linux_old1/arch/ia64/include/asm/system.h

204 lines
6.8 KiB
C

#ifndef _ASM_IA64_SYSTEM_H
#define _ASM_IA64_SYSTEM_H
/*
* System defines. Note that this is included both from .c and .S
* files, so it does only defines, not any C code. This is based
* on information published in the Processor Abstraction Layer
* and the System Abstraction Layer manual.
*
* Copyright (C) 1998-2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
* Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
*/
#include <asm/kregs.h>
#include <asm/page.h>
#include <asm/pal.h>
#include <asm/percpu.h>
#define GATE_ADDR RGN_BASE(RGN_GATE)
/*
* 0xa000000000000000+2*PERCPU_PAGE_SIZE
* - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page)
*/
#define KERNEL_START (GATE_ADDR+__IA64_UL_CONST(0x100000000))
#define PERCPU_ADDR (-PERCPU_PAGE_SIZE)
#define LOAD_OFFSET (KERNEL_START - KERNEL_TR_PAGE_SIZE)
#ifndef __ASSEMBLY__
#include <linux/kernel.h>
#include <linux/types.h>
#define AT_VECTOR_SIZE_ARCH 2 /* entries in ARCH_DLINFO */
struct pci_vector_struct {
__u16 segment; /* PCI Segment number */
__u16 bus; /* PCI Bus number */
__u32 pci_id; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */
__u8 pin; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */
__u32 irq; /* IRQ assigned */
};
extern struct ia64_boot_param {
__u64 command_line; /* physical address of command line arguments */
__u64 efi_systab; /* physical address of EFI system table */
__u64 efi_memmap; /* physical address of EFI memory map */
__u64 efi_memmap_size; /* size of EFI memory map */
__u64 efi_memdesc_size; /* size of an EFI memory map descriptor */
__u32 efi_memdesc_version; /* memory descriptor version */
struct {
__u16 num_cols; /* number of columns on console output device */
__u16 num_rows; /* number of rows on console output device */
__u16 orig_x; /* cursor's x position */
__u16 orig_y; /* cursor's y position */
} console_info;
__u64 fpswa; /* physical address of the fpswa interface */
__u64 initrd_start;
__u64 initrd_size;
} *ia64_boot_param;
/*
* Macros to force memory ordering. In these descriptions, "previous"
* and "subsequent" refer to program order; "visible" means that all
* architecturally visible effects of a memory access have occurred
* (at a minimum, this means the memory has been read or written).
*
* wmb(): Guarantees that all preceding stores to memory-
* like regions are visible before any subsequent
* stores and that all following stores will be
* visible only after all previous stores.
* rmb(): Like wmb(), but for reads.
* mb(): wmb()/rmb() combo, i.e., all previous memory
* accesses are visible before all subsequent
* accesses and vice versa. This is also known as
* a "fence."
*
* Note: "mb()" and its variants cannot be used as a fence to order
* accesses to memory mapped I/O registers. For that, mf.a needs to
* be used. However, we don't want to always use mf.a because (a)
* it's (presumably) much slower than mf and (b) mf.a is supported for
* sequential memory pages only.
*/
#define mb() ia64_mf()
#define rmb() mb()
#define wmb() mb()
#define read_barrier_depends() do { } while(0)
#ifdef CONFIG_SMP
# define smp_mb() mb()
# define smp_rmb() rmb()
# define smp_wmb() wmb()
# define smp_read_barrier_depends() read_barrier_depends()
#else
# define smp_mb() barrier()
# define smp_rmb() barrier()
# define smp_wmb() barrier()
# define smp_read_barrier_depends() do { } while(0)
#endif
/*
* XXX check on this ---I suspect what Linus really wants here is
* acquire vs release semantics but we can't discuss this stuff with
* Linus just yet. Grrr...
*/
#define set_mb(var, value) do { (var) = (value); mb(); } while (0)
/*
* The group barrier in front of the rsm & ssm are necessary to ensure
* that none of the previous instructions in the same group are
* affected by the rsm/ssm.
*/
#ifdef __KERNEL__
/*
* Context switch from one thread to another. If the two threads have
* different address spaces, schedule() has already taken care of
* switching to the new address space by calling switch_mm().
*
* Disabling access to the fph partition and the debug-register
* context switch MUST be done before calling ia64_switch_to() since a
* newly created thread returns directly to
* ia64_ret_from_syscall_clear_r8.
*/
extern struct task_struct *ia64_switch_to (void *next_task);
struct task_struct;
extern void ia64_save_extra (struct task_struct *task);
extern void ia64_load_extra (struct task_struct *task);
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
extern void ia64_account_on_switch (struct task_struct *prev, struct task_struct *next);
# define IA64_ACCOUNT_ON_SWITCH(p,n) ia64_account_on_switch(p,n)
#else
# define IA64_ACCOUNT_ON_SWITCH(p,n)
#endif
#ifdef CONFIG_PERFMON
DECLARE_PER_CPU(unsigned long, pfm_syst_info);
# define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1)
#else
# define PERFMON_IS_SYSWIDE() (0)
#endif
#define IA64_HAS_EXTRA_STATE(t) \
((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \
|| PERFMON_IS_SYSWIDE())
#define __switch_to(prev,next,last) do { \
IA64_ACCOUNT_ON_SWITCH(prev, next); \
if (IA64_HAS_EXTRA_STATE(prev)) \
ia64_save_extra(prev); \
if (IA64_HAS_EXTRA_STATE(next)) \
ia64_load_extra(next); \
ia64_psr(task_pt_regs(next))->dfh = !ia64_is_local_fpu_owner(next); \
(last) = ia64_switch_to((next)); \
} while (0)
#ifdef CONFIG_SMP
/*
* In the SMP case, we save the fph state when context-switching away from a thread that
* modified fph. This way, when the thread gets scheduled on another CPU, the CPU can
* pick up the state from task->thread.fph, avoiding the complication of having to fetch
* the latest fph state from another CPU. In other words: eager save, lazy restore.
*/
# define switch_to(prev,next,last) do { \
if (ia64_psr(task_pt_regs(prev))->mfh && ia64_is_local_fpu_owner(prev)) { \
ia64_psr(task_pt_regs(prev))->mfh = 0; \
(prev)->thread.flags |= IA64_THREAD_FPH_VALID; \
__ia64_save_fpu((prev)->thread.fph); \
} \
__switch_to(prev, next, last); \
/* "next" in old context is "current" in new context */ \
if (unlikely((current->thread.flags & IA64_THREAD_MIGRATION) && \
(task_cpu(current) != \
task_thread_info(current)->last_cpu))) { \
platform_migrate(current); \
task_thread_info(current)->last_cpu = task_cpu(current); \
} \
} while (0)
#else
# define switch_to(prev,next,last) __switch_to(prev, next, last)
#endif
#define __ARCH_WANT_UNLOCKED_CTXSW
#define ARCH_HAS_PREFETCH_SWITCH_STACK
#define ia64_platform_is(x) (strcmp(x, platform_name) == 0)
void cpu_idle_wait(void);
#define arch_align_stack(x) (x)
void default_idle(void);
#endif /* __KERNEL__ */
#endif /* __ASSEMBLY__ */
#endif /* _ASM_IA64_SYSTEM_H */