linux_old1/arch/powerpc/perf/power8-pmu.c

780 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Performance counter support for POWER8 processors.
*
* Copyright 2009 Paul Mackerras, IBM Corporation.
* Copyright 2013 Michael Ellerman, IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <asm/firmware.h>
/*
* Some power8 event codes.
*/
#define PM_CYC 0x0001e
#define PM_GCT_NOSLOT_CYC 0x100f8
#define PM_CMPLU_STALL 0x4000a
#define PM_INST_CMPL 0x00002
#define PM_BRU_FIN 0x10068
#define PM_BR_MPRED_CMPL 0x400f6
/* All L1 D cache load references counted at finish, gated by reject */
#define PM_LD_REF_L1 0x100ee
/* Load Missed L1 */
#define PM_LD_MISS_L1 0x3e054
/* Store Missed L1 */
#define PM_ST_MISS_L1 0x300f0
/* L1 cache data prefetches */
#define PM_L1_PREF 0x0d8b8
/* Instruction fetches from L1 */
#define PM_INST_FROM_L1 0x04080
/* Demand iCache Miss */
#define PM_L1_ICACHE_MISS 0x200fd
/* Instruction Demand sectors wriittent into IL1 */
#define PM_L1_DEMAND_WRITE 0x0408c
/* Instruction prefetch written into IL1 */
#define PM_IC_PREF_WRITE 0x0408e
/* The data cache was reloaded from local core's L3 due to a demand load */
#define PM_DATA_FROM_L3 0x4c042
/* Demand LD - L3 Miss (not L2 hit and not L3 hit) */
#define PM_DATA_FROM_L3MISS 0x300fe
/* All successful D-side store dispatches for this thread */
#define PM_L2_ST 0x17080
/* All successful D-side store dispatches for this thread that were L2 Miss */
#define PM_L2_ST_MISS 0x17082
/* Total HW L3 prefetches(Load+store) */
#define PM_L3_PREF_ALL 0x4e052
/* Data PTEG reload */
#define PM_DTLB_MISS 0x300fc
/* ITLB Reloaded */
#define PM_ITLB_MISS 0x400fc
/*
* Raw event encoding for POWER8:
*
* 60 56 52 48 44 40 36 32
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* | [ thresh_cmp ] [ thresh_ctl ]
* | |
* *- EBB (Linux) thresh start/stop OR FAB match -*
*
* 28 24 20 16 12 8 4 0
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* [ ] [ sample ] [cache] [ pmc ] [unit ] c m [ pmcxsel ]
* | | | | |
* | | | | *- mark
* | | *- L1/L2/L3 cache_sel |
* | | |
* | *- sampling mode for marked events *- combine
* |
* *- thresh_sel
*
* Below uses IBM bit numbering.
*
* MMCR1[x:y] = unit (PMCxUNIT)
* MMCR1[x] = combine (PMCxCOMB)
*
* if pmc == 3 and unit == 0 and pmcxsel[0:6] == 0b0101011
* # PM_MRK_FAB_RSP_MATCH
* MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
* else if pmc == 4 and unit == 0xf and pmcxsel[0:6] == 0b0101001
* # PM_MRK_FAB_RSP_MATCH_CYC
* MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
* else
* MMCRA[48:55] = thresh_ctl (THRESH START/END)
*
* if thresh_sel:
* MMCRA[45:47] = thresh_sel
*
* if thresh_cmp:
* MMCRA[22:24] = thresh_cmp[0:2]
* MMCRA[25:31] = thresh_cmp[3:9]
*
* if unit == 6 or unit == 7
* MMCRC[53:55] = cache_sel[1:3] (L2EVENT_SEL)
