* Mask level triggered irqs.
* Use IRQ_DELAYED_DISABLE for edge triggered irqs.
*/
if (trigger)
entry->mask = 1;
return 0;
}
static void setup_IO_APIC_irq(int apic, int pin, unsigned int irq,
int trigger, int polarity)
{
struct irq_cfg *cfg = irq_cfg + irq;
struct IO_APIC_route_entry entry;
cpumask_t mask;
if (!IO_APIC_IRQ(irq))
return;
mask = TARGET_CPUS;
if (assign_irq_vector(irq, mask))
return;
cpus_and(mask, cfg->domain, mask);
apic_printk(APIC_VERBOSE,KERN_DEBUG
"IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
"IRQ %d Mode:%i Active:%i)\n",
apic, mp_ioapics[apic].mp_apicid, pin, cfg->vector,
irq, trigger, polarity);
if (setup_ioapic_entry(mp_ioapics[apic].mp_apicid, irq, &entry,
cpu_mask_to_apicid(mask), trigger, polarity,
cfg->vector)) {
printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
mp_ioapics[apic].mp_apicid, pin);
__clear_irq_vector(irq);
return;
}
ioapic_register_intr(irq, trigger);
if (irq < 16)
disable_8259A_irq(irq);
ioapic_write_entry(apic, pin, entry);
}
static void __init setup_IO_APIC_irqs(void)
{
int apic, pin, idx, irq, first_notcon = 1;
apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
for (apic = 0; apic < nr_ioapics; apic++) {
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
idx = find_irq_entry(apic,pin,mp_INT);
if (idx == -1) {
if (first_notcon) {
apic_printk(APIC_VERBOSE, KERN_DEBUG " IO-APIC (apicid-pin) %d-%d", mp_ioapics[apic].mp_apicid, pin);
first_notcon = 0;
} else
apic_printk(APIC_VERBOSE, ", %d-%d", mp_ioapics[apic].mp_apicid, pin);
continue;
}
if (!first_notcon) {
apic_printk(APIC_VERBOSE, " not connected.\n");
first_notcon = 1;
}
irq = pin_2_irq(idx, apic, pin);
add_pin_to_irq(irq, apic, pin);
setup_IO_APIC_irq(apic, pin, irq,
irq_trigger(idx), irq_polarity(idx));
}
}
if (!first_notcon)
apic_printk(APIC_VERBOSE, " not connected.\n");
}
/*
* Set up the timer pin, possibly with the 8259A-master behind.
*/
static void __init setup_timer_IRQ0_pin(unsigned int apic, unsigned int pin,
int vector)
{
struct IO_APIC_route_entry entry;
if (intr_remapping_enabled)
return;
memset(&entry, 0, sizeof(entry));
/*
* We use logical delivery to get the timer IRQ
* to the first CPU.
*/
entry.dest_mode = INT_DEST_MODE;
entry.mask = 1; /* mask IRQ now */
entry.dest = cpu_mask_to_apicid(TARGET_CPUS);
entry.delivery_mode = INT_DELIVERY_MODE;
entry.polarity = 0;
entry.trigger = 0;
entry.vector = vector;
/*
* The timer IRQ doesn't have to know that behind the
* scene we may have a 8259A-master in AEOI mode ...
*/
set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
/*
* Add it to the IO-APIC irq-routing table:
*/
ioapic_write_entry(apic, pin, entry);
}
void __apicdebuginit print_IO_APIC(void)
{
int apic, i;
union IO_APIC_reg_00 reg_00;
union IO_APIC_reg_01 reg_01;
union IO_APIC_reg_02 reg_02;
unsigned long flags;
if (apic_verbosity == APIC_QUIET)
return;
printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
for (i = 0; i < nr_ioapics; i++)
printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
mp_ioapics[i].mp_apicid, nr_ioapic_registers[i]);
/*
* We are a bit conservative about what we expect. We have to
* know about every hardware change ASAP.
*/
printk(KERN_INFO "testing the IO APIC.......................\n");
for (apic = 0; apic < nr_ioapics; apic++) {
spin_lock_irqsave(&ioapic_lock, flags);
reg_00.raw = io_apic_read(apic, 0);
reg_01.raw = io_apic_read(apic, 1);
if (reg_01.bits.version >= 0x10)
reg_02.raw = io_apic_read(apic, 2);
spin_unlock_irqrestore(&ioapic_lock, flags);
printk("\n");
printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mp_apicid);
printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
if (reg_01.bits.version >= 0x10) {
printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
}
printk(KERN_DEBUG ".... IRQ redirection table:\n");
printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
" Stat Dmod Deli Vect: \n");
for (i = 0; i <= reg_01.bits.entries; i++) {
struct IO_APIC_route_entry entry;
entry = ioapic_read_entry(apic, i);
printk(KERN_DEBUG " %02x %03X ",
i,
entry.dest
);
printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
entry.mask,
entry.trigger,
entry.irr,
entry.polarity,
entry.delivery_status,
entry.dest_mode,
entry.delivery_mode,
entry.vector
);
}
}
printk(KERN_DEBUG "IRQ to pin mappings:\n");
for (i = 0; i < NR_IRQS; i++) {
struct irq_pin_list *entry = irq_2_pin + i;
if (entry->pin < 0)
continue;
printk(KERN_DEBUG "IRQ%d ", i);
for (;;) {
printk("-> %d:%d", entry->apic, entry->pin);
if (!entry->next)
break;
entry = irq_2_pin + entry->next;
}
printk("\n");
}
printk(KERN_INFO ".................................... done.\n");
return;
}
#if 0
static __apicdebuginit void print_APIC_bitfield (int base)
{
unsigned int v;
int i, j;
if (apic_verbosity == APIC_QUIET)
return;
printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
for (i = 0; i < 8; i++) {
v = apic_read(base + i*0x10);
for (j = 0; j < 32; j++) {
if (v & (1<<j))
printk("1");
else
printk("0");
}
printk("\n");
}
}
void __apicdebuginit print_local_APIC(void * dummy)
{
unsigned int v, ver, maxlvt;
unsigned long icr;
if (apic_verbosity == APIC_QUIET)
return;
printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
smp_processor_id(), hard_smp_processor_id());
v = apic_read(APIC_ID);
printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
v = apic_read(APIC_LVR);
printk(KERN_INFO "... APIC VERSION: %08x\n", v);
ver = GET_APIC_VERSION(v);
maxlvt = lapic_get_maxlvt();
v = apic_read(APIC_TASKPRI);
printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
v = apic_read(APIC_ARBPRI);
printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
v & APIC_ARBPRI_MASK);
v = apic_read(APIC_PROCPRI);
printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
v = apic_read(APIC_EOI);
printk(KERN_DEBUG "... APIC EOI: %08x\n", v);
v = apic_read(APIC_RRR);
printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
v = apic_read(APIC_LDR);
printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
