linux_old1/arch/powerpc/kernel/iommu.c

1179 lines
30 KiB
C

/*
* Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation
*
* Rewrite, cleanup, new allocation schemes, virtual merging:
* Copyright (C) 2004 Olof Johansson, IBM Corporation
* and Ben. Herrenschmidt, IBM Corporation
*
* Dynamic DMA mapping support, bus-independent parts.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/bitmap.h>
#include <linux/iommu-helper.h>
#include <linux/crash_dump.h>
#include <linux/hash.h>
#include <linux/fault-inject.h>
#include <linux/pci.h>
#include <linux/iommu.h>
#include <linux/sched.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/iommu.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/kdump.h>
#include <asm/fadump.h>
#include <asm/vio.h>
#include <asm/tce.h>
#define DBG(...)
static int novmerge;
static void __iommu_free(struct iommu_table *, dma_addr_t, unsigned int);
static int __init setup_iommu(char *str)
{
if (!strcmp(str, "novmerge"))
novmerge = 1;
else if (!strcmp(str, "vmerge"))
novmerge = 0;
return 1;
}
__setup("iommu=", setup_iommu);
static DEFINE_PER_CPU(unsigned int, iommu_pool_hash);
/*
* We precalculate the hash to avoid doing it on every allocation.
*
* The hash is important to spread CPUs across all the pools. For example,
* on a POWER7 with 4 way SMT we want interrupts on the primary threads and
* with 4 pools all primary threads would map to the same pool.
*/
static int __init setup_iommu_pool_hash(void)
{
unsigned int i;
for_each_possible_cpu(i)
per_cpu(iommu_pool_hash, i) = hash_32(i, IOMMU_POOL_HASHBITS);
return 0;
}
subsys_initcall(setup_iommu_pool_hash);
#ifdef CONFIG_FAIL_IOMMU
static DECLARE_FAULT_ATTR(fail_iommu);
static int __init setup_fail_iommu(char *str)
{
return setup_fault_attr(&fail_iommu, str);
}
__setup("fail_iommu=", setup_fail_iommu);
static bool should_fail_iommu(struct device *dev)
{
return dev->archdata.fail_iommu && should_fail(&fail_iommu, 1);
}
static int __init fail_iommu_debugfs(void)
{
struct dentry *dir = fault_create_debugfs_attr("fail_iommu",
NULL, &fail_iommu);
return PTR_ERR_OR_ZERO(dir);
}
late_initcall(fail_iommu_debugfs);
static ssize_t fail_iommu_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", dev->archdata.fail_iommu);
}
static ssize_t fail_iommu_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
int i;
if (count > 0 && sscanf(buf, "%d", &i) > 0)
dev->archdata.fail_iommu = (i == 0) ? 0 : 1;
return count;
}
static DEVICE_ATTR(fail_iommu, S_IRUGO|S_IWUSR, fail_iommu_show,
fail_iommu_store);
static int fail_iommu_bus_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev = data;
if (action == BUS_NOTIFY_ADD_DEVICE) {
if (device_create_file(dev, &dev_attr_fail_iommu))
pr_warn("Unable to create IOMMU fault injection sysfs "
"entries\n");
} else if (action == BUS_NOTIFY_DEL_DEVICE) {
device_remove_file(dev, &dev_attr_fail_iommu);
}
return 0;
}
static struct notifier_block fail_iommu_bus_notifier = {
.notifier_call = fail_iommu_bus_notify
};
static int __init fail_iommu_setup(void)
{
#ifdef CONFIG_PCI
bus_register_notifier(&pci_bus_type, &fail_iommu_bus_notifier);
#endif
#ifdef CONFIG_IBMVIO
bus_register_notifier(&vio_bus_type, &fail_iommu_bus_notifier);
#endif
return 0;
}
/*
* Must execute after PCI and VIO subsystem have initialised but before
* devices are probed.