* else if unit == 8 or unit == 9:
* if cache_sel[0] == 0: # L3 bank
* MMCRC[47:49] = cache_sel[1:3] (L3EVENT_SEL0)
* else if cache_sel[0] == 1:
* MMCRC[50:51] = cache_sel[2:3] (L3EVENT_SEL1)
* else if cache_sel[1]: # L1 event
* MMCR1[16] = cache_sel[2]
 * MMCR1[17] = cache_sel[3]
*
* if mark:
* MMCRA[63] = 1 (SAMPLE_ENABLE)
* MMCRA[57:59] = sample[0:2] (RAND_SAMP_ELIG)
 * MMCRA[61:62] = sample[3:4] (RAND_SAMP_MODE)
*
*/
#define EVENT_EBB_MASK 1ull
#define EVENT_THR_CMP_SHIFT 40 /* Threshold CMP value */
#define EVENT_THR_CMP_MASK 0x3ff
#define EVENT_THR_CTL_SHIFT 32 /* Threshold control value (start/stop) */
#define EVENT_THR_CTL_MASK 0xffull
#define EVENT_THR_SEL_SHIFT 29 /* Threshold select value */
#define EVENT_THR_SEL_MASK 0x7
#define EVENT_THRESH_SHIFT 29 /* All threshold bits */
#define EVENT_THRESH_MASK 0x1fffffull
#define EVENT_SAMPLE_SHIFT 24 /* Sampling mode & eligibility */
#define EVENT_SAMPLE_MASK 0x1f
#define EVENT_CACHE_SEL_SHIFT 20 /* L2/L3 cache select */
#define EVENT_CACHE_SEL_MASK 0xf
#define EVENT_IS_L1 (4 << EVENT_CACHE_SEL_SHIFT)
#define EVENT_PMC_SHIFT 16 /* PMC number (1-based) */
#define EVENT_PMC_MASK 0xf
#define EVENT_UNIT_SHIFT 12 /* Unit */
#define EVENT_UNIT_MASK 0xf
#define EVENT_COMBINE_SHIFT 11 /* Combine bit */
#define EVENT_COMBINE_MASK 0x1
#define EVENT_MARKED_SHIFT 8 /* Marked bit */
#define EVENT_MARKED_MASK 0x1
#define EVENT_IS_MARKED (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT)
#define EVENT_PSEL_MASK 0xff /* PMCxSEL value */
#define EVENT_VALID_MASK \
((EVENT_THRESH_MASK << EVENT_THRESH_SHIFT) | \
(EVENT_SAMPLE_MASK << EVENT_SAMPLE_SHIFT) | \
(EVENT_CACHE_SEL_MASK << EVENT_CACHE_SEL_SHIFT) | \
(EVENT_PMC_MASK << EVENT_PMC_SHIFT) | \
(EVENT_UNIT_MASK << EVENT_UNIT_SHIFT) | \
(EVENT_COMBINE_MASK << EVENT_COMBINE_SHIFT) | \
(EVENT_MARKED_MASK << EVENT_MARKED_SHIFT) | \
(EVENT_EBB_MASK << PERF_EVENT_CONFIG_EBB_SHIFT) | \
EVENT_PSEL_MASK)
/* MMCRA IFM bits - POWER8 */
#define POWER8_MMCRA_IFM1 0x0000000040000000UL
#define POWER8_MMCRA_IFM2 0x0000000080000000UL
#define POWER8_MMCRA_IFM3 0x00000000C0000000UL
#define ONLY_PLM \
(PERF_SAMPLE_BRANCH_USER |\
PERF_SAMPLE_BRANCH_KERNEL |\
PERF_SAMPLE_BRANCH_HV)
/*
* Layout of constraint bits:
*
* 60 56 52 48 44 40 36 32
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* [ fab_match ] [ thresh_cmp ] [ thresh_ctl ] [ ]
* |
* thresh_sel -*
*
* 28 24 20 16 12 8 4 0
* | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
* | [ ] [ sample ] [ ] [6] [5] [4] [3] [2] [1]
* EBB -* | |
* | | Count of events for each PMC.
* L1 I/D qualifier -* | p1, p2, p3, p4, p5, p6.
* nc - number of counters -*
*
* The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints
* we want the low bit of each field to be added to any existing value.
*
* Everything else is a value field.