v = apic_read(APIC_DFR);
printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
v = apic_read(APIC_SPIV);
printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
printk(KERN_DEBUG "... APIC ISR field:\n");
print_APIC_bitfield(APIC_ISR);
printk(KERN_DEBUG "... APIC TMR field:\n");
print_APIC_bitfield(APIC_TMR);
printk(KERN_DEBUG "... APIC IRR field:\n");
print_APIC_bitfield(APIC_IRR);
v = apic_read(APIC_ESR);
printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
icr = apic_icr_read();
printk(KERN_DEBUG "... APIC ICR: %08x\n", icr);
printk(KERN_DEBUG "... APIC ICR2: %08x\n", icr >> 32);
v = apic_read(APIC_LVTT);
printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
if (maxlvt > 3) { /* PC is LVT#4. */
v = apic_read(APIC_LVTPC);
printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
}
v = apic_read(APIC_LVT0);
printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
v = apic_read(APIC_LVT1);
printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
if (maxlvt > 2) { /* ERR is LVT#3. */
v = apic_read(APIC_LVTERR);
printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
}
v = apic_read(APIC_TMICT);
printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
v = apic_read(APIC_TMCCT);
printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
v = apic_read(APIC_TDCR);
printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
printk("\n");
}
void print_all_local_APICs (void)
{
on_each_cpu(print_local_APIC, NULL, 1);
}
void __apicdebuginit print_PIC(void)
{
unsigned int v;
unsigned long flags;
if (apic_verbosity == APIC_QUIET)
return;
printk(KERN_DEBUG "\nprinting PIC contents\n");
spin_lock_irqsave(&i8259A_lock, flags);
v = inb(0xa1) << 8 | inb(0x21);
printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
v = inb(0xa0) << 8 | inb(0x20);
printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
outb(0x0b,0xa0);
outb(0x0b,0x20);
v = inb(0xa0) << 8 | inb(0x20);
outb(0x0a,0xa0);
outb(0x0a,0x20);
spin_unlock_irqrestore(&i8259A_lock, flags);
printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
v = inb(0x4d1) << 8 | inb(0x4d0);
printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
}
#endif /* 0 */
void __init enable_IO_APIC(void)
{
union IO_APIC_reg_01 reg_01;
int i8259_apic, i8259_pin;
int i, apic;
unsigned long flags;
for (i = 0; i < PIN_MAP_SIZE; i++) {
irq_2_pin[i].pin = -1;
irq_2_pin[i].next = 0;
}
/*
* The number of IO-APIC IRQ registers (== #pins):
*/
for (apic = 0; apic < nr_ioapics; apic++) {
spin_lock_irqsave(&ioapic_lock, flags);
reg_01.raw = io_apic_read(apic, 1);
spin_unlock_irqrestore(&ioapic_lock, flags);
nr_ioapic_registers[apic] = reg_01.bits.entries+1;
}
for(apic = 0; apic < nr_ioapics; apic++) {
int pin;
/* See if any of the pins is in ExtINT mode */
for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
struct IO_APIC_route_entry entry;
entry = ioapic_read_entry(apic, pin);
/* If the interrupt line is enabled and in ExtInt mode
* I have found the pin where the i8259 is connected.
*/
if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
ioapic_i8259.apic = apic;
ioapic_i8259.pin = pin;
goto found_i8259;
}
}
}
found_i8259:
/* Look to see what if the MP table has reported the ExtINT */
i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
/* Trust the MP table if nothing is setup in the hardware */
if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
ioapic_i8259.pin = i8259_pin;
ioapic_i8259.apic = i8259_apic;
}
/* Complain if the MP table and the hardware disagree */
if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
(i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
{
printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
}
/*
* Do not trust the IO-APIC being empty at bootup
*/
clear_IO_APIC();
}
/*
* Not an __init, needed by the reboot code
*/
void disable_IO_APIC(void)
{
/*
* Clear the IO-APIC before rebooting:
*/
clear_IO_APIC();
/*
* If the i8259 is routed through an IOAPIC
* Put that IOAPIC in virtual wire mode
* so legacy interrupts can be delivered.
*/
if (ioapic_i8259.pin != -1) {
struct IO_APIC_route_entry entry;
memset(&entry, 0, sizeof(entry));
entry.mask = 0; /* Enabled */
entry.trigger = 0; /* Edge */
entry.irr = 0;
entry.polarity = 0; /* High */
entry.delivery_status = 0;
entry.dest_mode = 0; /* Physical */
entry.delivery_mode = dest_ExtINT; /* ExtInt */
entry.vector = 0;
entry.dest = read_apic_id();
/*
* Add it to the IO-APIC irq-routing table:
*/
ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
}
disconnect_bsp_APIC(ioapic_i8259.pin != -1);
}
/*
* There is a nasty bug in some older SMP boards, their mptable lies
* about the timer IRQ. We do the following to work around the situation:
*
* - timer IRQ defaults to IO-APIC IRQ
* - if this function detects that timer IRQs are defunct, then we fall
* back to ISA timer IRQs
*/
static int __init timer_irq_works(void)
{
unsigned long t1 = jiffies;
unsigned long flags;
local_save_flags(flags);
local_irq_enable();
/* Let ten ticks pass... */
mdelay((10 * 1000) / HZ);
local_irq_restore(flags);
/*
* Expect a few ticks at least, to be sure some possible
* glue logic does not lock up after one or two first
* ticks in a non-ExtINT mode. Also the local APIC
* might have cached one ExtINT interrupt. Finally, at
* least one tick may be lost due to delays.
*/
/* jiffies wrap? */
if (time_after(jiffies, t1 + 4))
return 1;
return 0;
}
/*
* In the SMP+IOAPIC case it might happen that there are an unspecified
* number of pending IRQ events unhandled. These cases are very rare,
* so we 'resend' these IRQs via IPIs, to the same CPU. It's much
* better to do it this way as thus we do not have to be aware of
* 'pending' interrupts in the IRQ path, except at this point.
*/
/*
* Edge triggered needs to resend any interrupt
* that was delayed but this is now handled in the device
* independent code.
*/
/*
* Starting up a edge-triggered IO-APIC interrupt is
* nasty - we need to make sure that we get the edge.