*/
arch_initcall(fail_iommu_setup);
#else
static inline bool should_fail_iommu(struct device *dev)
{
return false;
}
#endif
static unsigned long iommu_range_alloc(struct device *dev,
struct iommu_table *tbl,
unsigned long npages,
unsigned long *handle,
unsigned long mask,
unsigned int align_order)
{
unsigned long n, end, start;
unsigned long limit;
int largealloc = npages > 15;
int pass = 0;
unsigned long align_mask;
unsigned long boundary_size;
unsigned long flags;
unsigned int pool_nr;
struct iommu_pool *pool;
align_mask = 0xffffffffffffffffl >> (64 - align_order);
/* This allocator was derived from x86_64's bit string search */
/* Sanity check */
if (unlikely(npages == 0)) {
if (printk_ratelimit())
WARN_ON(1);
return DMA_ERROR_CODE;
}
if (should_fail_iommu(dev))
return DMA_ERROR_CODE;
/*
* We don't need to disable preemption here because any CPU can
* safely use any IOMMU pool.
*/
pool_nr = __this_cpu_read(iommu_pool_hash) & (tbl->nr_pools - 1);
if (largealloc)
pool = &(tbl->large_pool);
else
pool = &(tbl->pools[pool_nr]);
spin_lock_irqsave(&(pool->lock), flags);
again:
if ((pass == 0) && handle && *handle &&
(*handle >= pool->start) && (*handle < pool->end))
start = *handle;
else
start = pool->hint;
limit = pool->end;
/* The case below can happen if we have a small segment appended
* to a large, or when the previous alloc was at the very end of
* the available space. If so, go back to the initial start.
*/
if (start >= limit)
start = pool->start;
if (limit + tbl->it_offset > mask) {
limit = mask - tbl->it_offset + 1;
/* If we're constrained on address range, first try
* at the masked hint to avoid O(n) search complexity,
* but on second pass, start at 0 in pool 0.
*/
if ((start & mask) >= limit || pass > 0) {
spin_unlock(&(pool->lock));
pool = &(tbl->pools[0]);
spin_lock(&(pool->lock));
start = pool->start;
} else {
start &= mask;
}
}
if (dev)
boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1 << tbl->it_page_shift);
else
boundary_size = ALIGN(1UL << 32, 1 << tbl->it_page_shift);
/* 4GB boundary for iseries_hv_alloc and iseries_hv_map */
n = iommu_area_alloc(tbl->it_map, limit, start, npages, tbl->it_offset,
boundary_size >> tbl->it_page_shift, align_mask);
if (n == -1) {
if (likely(pass == 0)) {
/* First try the pool from the start */
pool->hint = pool->start;
pass++;
goto again;
} else if (pass <= tbl->nr_pools) {
/* Now try scanning all the other pools */
spin_unlock(&(pool->lock));
pool_nr = (pool_nr + 1) & (tbl->nr_pools - 1);
pool = &tbl->pools[pool_nr];
spin_lock(&(pool->lock));
pool->hint = pool->start;
pass++;
goto again;
} else {
/* Give up */
spin_unlock_irqrestore(&(pool->lock), flags);
return DMA_ERROR_CODE;
}
}
end = n + npages;
/* Bump the hint to a new block for small allocs. */
if (largealloc) {
/* Don't bump to new block to avoid fragmentation */
pool->hint = end;
} else {
/* Overflow will be taken care of at the next allocation */
pool->hint = (end + tbl->it_blocksize - 1) &
~(tbl->it_blocksize - 1);
}
/* Update handle for SG allocations */
if (handle)
*handle = end;
spin_unlock_irqrestore(&(pool->lock), flags);
return n;
}
static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl,
void *page, unsigned int npages,
enum dma_data_direction direction,
unsigned long mask, unsigned int align_order,
struct dma_attrs *attrs)
{
unsigned long entry;
dma_addr_t ret = DMA_ERROR_CODE;
int build_fail;
entry = iommu_range_alloc(dev, tbl, npages, NULL, mask, align_order);
if (unlikely(entry == DMA_ERROR_CODE))
return DMA_ERROR_CODE;
entry += tbl->it_offset; /* Offset into real TCE table */
ret = entry << tbl->it_page_shift; /* Set the return dma address */
/* Put the TCEs in the HW table */
build_fail = ppc_md.tce_build(tbl, entry, npages,
(unsigned long)page &
IOMMU_PAGE_MASK(tbl), direction, attrs);
/* ppc_md.tce_build() only returns non-zero for transient errors.