*/
#define CNST_FAB_MATCH_VAL(v) (((v) & EVENT_THR_CTL_MASK) << 56)
#define CNST_FAB_MATCH_MASK CNST_FAB_MATCH_VAL(EVENT_THR_CTL_MASK)
/* We just throw all the threshold bits into the constraint */
#define CNST_THRESH_VAL(v) (((v) & EVENT_THRESH_MASK) << 32)
#define CNST_THRESH_MASK CNST_THRESH_VAL(EVENT_THRESH_MASK)
#define CNST_EBB_VAL(v) (((v) & EVENT_EBB_MASK) << 24)
#define CNST_EBB_MASK CNST_EBB_VAL(EVENT_EBB_MASK)
#define CNST_L1_QUAL_VAL(v) (((v) & 3) << 22)
#define CNST_L1_QUAL_MASK CNST_L1_QUAL_VAL(3)
#define CNST_SAMPLE_VAL(v) (((v) & EVENT_SAMPLE_MASK) << 16)
#define CNST_SAMPLE_MASK CNST_SAMPLE_VAL(EVENT_SAMPLE_MASK)
/*
* For NC we are counting up to 4 events. This requires three bits, and we need
* the fifth event to overflow and set the 4th bit. To achieve that we bias the
* fields by 3 in test_adder.
*/
#define CNST_NC_SHIFT 12
#define CNST_NC_VAL (1 << CNST_NC_SHIFT)
#define CNST_NC_MASK (8 << CNST_NC_SHIFT)
#define POWER8_TEST_ADDER (3 << CNST_NC_SHIFT)
/*
* For the per-PMC fields we have two bits. The low bit is added, so if two
* events ask for the same PMC the sum will overflow, setting the high bit,
* indicating an error. So our mask sets the high bit.
*/
#define CNST_PMC_SHIFT(pmc) ((pmc - 1) * 2)
#define CNST_PMC_VAL(pmc) (1 << CNST_PMC_SHIFT(pmc))
#define CNST_PMC_MASK(pmc) (2 << CNST_PMC_SHIFT(pmc))
/* Our add_fields is defined as: */
#define POWER8_ADD_FIELDS \
CNST_PMC_VAL(1) | CNST_PMC_VAL(2) | CNST_PMC_VAL(3) | \
CNST_PMC_VAL(4) | CNST_PMC_VAL(5) | CNST_PMC_VAL(6) | CNST_NC_VAL
/* Bits in MMCR1 for POWER8 */
#define MMCR1_UNIT_SHIFT(pmc) (60 - (4 * ((pmc) - 1)))
#define MMCR1_COMBINE_SHIFT(pmc) (35 - ((pmc) - 1))
#define MMCR1_PMCSEL_SHIFT(pmc) (24 - (((pmc) - 1)) * 8)
#define MMCR1_FAB_SHIFT 36
#define MMCR1_DC_QUAL_SHIFT 47
#define MMCR1_IC_QUAL_SHIFT 46
/* Bits in MMCRA for POWER8 */
#define MMCRA_SAMP_MODE_SHIFT 1
#define MMCRA_SAMP_ELIG_SHIFT 4
#define MMCRA_THR_CTL_SHIFT 8
#define MMCRA_THR_SEL_SHIFT 16
#define MMCRA_THR_CMP_SHIFT 32
#define MMCRA_SDAR_MODE_TLB (1ull << 42)
static inline bool event_is_fab_match(u64 event)
{
/* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
event &= 0xff0fe;
/* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
return (event == 0x30056 || event == 0x4f052);
}
static int power8_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp)
{
unsigned int unit, pmc, cache, ebb;
unsigned long mask, value;
mask = value = 0;
if (event & ~EVENT_VALID_MASK)
return -1;
pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
cache = (event >> EVENT_CACHE_SEL_SHIFT) & EVENT_CACHE_SEL_MASK;
ebb = (event >> PERF_EVENT_CONFIG_EBB_SHIFT) & EVENT_EBB_MASK;
/* Clear the EBB bit in the event, so event checks work below */
event &= ~(EVENT_EBB_MASK << PERF_EVENT_CONFIG_EBB_SHIFT);
if (pmc) {
if (pmc > 6)
return -1;
mask |= CNST_PMC_MASK(pmc);
value |= CNST_PMC_VAL(pmc);
if (pmc >= 5 && event != 0x500fa && event != 0x600f4)
return -1;
}
if (pmc <= 4) {
/*
* Add to number of counters in use. Note this includes events with
* a PMC of 0 - they still need a PMC, it's just assigned later.
* Don't count events on PMC 5 & 6, there is only one valid event
* on each of those counters, and they are handled above.