* If it is already asserted for some reason, we need
* return 1 to indicate that is was pending.
*
* This is not complete - we should be able to fake
* an edge even if it isn't on the 8259A...
*/
static unsigned int startup_ioapic_irq(unsigned int irq)
{
int was_pending = 0;
unsigned long flags;
spin_lock_irqsave(&ioapic_lock, flags);
if (irq < 16) {
disable_8259A_irq(irq);
if (i8259A_irq_pending(irq))
was_pending = 1;
}
__unmask_IO_APIC_irq(irq);
spin_unlock_irqrestore(&ioapic_lock, flags);
return was_pending;
}
static int ioapic_retrigger_irq(unsigned int irq)
{
struct irq_cfg *cfg = &irq_cfg[irq];
unsigned long flags;
spin_lock_irqsave(&vector_lock, flags);
send_IPI_mask(cpumask_of_cpu(first_cpu(cfg->domain)), cfg->vector);
spin_unlock_irqrestore(&vector_lock, flags);
return 1;
}
/*
* Level and edge triggered IO-APIC interrupts need different handling,
* so we use two separate IRQ descriptors. Edge triggered IRQs can be
* handled with the level-triggered descriptor, but that one has slightly
* more overhead. Level-triggered interrupts cannot be handled with the
* edge-triggered handler, without risking IRQ storms and other ugly
* races.
*/
#ifdef CONFIG_SMP
#ifdef CONFIG_INTR_REMAP
static void ir_irq_migration(struct work_struct *work);
static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
/*
* Migrate the IO-APIC irq in the presence of intr-remapping.
*
* For edge triggered, irq migration is a simple atomic update(of vector
* and cpu destination) of IRTE and flush the hardware cache.
*
* For level triggered, we need to modify the io-apic RTE aswell with the update
* vector information, along with modifying IRTE with vector and destination.
* So irq migration for level triggered is little bit more complex compared to
* edge triggered migration. But the good news is, we use the same algorithm
* for level triggered migration as we have today, only difference being,
* we now initiate the irq migration from process context instead of the
* interrupt context.
*
* In future, when we do a directed EOI (combined with cpu EOI broadcast
* suppression) to the IO-APIC, level triggered irq migration will also be
* as simple as edge triggered migration and we can do the irq migration
* with a simple atomic update to IO-APIC RTE.
*/
static void migrate_ioapic_irq(int irq, cpumask_t mask)
{
struct irq_cfg *cfg = irq_cfg + irq;
struct irq_desc *desc = irq_desc + irq;
cpumask_t tmp, cleanup_mask;
struct irte irte;
int modify_ioapic_rte = desc->status & IRQ_LEVEL;
unsigned int dest;
unsigned long flags;
cpus_and(tmp, mask, cpu_online_map);
if (cpus_empty(tmp))
return;
if (get_irte(irq, &irte))
return;
if (assign_irq_vector(irq, mask))
return;
cpus_and(tmp, cfg->domain, mask);
dest = cpu_mask_to_apicid(tmp);
if (modify_ioapic_rte) {
spin_lock_irqsave(&ioapic_lock, flags);
__target_IO_APIC_irq(irq, dest, cfg->vector);
spin_unlock_irqrestore(&ioapic_lock, flags);
}
irte.vector = cfg->vector;
irte.dest_id = IRTE_DEST(dest);
/*
* Modified the IRTE and flushes the Interrupt entry cache.
*/
modify_irte(irq, &irte);
if (cfg->move_in_progress) {
cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
cfg->move_cleanup_count = cpus_weight(cleanup_mask);
send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
cfg->move_in_progress = 0;
}
irq_desc[irq].affinity = mask;
}
static int migrate_irq_remapped_level(int irq)
{
int ret = -1;
mask_IO_APIC_irq(irq);
if (io_apic_level_ack_pending(irq)) {
/*
* Interrupt in progress. Migrating irq now will change the
* vector information in the IO-APIC RTE and that will confuse
* the EOI broadcast performed by cpu.
* So, delay the irq migration to the next instance.
*/
schedule_delayed_work(&ir_migration_work, 1);
goto unmask;
}
/* everthing is clear. we have right of way */
migrate_ioapic_irq(irq, irq_desc[irq].pending_mask);
ret = 0;
irq_desc[irq].status &= ~IRQ_MOVE_PENDING;
cpus_clear(irq_desc[irq].pending_mask);
unmask:
unmask_IO_APIC_irq(irq);
return ret;
}
static void ir_irq_migration(struct work_struct *work)
{
int irq;
for (irq = 0; irq < NR_IRQS; irq++) {
struct irq_desc *desc = irq_desc + irq;
if (desc->status & IRQ_MOVE_PENDING) {
unsigned long flags;
spin_lock_irqsave(&desc->lock, flags);
if (!desc->chip->set_affinity ||
!(desc->status & IRQ_MOVE_PENDING)) {
desc->status &= ~IRQ_MOVE_PENDING;
spin_unlock_irqrestore(&desc->lock, flags);
continue;
}
desc->chip->set_affinity(irq,
irq_desc[irq].pending_mask);
spin_unlock_irqrestore(&desc->lock, flags);
}
}
}
/*
* Migrates the IRQ destination in the process context.