* Clean up the table bitmap in this case and return
* DMA_ERROR_CODE. For all other errors the functionality is
* not altered.
*/
if (unlikely(build_fail)) {
__iommu_free(tbl, ret, npages);
return DMA_ERROR_CODE;
}
/* Flush/invalidate TLB caches if necessary */
if (ppc_md.tce_flush)
ppc_md.tce_flush(tbl);
/* Make sure updates are seen by hardware */
mb();
return ret;
}
static bool iommu_free_check(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
unsigned long entry, free_entry;
entry = dma_addr >> tbl->it_page_shift;
free_entry = entry - tbl->it_offset;
if (((free_entry + npages) > tbl->it_size) ||
(entry < tbl->it_offset)) {
if (printk_ratelimit()) {
printk(KERN_INFO "iommu_free: invalid entry\n");
printk(KERN_INFO "\tentry = 0x%lx\n", entry);
printk(KERN_INFO "\tdma_addr = 0x%llx\n", (u64)dma_addr);
printk(KERN_INFO "\tTable = 0x%llx\n", (u64)tbl);
printk(KERN_INFO "\tbus# = 0x%llx\n", (u64)tbl->it_busno);
printk(KERN_INFO "\tsize = 0x%llx\n", (u64)tbl->it_size);
printk(KERN_INFO "\tstartOff = 0x%llx\n", (u64)tbl->it_offset);
printk(KERN_INFO "\tindex = 0x%llx\n", (u64)tbl->it_index);
WARN_ON(1);
}
return false;
}
return true;
}
static struct iommu_pool *get_pool(struct iommu_table *tbl,
unsigned long entry)
{
struct iommu_pool *p;
unsigned long largepool_start = tbl->large_pool.start;
/* The large pool is the last pool at the top of the table */
if (entry >= largepool_start) {
p = &tbl->large_pool;
} else {
unsigned int pool_nr = entry / tbl->poolsize;
BUG_ON(pool_nr > tbl->nr_pools);
p = &tbl->pools[pool_nr];
}
return p;
}
static void __iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
unsigned long entry, free_entry;
unsigned long flags;
struct iommu_pool *pool;
entry = dma_addr >> tbl->it_page_shift;
free_entry = entry - tbl->it_offset;
pool = get_pool(tbl, free_entry);
if (!iommu_free_check(tbl, dma_addr, npages))
return;
ppc_md.tce_free(tbl, entry, npages);
spin_lock_irqsave(&(pool->lock), flags);
bitmap_clear(tbl->it_map, free_entry, npages);
spin_unlock_irqrestore(&(pool->lock), flags);
}
static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
unsigned int npages)
{
__iommu_free(tbl, dma_addr, npages);
/* Make sure TLB cache is flushed if the HW needs it. We do
* not do an mb() here on purpose, it is not needed on any of
* the current platforms.