*/
mask |= CNST_NC_MASK;
value |= CNST_NC_VAL;
}
if (unit >= 6 && unit <= 9) {
/*
* L2/L3 events contain a cache selector field, which is
* supposed to be programmed into MMCRC. However MMCRC is only
* HV writable, and there is no API for guest kernels to modify
* it. The solution is for the hypervisor to initialise the
* field to zeroes, and for us to only ever allow events that
* have a cache selector of zero.
*/
if (cache)
return -1;
} else if (event & EVENT_IS_L1) {
mask |= CNST_L1_QUAL_MASK;
value |= CNST_L1_QUAL_VAL(cache);
}
if (event & EVENT_IS_MARKED) {
mask |= CNST_SAMPLE_MASK;
value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
}
/*
* Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
* the threshold control bits are used for the match value.
*/
if (event_is_fab_match(event)) {
mask |= CNST_FAB_MATCH_MASK;
value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
} else {
/*
* Check the mantissa upper two bits are not zero, unless the
* exponent is also zero. See the THRESH_CMP_MANTISSA doc.
*/
unsigned int cmp, exp;
cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
exp = cmp >> 7;
if (exp && (cmp & 0x60) == 0)
return -1;
mask |= CNST_THRESH_MASK;
value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
}
if (!pmc && ebb)
/* EBB events must specify the PMC */
return -1;
/*
* All events must agree on EBB, either all request it or none.
* EBB events are pinned & exclusive, so this should never actually
* hit, but we leave it as a fallback in case.
*/
mask |= CNST_EBB_VAL(ebb);
value |= CNST_EBB_MASK;
*maskp = mask;
*valp = value;
return 0;
}
static int power8_compute_mmcr(u64 event[], int n_ev,
unsigned int hwc[], unsigned long mmcr[])
{
unsigned long mmcra, mmcr1, unit, combine, psel, cache, val;
unsigned int pmc, pmc_inuse;
int i;
pmc_inuse = 0;
/* First pass to count resource use */
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
if (pmc)
pmc_inuse |= 1 << pmc;
}
/* In continous sampling mode, update SDAR on TLB miss */
mmcra = MMCRA_SDAR_MODE_TLB;
mmcr1 = 0;
/* Second pass: assign PMCs, set all MMCR1 fields */
for (i = 0; i < n_ev; ++i) {
pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
combine = (event[i] >> EVENT_COMBINE_SHIFT) & EVENT_COMBINE_MASK;
psel = event[i] & EVENT_PSEL_MASK;
if (!pmc) {
for (pmc = 1; pmc <= 4; ++pmc) {
if (!(pmc_inuse & (1 << pmc)))
break;
}
pmc_inuse |= 1 << pmc;
}
if (pmc <= 4) {
mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
mmcr1 |= combine << MMCR1_COMBINE_SHIFT(pmc);
mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
}
if (event[i] & EVENT_IS_L1) {
cache = event[i] >> EVENT_CACHE_SEL_SHIFT;
mmcr1 |= (cache & 1) << MMCR1_IC_QUAL_SHIFT;
cache >>= 1;
mmcr1 |= (cache & 1) << MMCR1_DC_QUAL_SHIFT;
}
if (event[i] & EVENT_IS_MARKED) {
mmcra |= MMCRA_SAMPLE_ENABLE;
val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
if (val) {
mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT;
mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
}
}
/*
* PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
* the threshold bits are used for the match value.