*/
static void set_ir_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
{
if (irq_desc[irq].status & IRQ_LEVEL) {
irq_desc[irq].status |= IRQ_MOVE_PENDING;
irq_desc[irq].pending_mask = mask;
migrate_irq_remapped_level(irq);
return;
}
migrate_ioapic_irq(irq, mask);
}
#endif
asmlinkage void smp_irq_move_cleanup_interrupt(void)
{
unsigned vector, me;
ack_APIC_irq();
exit_idle();
irq_enter();
me = smp_processor_id();
for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
unsigned int irq;
struct irq_desc *desc;
struct irq_cfg *cfg;
irq = __get_cpu_var(vector_irq)[vector];
if (irq >= NR_IRQS)
continue;
desc = irq_desc + irq;
cfg = irq_cfg + irq;
spin_lock(&desc->lock);
if (!cfg->move_cleanup_count)
goto unlock;
if ((vector == cfg->vector) && cpu_isset(me, cfg->domain))
goto unlock;
__get_cpu_var(vector_irq)[vector] = -1;
cfg->move_cleanup_count--;
unlock:
spin_unlock(&desc->lock);
}
irq_exit();
}
static void irq_complete_move(unsigned int irq)
{
struct irq_cfg *cfg = irq_cfg + irq;
unsigned vector, me;
if (likely(!cfg->move_in_progress))
return;
vector = ~get_irq_regs()->orig_ax;
me = smp_processor_id();
if ((vector == cfg->vector) && cpu_isset(me, cfg->domain)) {
cpumask_t cleanup_mask;
cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
cfg->move_cleanup_count = cpus_weight(cleanup_mask);
send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
cfg->move_in_progress = 0;
}
}
#else
static inline void irq_complete_move(unsigned int irq) {}
#endif
#ifdef CONFIG_INTR_REMAP
static void ack_x2apic_level(unsigned int irq)
{
ack_x2APIC_irq();
}
static void ack_x2apic_edge(unsigned int irq)
{
ack_x2APIC_irq();
}
#endif
static void ack_apic_edge(unsigned int irq)
{
irq_complete_move(irq);
move_native_irq(irq);
ack_APIC_irq();
}
static void ack_apic_level(unsigned int irq)
{
int do_unmask_irq = 0;
irq_complete_move(irq);
#ifdef CONFIG_GENERIC_PENDING_IRQ
/* If we are moving the irq we need to mask it */
if (unlikely(irq_desc[irq].status & IRQ_MOVE_PENDING)) {
do_unmask_irq = 1;
mask_IO_APIC_irq(irq);
}
#endif
/*
* We must acknowledge the irq before we move it or the acknowledge will
* not propagate properly.
*/
ack_APIC_irq();
/* Now we can move and renable the irq */
if (unlikely(do_unmask_irq)) {
/* Only migrate the irq if the ack has been received.
*
* On rare occasions the broadcast level triggered ack gets
* delayed going to ioapics, and if we reprogram the
* vector while Remote IRR is still set the irq will never
* fire again.
*
* To prevent this scenario we read the Remote IRR bit
* of the ioapic. This has two effects.
* - On any sane system the read of the ioapic will
* flush writes (and acks) going to the ioapic from
* this cpu.
* - We get to see if the ACK has actually been delivered.
*
* Based on failed experiments of reprogramming the
* ioapic entry from outside of irq context starting
* with masking the ioapic entry and then polling until
* Remote IRR was clear before reprogramming the
* ioapic I don't trust the Remote IRR bit to be
* completey accurate.
*
* However there appears to be no other way to plug
* this race, so if the Remote IRR bit is not
* accurate and is causing problems then it is a hardware bug
* and you can go talk to the chipset vendor about it.
*/
if (!io_apic_level_ack_pending(irq))
move_masked_irq(irq);
unmask_IO_APIC_irq(irq);
}
}
static struct irq_chip ioapic_chip __read_mostly = {
.name = "IO-APIC",
.startup = startup_ioapic_irq,
.mask = mask_IO_APIC_irq,
.unmask = unmask_IO_APIC_irq,
.ack = ack_apic_edge,
.eoi = ack_apic_level,
#ifdef CONFIG_SMP
.set_affinity = set_ioapic_affinity_irq,
#endif
.retrigger = ioapic_retrigger_irq,
};
#ifdef CONFIG_INTR_REMAP
static struct irq_chip ir_ioapic_chip __read_mostly = {
.name = "IR-IO-APIC",
.startup = startup_ioapic_irq,
.mask = mask_IO_APIC_irq,
.unmask = unmask_IO_APIC_irq,
.ack = ack_x2apic_edge,
.eoi = ack_x2apic_level,
#ifdef CONFIG_SMP
.set_affinity = set_ir_ioapic_affinity_irq,
#endif
.retrigger = ioapic_retrigger_irq,
};
#endif
static inline void init_IO_APIC_traps(void)
{
int irq;
/*
* NOTE! The local APIC isn't very good at handling
* multiple interrupts at the same interrupt level.
* As the interrupt level is determined by taking the
* vector number and shifting that right by 4, we
* want to spread these out a bit so that they don't
* all fall in the same interrupt level.
*
* Also, we've got to be careful not to trash gate
* 0x80, because int 0x80 is hm, kind of importantish. ;)
*/
for (irq = 0; irq < NR_IRQS ; irq++) {
if (IO_APIC_IRQ(irq) && !irq_cfg[irq].vector) {
/*
* Hmm.. We don't have an entry for this,
* so default to an old-fashioned 8259
* interrupt if we can..
*/
if (irq < 16)
make_8259A_irq(irq);
else
/* Strange. Oh, well.. */
irq_desc[irq].chip = &no_irq_chip;
}
}
}
static void unmask_lapic_irq(unsigned int irq)
{
unsigned long v;
v = apic_read(APIC_LVT0);
apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
}
static void mask_lapic_irq(unsigned int irq)
{
unsigned long v;
v = apic_read(APIC_LVT0);
apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
}
static void ack_lapic_irq (unsigned int irq)
{
ack_APIC_irq();
}
static struct irq_chip lapic_chip __read_mostly = {
.name = "local-APIC",
.mask = mask_lapic_irq,
.unmask = unmask_lapic_irq,
.ack = ack_lapic_irq,
};
static void lapic_register_intr(int irq)
{
irq_desc[irq].status &= ~IRQ_LEVEL;
set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
"edge");
}
static void __init setup_nmi(void)
{
/*
* Dirty trick to enable the NMI watchdog ...
* We put the 8259A master into AEOI mode and
* unmask on all local APICs LVT0 as NMI.
*
* The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
* is from Maciej W. Rozycki - so we do not have to EOI from
* the NMI handler or the timer interrupt.
*/
printk(KERN_INFO "activating NMI Watchdog ...");
enable_NMI_through_LVT0();
printk(" done.\n");
}
/*
* This looks a bit hackish but it's about the only one way of sending
* a few INTA cycles to 8259As and any associated glue logic. ICR does
* not support the ExtINT mode, unfortunately. We need to send these
* cycles as some i82489DX-based boards have glue logic that keeps the
* 8259A interrupt line asserted until INTA. --macro
*/
static inline void __init unlock_ExtINT_logic(void)
{
int apic, pin, i;
struct IO_APIC_route_entry entry0, entry1;
unsigned char save_control, save_freq_select;
pin = find_isa_irq_pin(8, mp_INT);
apic = find_isa_irq_apic(8, mp_INT);
if (pin == -1)
return;
entry0 = ioapic_read_entry(apic, pin);
clear_IO_APIC_pin(apic, pin);
memset(&entry1, 0, sizeof(entry1));
entry1.dest_mode = 0; /* physical delivery */
entry1.mask = 0; /* unmask IRQ now */
entry1.dest = hard_smp_processor_id();
entry1.delivery_mode = dest_ExtINT;
entry1.polarity = entry0.polarity;
entry1.trigger = 0;
entry1.vector = 0;
ioapic_write_entry(apic, pin, entry1);
save_control = CMOS_READ(RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
RTC_FREQ_SELECT);
CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
i = 100;
while (i-- > 0) {
mdelay(10);
if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
i -= 10;
}
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
clear_IO_APIC_pin(apic, pin);
ioapic_write_entry(apic, pin, entry0);
}
/*
* This code may look a bit paranoid, but it's supposed to cooperate with
* a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
* is so screwy. Thanks to Brian Perkins for testing/hacking this beast
* fanatically on his truly buggy board.