*/
if (ppc_md.tce_flush)
ppc_md.tce_flush(tbl);
}
int ppc_iommu_map_sg(struct device *dev, struct iommu_table *tbl,
struct scatterlist *sglist, int nelems,
unsigned long mask, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
dma_addr_t dma_next = 0, dma_addr;
struct scatterlist *s, *outs, *segstart;
int outcount, incount, i, build_fail = 0;
unsigned int align;
unsigned long handle;
unsigned int max_seg_size;
BUG_ON(direction == DMA_NONE);
if ((nelems == 0) || !tbl)
return 0;
outs = s = segstart = &sglist[0];
outcount = 1;
incount = nelems;
handle = 0;
/* Init first segment length for backout at failure */
outs->dma_length = 0;
DBG("sg mapping %d elements:\n", nelems);
max_seg_size = dma_get_max_seg_size(dev);
for_each_sg(sglist, s, nelems, i) {
unsigned long vaddr, npages, entry, slen;
slen = s->length;
/* Sanity check */
if (slen == 0) {
dma_next = 0;
continue;
}
/* Allocate iommu entries for that segment */
vaddr = (unsigned long) sg_virt(s);
npages = iommu_num_pages(vaddr, slen, IOMMU_PAGE_SIZE(tbl));
align = 0;
if (tbl->it_page_shift < PAGE_SHIFT && slen >= PAGE_SIZE &&
(vaddr & ~PAGE_MASK) == 0)
align = PAGE_SHIFT - tbl->it_page_shift;
entry = iommu_range_alloc(dev, tbl, npages, &handle,
mask >> tbl->it_page_shift, align);
DBG(" - vaddr: %lx, size: %lx\n", vaddr, slen);
/* Handle failure */
if (unlikely(entry == DMA_ERROR_CODE)) {
if (printk_ratelimit())
dev_info(dev, "iommu_alloc failed, tbl %p "
"vaddr %lx npages %lu\n", tbl, vaddr,
npages);
goto failure;
}
/* Convert entry to a dma_addr_t */
entry += tbl->it_offset;
dma_addr = entry << tbl->it_page_shift;
dma_addr |= (s->offset & ~IOMMU_PAGE_MASK(tbl));
DBG(" - %lu pages, entry: %lx, dma_addr: %lx\n",
npages, entry, dma_addr);
/* Insert into HW table */
build_fail = ppc_md.tce_build(tbl, entry, npages,
vaddr & IOMMU_PAGE_MASK(tbl),
direction, attrs);
if(unlikely(build_fail))
goto failure;
/* If we are in an open segment, try merging */
if (segstart != s) {
DBG(" - trying merge...\n");
/* We cannot merge if:
* - allocated dma_addr isn't contiguous to previous allocation
*/
if (novmerge || (dma_addr != dma_next) ||
(outs->dma_length + s->length > max_seg_size)) {
/* Can't merge: create a new segment */
segstart = s;
outcount++;
outs = sg_next(outs);
DBG(" can't merge, new segment.\n");
} else {
outs->dma_length += s->length;
DBG(" merged, new len: %ux\n", outs->dma_length);
}
}
if (segstart == s) {
/* This is a new segment, fill entries */
DBG(" - filling new segment.\n");
outs->dma_address = dma_addr;
outs->dma_length = slen;
}
/* Calculate next page pointer for contiguous check */
dma_next = dma_addr + slen;
DBG(" - dma next is: %lx\n", dma_next);
}
/* Flush/invalidate TLB caches if necessary */
if (ppc_md.tce_flush)
ppc_md.tce_flush(tbl);
DBG("mapped %d elements:\n", outcount);
/* For the sake of ppc_iommu_unmap_sg, we clear out the length in the
* next entry of the sglist if we didn't fill the list completely
*/
if (outcount < incount) {
outs = sg_next(outs);
outs->dma_address = DMA_ERROR_CODE;
outs->dma_length = 0;
}
/* Make sure updates are seen by hardware */
mb();
return outcount;
failure:
for_each_sg(sglist, s, nelems, i) {
if (s->dma_length != 0) {
unsigned long vaddr, npages;
vaddr = s->dma_address & IOMMU_PAGE_MASK(tbl);
npages = iommu_num_pages(s->dma_address, s->dma_length,
IOMMU_PAGE_SIZE(tbl));
__iommu_free(tbl, vaddr, npages);
s->dma_address = DMA_ERROR_CODE;
s->dma_length = 0;
}
if (s == outs)
break;
}
return 0;
}
void ppc_iommu_unmap_sg(struct iommu_table *tbl, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
BUG_ON(direction == DMA_NONE);
if (!tbl)
return;
sg = sglist;
while (nelems--) {
unsigned int npages;
dma_addr_t dma_handle = sg->dma_address;
if (sg->dma_length == 0)
break;
npages = iommu_num_pages(dma_handle, sg->dma_length,
IOMMU_PAGE_SIZE(tbl));
__iommu_free(tbl, dma_handle, npages);
sg = sg_next(sg);
}
/* Flush/invalidate TLBs if necessary. As for iommu_free(), we
* do not do an mb() here, the affected platforms do not need it
* when freeing.