*/
if (event_is_fab_match(event[i])) {
mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
} else {
val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
mmcra |= val << MMCRA_THR_CTL_SHIFT;
val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
mmcra |= val << MMCRA_THR_SEL_SHIFT;
val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
mmcra |= val << MMCRA_THR_CMP_SHIFT;
}
hwc[i] = pmc - 1;
}
/* Return MMCRx values */
mmcr[0] = 0;
/* pmc_inuse is 1-based */
if (pmc_inuse & 2)
mmcr[0] = MMCR0_PMC1CE;
if (pmc_inuse & 0x7c)
mmcr[0] |= MMCR0_PMCjCE;
/* If we're not using PMC 5 or 6, freeze them */
if (!(pmc_inuse & 0x60))
mmcr[0] |= MMCR0_FC56;
mmcr[1] = mmcr1;
mmcr[2] = mmcra;
return 0;
}
#define MAX_ALT 2
/* Table of alternatives, sorted by column 0 */
static const unsigned int event_alternatives[][MAX_ALT] = {
{ 0x10134, 0x301e2 }, /* PM_MRK_ST_CMPL */
{ 0x10138, 0x40138 }, /* PM_BR_MRK_2PATH */
{ 0x18082, 0x3e05e }, /* PM_L3_CO_MEPF */
{ 0x1d14e, 0x401e8 }, /* PM_MRK_DATA_FROM_L2MISS */
{ 0x1e054, 0x4000a }, /* PM_CMPLU_STALL */
{ 0x20036, 0x40036 }, /* PM_BR_2PATH */
{ 0x200f2, 0x300f2 }, /* PM_INST_DISP */
{ 0x200f4, 0x600f4 }, /* PM_RUN_CYC */
{ 0x2013c, 0x3012e }, /* PM_MRK_FILT_MATCH */
{ 0x3e054, 0x400f0 }, /* PM_LD_MISS_L1 */
{ 0x400fa, 0x500fa }, /* PM_RUN_INST_CMPL */
};
/*
* Scan the alternatives table for a match and return the
* index into the alternatives table if found, else -1.
*/
static int find_alternative(u64 event)
{
int i, j;
for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
if (event < event_alternatives[i][0])
break;
for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j)
if (event == event_alternatives[i][j])
return i;
}
return -1;
}
static int power8_get_alternatives(u64 event, unsigned int flags, u64 alt[])
{
int i, j, num_alt = 0;
u64 alt_event;
alt[num_alt++] = event;
i = find_alternative(event);
if (i >= 0) {
/* Filter out the original event, it's already in alt[0] */
for (j = 0; j < MAX_ALT; ++j) {
alt_event = event_alternatives[i][j];
if (alt_event && alt_event != event)
alt[num_alt++] = alt_event;
}
}
if (flags & PPMU_ONLY_COUNT_RUN) {
/*
* We're only counting in RUN state, so PM_CYC is equivalent to
* PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
*/
j = num_alt;
for (i = 0; i < num_alt; ++i) {
switch (alt[i]) {
case 0x1e: /* PM_CYC */
alt[j++] = 0x600f4; /* PM_RUN_CYC */
break;
case 0x600f4: /* PM_RUN_CYC */
alt[j++] = 0x1e;
break;
case 0x2: /* PM_PPC_CMPL */
alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */
break;
case 0x500fa: /* PM_RUN_INST_CMPL */
alt[j++] = 0x2; /* PM_PPC_CMPL */
break;
}
}
num_alt = j;
}
return num_alt;
}
static void power8_disable_pmc(unsigned int pmc, unsigned long mmcr[])
{
if (pmc <= 3)
mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
}
PMU_FORMAT_ATTR(event, "config:0-49");
PMU_FORMAT_ATTR(pmcxsel, "config:0-7");
PMU_FORMAT_ATTR(mark, "config:8");
PMU_FORMAT_ATTR(combine, "config:11");
PMU_FORMAT_ATTR(unit, "config:12-15");
PMU_FORMAT_ATTR(pmc, "config:16-19");
PMU_FORMAT_ATTR(cache_sel, "config:20-23");
PMU_FORMAT_ATTR(sample_mode, "config:24-28");
PMU_FORMAT_ATTR(thresh_sel, "config:29-31");
PMU_FORMAT_ATTR(thresh_stop, "config:32-35");
PMU_FORMAT_ATTR(thresh_start, "config:36-39");
PMU_FORMAT_ATTR(thresh_cmp, "config:40-49");
static struct attribute *power8_pmu_format_attr[] = {
&format_attr_event.attr,
&format_attr_pmcxsel.attr,
&format_attr_mark.attr,
&format_attr_combine.attr,
&format_attr_unit.attr,
&format_attr_pmc.attr,
&format_attr_cache_sel.attr,
&format_attr_sample_mode.attr,
&format_attr_thresh_sel.attr,
&format_attr_thresh_stop.attr,
&format_attr_thresh_start.attr,
&format_attr_thresh_cmp.attr,
NULL,
};
struct attribute_group power8_pmu_format_group = {
.name = "format",
.attrs = power8_pmu_format_attr,
};
static const struct attribute_group *power8_pmu_attr_groups[] = {
&power8_pmu_format_group,
NULL,
};
static int power8_generic_events[] = {
[PERF_COUNT_HW_CPU_CYCLES] = PM_CYC,
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = PM_GCT_NOSLOT_CYC,
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = PM_CMPLU_STALL,
[PERF_COUNT_HW_INSTRUCTIONS] = PM_INST_CMPL,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = PM_BRU_FIN,
[PERF_COUNT_HW_BRANCH_MISSES] = PM_BR_MPRED_CMPL,
[PERF_COUNT_HW_CACHE_REFERENCES] = PM_LD_REF_L1,
[PERF_COUNT_HW_CACHE_MISSES] = PM_LD_MISS_L1,
};
static u64 power8_bhrb_filter_map(u64 branch_sample_type)
{
u64 pmu_bhrb_filter = 0;
/* BHRB and regular PMU events share the same privilege state
* filter configuration. BHRB is always recorded along with a
* regular PMU event. As the privilege state filter is handled
* in the basic PMC configuration of the accompanying regular
* PMU event, we ignore any separate BHRB specific request.