*
* FIXME: really need to revamp this for modern platforms only.
*/
static inline void __init check_timer(void)
{
struct irq_cfg *cfg = irq_cfg + 0;
int apic1, pin1, apic2, pin2;
unsigned long flags;
int no_pin1 = 0;
local_irq_save(flags);
/*
* get/set the timer IRQ vector:
*/
disable_8259A_irq(0);
assign_irq_vector(0, TARGET_CPUS);
/*
* As IRQ0 is to be enabled in the 8259A, the virtual
* wire has to be disabled in the local APIC.
*/
apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
init_8259A(1);
pin1 = find_isa_irq_pin(0, mp_INT);
apic1 = find_isa_irq_apic(0, mp_INT);
pin2 = ioapic_i8259.pin;
apic2 = ioapic_i8259.apic;
apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
"apic1=%d pin1=%d apic2=%d pin2=%d\n",
cfg->vector, apic1, pin1, apic2, pin2);
/*
* Some BIOS writers are clueless and report the ExtINTA
* I/O APIC input from the cascaded 8259A as the timer
* interrupt input. So just in case, if only one pin
* was found above, try it both directly and through the
* 8259A.
*/
if (pin1 == -1) {
if (intr_remapping_enabled)
panic("BIOS bug: timer not connected to IO-APIC");
pin1 = pin2;
apic1 = apic2;
no_pin1 = 1;
} else if (pin2 == -1) {
pin2 = pin1;
apic2 = apic1;
}
if (pin1 != -1) {
/*
* Ok, does IRQ0 through the IOAPIC work?
*/
if (no_pin1) {
add_pin_to_irq(0, apic1, pin1);
setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
}
unmask_IO_APIC_irq(0);
if (!no_timer_check && timer_irq_works()) {
if (nmi_watchdog == NMI_IO_APIC) {
setup_nmi();
enable_8259A_irq(0);
}
if (disable_timer_pin_1 > 0)
clear_IO_APIC_pin(0, pin1);
goto out;
}
if (intr_remapping_enabled)
panic("timer doesn't work through Interrupt-remapped IO-APIC");
clear_IO_APIC_pin(apic1, pin1);
if (!no_pin1)
apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
"8254 timer not connected to IO-APIC\n");
apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
"(IRQ0) through the 8259A ...\n");
apic_printk(APIC_QUIET, KERN_INFO
"..... (found apic %d pin %d) ...\n", apic2, pin2);
/*
* legacy devices should be connected to IO APIC #0
*/
replace_pin_at_irq(0, apic1, pin1, apic2, pin2);
setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
unmask_IO_APIC_irq(0);
enable_8259A_irq(0);
if (timer_irq_works()) {
apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
timer_through_8259 = 1;
if (nmi_watchdog == NMI_IO_APIC) {
disable_8259A_irq(0);
setup_nmi();
enable_8259A_irq(0);
}
goto out;
}
/*
* Cleanup, just in case ...
*/
disable_8259A_irq(0);
clear_IO_APIC_pin(apic2, pin2);
apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
}
if (nmi_watchdog == NMI_IO_APIC) {
apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
"through the IO-APIC - disabling NMI Watchdog!\n");
nmi_watchdog = NMI_NONE;
}
apic_printk(APIC_QUIET, KERN_INFO
"...trying to set up timer as Virtual Wire IRQ...\n");
lapic_register_intr(0);
apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
enable_8259A_irq(0);
if (timer_irq_works()) {
apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
goto out;
}
disable_8259A_irq(0);
apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
apic_printk(APIC_QUIET, KERN_INFO
"...trying to set up timer as ExtINT IRQ...\n");
init_8259A(0);
make_8259A_irq(0);
apic_write(APIC_LVT0, APIC_DM_EXTINT);
unlock_ExtINT_logic();
if (timer_irq_works()) {
apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
goto out;
}
apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
"report. Then try booting with the 'noapic' option.\n");
out:
local_irq_restore(flags);
}
static int __init notimercheck(char *s)
{
no_timer_check = 1;
return 1;
}
__setup("no_timer_check", notimercheck);
/*
* Traditionally ISA IRQ2 is the cascade IRQ, and is not available
* to devices. However there may be an I/O APIC pin available for
* this interrupt regardless. The pin may be left unconnected, but
* typically it will be reused as an ExtINT cascade interrupt for
* the master 8259A. In the MPS case such a pin will normally be
* reported as an ExtINT interrupt in the MP table. With ACPI
* there is no provision for ExtINT interrupts, and in the absence
* of an override it would be treated as an ordinary ISA I/O APIC
* interrupt, that is edge-triggered and unmasked by default. We
* used to do this, but it caused problems on some systems because
* of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
* the same ExtINT cascade interrupt to drive the local APIC of the
* bootstrap processor. Therefore we refrain from routing IRQ2 to
* the I/O APIC in all cases now. No actual device should request
* it anyway. --macro
*/
#define PIC_IRQS (1<<2)
void __init setup_IO_APIC(void)
{
/*
* calling enable_IO_APIC() is moved to setup_local_APIC for BP
*/
io_apic_irqs = ~PIC_IRQS;
apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
sync_Arb_IDs();
setup_IO_APIC_irqs();
init_IO_APIC_traps();
check_timer();
if (!acpi_ioapic)
print_IO_APIC();
}
struct sysfs_ioapic_data {
struct sys_device dev;
struct IO_APIC_route_entry entry[0];
};
static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
{
struct IO_APIC_route_entry *entry;
struct sysfs_ioapic_data *data;
int i;
data = container_of(dev, struct sysfs_ioapic_data, dev);
entry = data->entry;
for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
*entry = ioapic_read_entry(dev->id, i);
return 0;
}
static int ioapic_resume(struct sys_device *dev)
{
struct IO_APIC_route_entry *entry;
struct sysfs_ioapic_data *data;
unsigned long flags;
union IO_APIC_reg_00 reg_00;
int i;
data = container_of(dev, struct sysfs_ioapic_data, dev);
entry = data->entry;
spin_lock_irqsave(&ioapic_lock, flags);
reg_00.raw = io_apic_read(dev->id, 0);
if (reg_00.bits.ID != mp_ioapics[dev->id].mp_apicid) {
reg_00.bits.ID = mp_ioapics[dev->id].mp_apicid;
io_apic_write(dev->id, 0, reg_00.raw);
}
spin_unlock_irqrestore(&ioapic_lock, flags);
for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
ioapic_write_entry(dev->id, i, entry[i]);
return 0;
}
static struct sysdev_class ioapic_sysdev_class = {
.name = "ioapic",
.suspend = ioapic_suspend,
.resume = ioapic_resume,
};
static int __init ioapic_init_sysfs(void)
{
struct sys_device * dev;
int i, size, error;
error = sysdev_class_register(&ioapic_sysdev_class);
if (error)
return error;
for (i = 0; i < nr_ioapics; i++ ) {
size = sizeof(struct sys_device) + nr_ioapic_registers[i]
* sizeof(struct IO_APIC_route_entry);
mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
if (!mp_ioapic_data[i]) {
printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
continue;
}
dev = &mp_ioapic_data[i]->dev;
dev->id = i;
dev->cls = &ioapic_sysdev_class;
error = sysdev_register(dev);
if (error) {
kfree(mp_ioapic_data[i]);
mp_ioapic_data[i] = NULL;
printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
continue;
}
}
return 0;
}
device_initcall(ioapic_init_sysfs);
/*
* Dynamic irq allocate and deallocation
*/
int create_irq(void)
{
/* Allocate an unused irq */
int irq;
int new;
unsigned long flags;
irq = -ENOSPC;
spin_lock_irqsave(&vector_lock, flags);
for (new = (NR_IRQS - 1); new >= 0; new--) {
if (platform_legacy_irq(new))
continue;
if (irq_cfg[new].vector != 0)
continue;
if (__assign_irq_vector(new, TARGET_CPUS) == 0)
irq = new;
break;
}
spin_unlock_irqrestore(&vector_lock, flags);
if (irq >= 0) {
dynamic_irq_init(irq);
}
return irq;
}
void destroy_irq(unsigned int irq)
{
unsigned long flags;
dynamic_irq_cleanup(irq);
#ifdef CONFIG_INTR_REMAP
free_irte(irq);
#endif
spin_lock_irqsave(&vector_lock, flags);
__clear_irq_vector(irq);
spin_unlock_irqrestore(&vector_lock, flags);
}
/*
* MSI message composition
*/
#ifdef CONFIG_PCI_MSI
static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
{
struct irq_cfg *cfg = irq_cfg + irq;
int err;
unsigned dest;
cpumask_t tmp;
tmp = TARGET_CPUS;
err = assign_irq_vector(irq, tmp);
if (err)
return err;
cpus_and(tmp, cfg->domain, tmp);
dest = cpu_mask_to_apicid(tmp);
#ifdef CONFIG_INTR_REMAP
if (irq_remapped(irq)) {
struct irte irte;
int ir_index;
u16 sub_handle;
ir_index = map_irq_to_irte_handle(irq, &sub_handle);
BUG_ON(ir_index == -1);
memset (&irte, 0, sizeof(irte));
irte.present = 1;
irte.dst_mode = INT_DEST_MODE;
irte.trigger_mode = 0; /* edge */
irte.dlvry_mode = INT_DELIVERY_MODE;
irte.vector = cfg->vector;
irte.dest_id = IRTE_DEST(dest);
modify_irte(irq, &irte);
msg->address_hi = MSI_ADDR_BASE_HI;
msg->data = sub_handle;
msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
MSI_ADDR_IR_SHV |
MSI_ADDR_IR_INDEX1(ir_index) |
MSI_ADDR_IR_INDEX2(ir_index);
} else
#endif
{
msg->address_hi = MSI_ADDR_BASE_HI;
msg->address_lo =
MSI_ADDR_BASE_LO |
((INT_DEST_MODE == 0) ?
MSI_ADDR_DEST_MODE_PHYSICAL:
MSI_ADDR_DEST_MODE_LOGICAL) |
((INT_DELIVERY_MODE != dest_LowestPrio) ?
MSI_ADDR_REDIRECTION_CPU:
MSI_ADDR_REDIRECTION_LOWPRI) |
MSI_ADDR_DEST_ID(dest);
msg->data =
MSI_DATA_TRIGGER_EDGE |
MSI_DATA_LEVEL_ASSERT |
((INT_DELIVERY_MODE != dest_LowestPrio) ?
MSI_DATA_DELIVERY_FIXED:
MSI_DATA_DELIVERY_LOWPRI) |
MSI_DATA_VECTOR(cfg->vector);
}
return err;
}
#ifdef CONFIG_SMP
static void set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
{
struct irq_cfg *cfg = irq_cfg + irq;
struct msi_msg msg;
unsigned int dest;
cpumask_t tmp;
cpus_and(tmp, mask, cpu_online_map);
if (cpus_empty(tmp))
return;
if (assign_irq_vector(irq, mask))
return;
cpus_and(tmp, cfg->domain, mask);
dest = cpu_mask_to_apicid(tmp);
read_msi_msg(irq, &msg);
msg.data &= ~MSI_DATA_VECTOR_MASK;
msg.data |= MSI_DATA_VECTOR(cfg->vector);
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
write_msi_msg(irq, &msg);
irq_desc[irq].affinity = mask;
}
#ifdef CONFIG_INTR_REMAP
/*
* Migrate the MSI irq to another cpumask. This migration is
* done in the process context using interrupt-remapping hardware.
*/
static void ir_set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
{
struct irq_cfg *cfg = irq_cfg + irq;
unsigned int dest;
cpumask_t tmp, cleanup_mask;
struct irte irte;
cpus_and(tmp, mask, cpu_online_map);
if (cpus_empty(tmp))
return;
if (get_irte(irq, &irte))
return;
if (assign_irq_vector(irq, mask))
return;
cpus_and(tmp, cfg->domain, mask);
dest = cpu_mask_to_apicid(tmp);
irte.vector = cfg->vector;
irte.dest_id = IRTE_DEST(dest);
/*
* atomically update the IRTE with the new destination and vector.