*/
/* No branch filter requested */
if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY)
return pmu_bhrb_filter;
/* Invalid branch filter options - HW does not support */
if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
return -1;
if (branch_sample_type & PERF_SAMPLE_BRANCH_IND_CALL)
return -1;
if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_CALL) {
pmu_bhrb_filter |= POWER8_MMCRA_IFM1;
return pmu_bhrb_filter;
}
/* Every thing else is unsupported */
return -1;
}
static void power8_config_bhrb(u64 pmu_bhrb_filter)
{
/* Enable BHRB filter in PMU */
mtspr(SPRN_MMCRA, (mfspr(SPRN_MMCRA) | pmu_bhrb_filter));
}
#define C(x) PERF_COUNT_HW_CACHE_##x
/*
* Table of generalized cache-related events.
* 0 means not supported, -1 means nonsensical, other values
* are event codes.
*/
static int power8_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = PM_LD_REF_L1,
[ C(RESULT_MISS) ] = PM_LD_MISS_L1,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = PM_ST_MISS_L1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = PM_L1_PREF,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = PM_INST_FROM_L1,
[ C(RESULT_MISS) ] = PM_L1_ICACHE_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = PM_L1_DEMAND_WRITE,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = PM_IC_PREF_WRITE,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = PM_DATA_FROM_L3,
[ C(RESULT_MISS) ] = PM_DATA_FROM_L3MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = PM_L2_ST,
[ C(RESULT_MISS) ] = PM_L2_ST_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = PM_L3_PREF_ALL,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = PM_DTLB_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = PM_ITLB_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = PM_BRU_FIN,
[ C(RESULT_MISS) ] = PM_BR_MPRED_CMPL,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
#undef C
static struct power_pmu power8_pmu = {
.name = "POWER8",
.n_counter = 6,
.max_alternatives = MAX_ALT + 1,
.add_fields = POWER8_ADD_FIELDS,
.test_adder = POWER8_TEST_ADDER,
.compute_mmcr = power8_compute_mmcr,
.config_bhrb = power8_config_bhrb,
.bhrb_filter_map = power8_bhrb_filter_map,
.get_constraint = power8_get_constraint,
.get_alternatives = power8_get_alternatives,
.disable_pmc = power8_disable_pmc,
.flags = PPMU_HAS_SSLOT | PPMU_HAS_SIER | PPMU_BHRB | PPMU_EBB,
.n_generic = ARRAY_SIZE(power8_generic_events),
.generic_events = power8_generic_events,
.cache_events = &power8_cache_events,
.attr_groups = power8_pmu_attr_groups,
.bhrb_nr = 32,
};
static int __init init_power8_pmu(void)
{
int rc;
if (!cur_cpu_spec->oprofile_cpu_type ||
strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
return -ENODEV;
rc = register_power_pmu(&power8_pmu);
if (rc)
return rc;
/* Tell userspace that EBB is supported */
cur_cpu_spec->cpu_user_features2 |= PPC_FEATURE2_EBB;
return 0;
}
early_initcall(init_power8_pmu);