*/
modify_irte(irq, &irte);
/*
* After this point, all the interrupts will start arriving
* at the new destination. So, time to cleanup the previous
* vector allocation.
*/
if (cfg->move_in_progress) {
cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
cfg->move_cleanup_count = cpus_weight(cleanup_mask);
send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
cfg->move_in_progress = 0;
}
irq_desc[irq].affinity = mask;
}
#endif
#endif /* CONFIG_SMP */
/*
* IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
* which implement the MSI or MSI-X Capability Structure.
*/
static struct irq_chip msi_chip = {
.name = "PCI-MSI",
.unmask = unmask_msi_irq,
.mask = mask_msi_irq,
.ack = ack_apic_edge,
#ifdef CONFIG_SMP
.set_affinity = set_msi_irq_affinity,
#endif
.retrigger = ioapic_retrigger_irq,
};
#ifdef CONFIG_INTR_REMAP
static struct irq_chip msi_ir_chip = {
.name = "IR-PCI-MSI",
.unmask = unmask_msi_irq,
.mask = mask_msi_irq,
.ack = ack_x2apic_edge,
#ifdef CONFIG_SMP
.set_affinity = ir_set_msi_irq_affinity,
#endif
.retrigger = ioapic_retrigger_irq,
};
/*
* Map the PCI dev to the corresponding remapping hardware unit
* and allocate 'nvec' consecutive interrupt-remapping table entries
* in it.
*/
static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
{
struct intel_iommu *iommu;
int index;
iommu = map_dev_to_ir(dev);
if (!iommu) {
printk(KERN_ERR
"Unable to map PCI %s to iommu\n", pci_name(dev));
return -ENOENT;
}
index = alloc_irte(iommu, irq, nvec);
if (index < 0) {
printk(KERN_ERR
"Unable to allocate %d IRTE for PCI %s\n", nvec,
pci_name(dev));
return -ENOSPC;
}
return index;
}
#endif
static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc, int irq)
{
int ret;
struct msi_msg msg;
ret = msi_compose_msg(dev, irq, &msg);
if (ret < 0)
return ret;
set_irq_msi(irq, desc);
write_msi_msg(irq, &msg);
#ifdef CONFIG_INTR_REMAP
if (irq_remapped(irq)) {
struct irq_desc *desc = irq_desc + irq;
/*
* irq migration in process context
*/
desc->status |= IRQ_MOVE_PCNTXT;
set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
} else
#endif
set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
return 0;
}
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
{
int irq, ret;
irq = create_irq();
if (irq < 0)
return irq;
#ifdef CONFIG_INTR_REMAP
if (!intr_remapping_enabled)
goto no_ir;
ret = msi_alloc_irte(dev, irq, 1);
if (ret < 0)
goto error;
no_ir:
#endif
ret = setup_msi_irq(dev, desc, irq);
if (ret < 0) {
destroy_irq(irq);
return ret;
}
return 0;
#ifdef CONFIG_INTR_REMAP
error:
destroy_irq(irq);
return ret;
#endif
}
int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
int irq, ret, sub_handle;
struct msi_desc *desc;
#ifdef CONFIG_INTR_REMAP
struct intel_iommu *iommu = 0;
int index = 0;
#endif
sub_handle = 0;
list_for_each_entry(desc, &dev->msi_list, list) {
irq = create_irq();
if (irq < 0)
return irq;
#ifdef CONFIG_INTR_REMAP
if (!intr_remapping_enabled)
goto no_ir;
if (!sub_handle) {
/*
* allocate the consecutive block of IRTE's
* for 'nvec'
*/
index = msi_alloc_irte(dev, irq, nvec);
if (index < 0) {
ret = index;
goto error;
}
} else {
iommu = map_dev_to_ir(dev);
if (!iommu) {
ret = -ENOENT;
goto error;
}
/*
* setup the mapping between the irq and the IRTE
* base index, the sub_handle pointing to the
* appropriate interrupt remap table entry.
*/
set_irte_irq(irq, iommu, index, sub_handle);
}
no_ir:
#endif
ret = setup_msi_irq(dev, desc, irq);
if (ret < 0)
goto error;
sub_handle++;
}
return 0;
error:
destroy_irq(irq);
return ret;
}
void arch_teardown_msi_irq(unsigned int irq)
{
destroy_irq(irq);
}
#ifdef CONFIG_DMAR
#ifdef CONFIG_SMP
static void dmar_msi_set_affinity(unsigned int irq, cpumask_t mask)
{
struct irq_cfg *cfg = irq_cfg + irq;
struct msi_msg msg;
unsigned int dest;
cpumask_t tmp;
cpus_and(tmp, mask, cpu_online_map);
if (cpus_empty(tmp))
return;
if (assign_irq_vector(irq, mask))
return;
cpus_and(tmp, cfg->domain, mask);
dest = cpu_mask_to_apicid(tmp);
dmar_msi_read(irq, &msg);
msg.data &= ~MSI_DATA_VECTOR_MASK;
msg.data |= MSI_DATA_VECTOR(cfg->vector);
msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
msg.address_lo |= MSI_ADDR_DEST_ID(dest);
dmar_msi_write(irq, &msg);
irq_desc[irq].affinity = mask;
}
#endif /* CONFIG_SMP */
struct irq_chip dmar_msi_type = {
.name = "DMAR_MSI",
.unmask = dmar_msi_unmask,
.mask = dmar_msi_mask,
.ack = ack_apic_edge,
#ifdef CONFIG_SMP
.set_affinity = dmar_msi_set_affinity,
#endif
.retrigger = ioapic_retrigger_irq,
};
int arch_setup_dmar_msi(unsigned int irq)
{
int ret;
struct msi_msg msg;
ret = msi_compose_msg(NULL, irq, &msg);
if (ret < 0)
return ret;
dmar_msi_write(irq, &msg);
set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
"edge");
return 0;
}
#endif
#endif /* CONFIG_PCI_MSI */
/*
* Hypertransport interrupt support
*/
#ifdef CONFIG_HT_IRQ
#ifdef CONFIG_SMP
static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
{
struct ht_irq_msg msg;
fetch_ht_irq_msg(irq, &msg);
msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
write_ht_irq_msg(irq, &msg);
}
static void set_ht_irq_affinity(unsigned int irq, cpumask_t mask)
{
struct irq_cfg *cfg = irq_cfg + irq;
unsigned int dest;
cpumask_t tmp;
cpus_and(tmp, mask, cpu_online_map);
if (cpus_empty(tmp))
return;
if (assign_irq_vector(irq, mask))
return;
cpus_and(tmp, cfg->domain, mask);
dest = cpu_mask_to_apicid(tmp);
target_ht_irq(irq, dest, cfg->vector);
irq_desc[irq].affinity = mask;
}
#endif
static struct irq_chip ht_irq_chip = {
.name = "PCI-HT",
.mask = mask_ht_irq,
.unmask = unmask_ht_irq,
.ack = ack_apic_edge,
#ifdef CONFIG_SMP
.set_affinity = set_ht_irq_affinity,
#endif
.retrigger = ioapic_retrigger_irq,
};
int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
{
struct irq_cfg *cfg = irq_cfg + irq;
int err;
cpumask_t tmp;
tmp = TARGET_CPUS;
err = assign_irq_vector(irq, tmp);
if (!err) {
struct ht_irq_msg msg;
unsigned dest;
cpus_and(tmp, cfg->domain, tmp);
dest = cpu_mask_to_apicid(tmp);
msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
msg.address_lo =
HT_IRQ_LOW_BASE |
HT_IRQ_LOW_DEST_ID(dest) |
HT_IRQ_LOW_VECTOR(cfg->vector) |
((INT_DEST_MODE == 0) ?
HT_IRQ_LOW_DM_PHYSICAL :
HT_IRQ_LOW_DM_LOGICAL) |
HT_IRQ_LOW_RQEOI_EDGE |
((INT_DELIVERY_MODE != dest_LowestPrio) ?
HT_IRQ_LOW_MT_FIXED :
HT_IRQ_LOW_MT_ARBITRATED) |
HT_IRQ_LOW_IRQ_MASKED;
write_ht_irq_msg(irq, &msg);
set_irq_chip_and_handler_name(irq, &ht_irq_chip,
handle_edge_irq, "edge");
}
return err;
}
#endif /* CONFIG_HT_IRQ */
/* --------------------------------------------------------------------------
ACPI-based IOAPIC Configuration
-------------------------------------------------------------------------- */
#ifdef CONFIG_ACPI
#define IO_APIC_MAX_ID 0xFE
int __init io_apic_get_redir_entries (int ioapic)
{
union IO_APIC_reg_01 reg_01;
unsigned long flags;
spin_lock_irqsave(&ioapic_lock, flags);
reg_01.raw = io_apic_read(ioapic, 1);
spin_unlock_irqrestore(&ioapic_lock, flags);
return reg_01.bits.entries;
}
int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
{
if (!IO_APIC_IRQ(irq)) {
apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
ioapic);
return -EINVAL;
}
/*
* IRQs < 16 are already in the irq_2_pin[] map
*/
if (irq >= 16)
add_pin_to_irq(irq, ioapic, pin);
setup_IO_APIC_irq(ioapic, pin, irq, triggering, polarity);
return 0;
}
int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
{
int i;
if (skip_ioapic_setup)
return -1;
for (i = 0; i < mp_irq_entries; i++)
if (mp_irqs[i].mp_irqtype == mp_INT &&
mp_irqs[i].mp_srcbusirq == bus_irq)
break;
if (i >= mp_irq_entries)
return -1;
*trigger = irq_trigger(i);
*polarity = irq_polarity(i);
return 0;
}
#endif /* CONFIG_ACPI */
/*
* This function currently is only a helper for the i386 smp boot process where
* we need to reprogram the ioredtbls to cater for the cpus which have come online
* so mask in all cases should simply be TARGET_CPUS
*/
#ifdef CONFIG_SMP
void __init setup_ioapic_dest(void)
{
int pin, ioapic, irq, irq_entry;
if (skip_ioapic_setup == 1)
return;
for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
irq_entry = find_irq_entry(ioapic, pin, mp_INT);
if (irq_entry == -1)
continue;
irq = pin_2_irq(irq_entry, ioapic, pin);
/* setup_IO_APIC_irqs could fail to get vector for some device
* when you have too many devices, because at that time only boot
* cpu is online.
*/
if (!irq_cfg[irq].vector)
setup_IO_APIC_irq(ioapic, pin, irq,
irq_trigger(irq_entry),
irq_polarity(irq_entry));
#ifdef CONFIG_INTR_REMAP
else if (intr_remapping_enabled)
set_ir_ioapic_affinity_irq(irq, TARGET_CPUS);
#endif
else
set_ioapic_affinity_irq(irq, TARGET_CPUS);
}
}
}
#endif
#define IOAPIC_RESOURCE_NAME_SIZE 11
static struct resource *ioapic_resources;
static struct resource * __init ioapic_setup_resources(void)
{
unsigned long n;
struct resource *res;
char *mem;
int i;
if (nr_ioapics <= 0)
return NULL;
n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
n *= nr_ioapics;
mem = alloc_bootmem(n);
res = (void *)mem;
if (mem != NULL) {
mem += sizeof(struct resource) * nr_ioapics;
for (i = 0; i < nr_ioapics; i++) {
res[i].name = mem;
res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
sprintf(mem, "IOAPIC %u", i);
mem += IOAPIC_RESOURCE_NAME_SIZE;
}
}
ioapic_resources = res;
return res;
}
void __init ioapic_init_mappings(void)
{
unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
struct resource *ioapic_res;
int i;
ioapic_res = ioapic_setup_resources();
for (i = 0; i < nr_ioapics; i++) {
if (smp_found_config) {
ioapic_phys = mp_ioapics[i].mp_apicaddr;
} else {
ioapic_phys = (unsigned long)
alloc_bootmem_pages(PAGE_SIZE);
ioapic_phys = __pa(ioapic_phys);
}
set_fixmap_nocache(idx, ioapic_phys);
apic_printk(APIC_VERBOSE,
"mapped IOAPIC to %016lx (%016lx)\n",
__fix_to_virt(idx), ioapic_phys);
idx++;
if (ioapic_res != NULL) {
ioapic_res->start = ioapic_phys;
ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
ioapic_res++;
}
}
}
static int __init ioapic_insert_resources(void)
{
int i;
struct resource *r = ioapic_resources;
if (!r) {
printk(KERN_ERR
"IO APIC resources could be not be allocated.\n");
return -1;
}
for (i = 0; i < nr_ioapics; i++) {
insert_resource(&iomem_resource, r);
r++;
}
return 0;
}
/* Insert the IO APIC resources after PCI initialization has occured to handle
* IO APICS that are mapped in on a BAR in PCI space. */
late_initcall(ioapic_insert_resources);