*/
if (ppc_md.tce_flush)
ppc_md.tce_flush(tbl);
}
static void iommu_table_clear(struct iommu_table *tbl)
{
/*
* In case of firmware assisted dump system goes through clean
* reboot process at the time of system crash. Hence it's safe to
* clear the TCE entries if firmware assisted dump is active.
*/
if (!is_kdump_kernel() || is_fadump_active()) {
/* Clear the table in case firmware left allocations in it */
ppc_md.tce_free(tbl, tbl->it_offset, tbl->it_size);
return;
}
#ifdef CONFIG_CRASH_DUMP
if (ppc_md.tce_get) {
unsigned long index, tceval, tcecount = 0;
/* Reserve the existing mappings left by the first kernel. */
for (index = 0; index < tbl->it_size; index++) {
tceval = ppc_md.tce_get(tbl, index + tbl->it_offset);
/*
* Freed TCE entry contains 0x7fffffffffffffff on JS20
*/
if (tceval && (tceval != 0x7fffffffffffffffUL)) {
__set_bit(index, tbl->it_map);
tcecount++;
}
}
if ((tbl->it_size - tcecount) < KDUMP_MIN_TCE_ENTRIES) {
printk(KERN_WARNING "TCE table is full; freeing ");
printk(KERN_WARNING "%d entries for the kdump boot\n",
KDUMP_MIN_TCE_ENTRIES);
for (index = tbl->it_size - KDUMP_MIN_TCE_ENTRIES;
index < tbl->it_size; index++)
__clear_bit(index, tbl->it_map);
}
}
#endif
}
/*
* Build a iommu_table structure. This contains a bit map which
* is used to manage allocation of the tce space.
*/
struct iommu_table *iommu_init_table(struct iommu_table *tbl, int nid)
{
unsigned long sz;
static int welcomed = 0;
struct page *page;
unsigned int i;
struct iommu_pool *p;
/* number of bytes needed for the bitmap */
sz = BITS_TO_LONGS(tbl->it_size) * sizeof(unsigned long);
page = alloc_pages_node(nid, GFP_KERNEL, get_order(sz));
if (!page)
panic("iommu_init_table: Can't allocate %ld bytes\n", sz);
tbl->it_map = page_address(page);
memset(tbl->it_map, 0, sz);
/*
* Reserve page 0 so it will not be used for any mappings.
* This avoids buggy drivers that consider page 0 to be invalid
* to crash the machine or even lose data.
*/
if (tbl->it_offset == 0)
set_bit(0, tbl->it_map);
/* We only split the IOMMU table if we have 1GB or more of space */
if ((tbl->it_size << tbl->it_page_shift) >= (1UL * 1024 * 1024 * 1024))
tbl->nr_pools = IOMMU_NR_POOLS;
else
tbl->nr_pools = 1;
/* We reserve the top 1/4 of the table for large allocations */
tbl->poolsize = (tbl->it_size * 3 / 4) / tbl->nr_pools;
for (i = 0; i < tbl->nr_pools; i++) {
p = &tbl->pools[i];
spin_lock_init(&(p->lock));
p->start = tbl->poolsize * i;
p->hint = p->start;
p->end = p->start + tbl->poolsize;
}
p = &tbl->large_pool;
spin_lock_init(&(p->lock));
p->start = tbl->poolsize * i;
p->hint = p->start;
p->end = tbl->it_size;
iommu_table_clear(tbl);
if (!welcomed) {
printk(KERN_INFO "IOMMU table initialized, virtual merging %s\n",
novmerge ? "disabled" : "enabled");
welcomed = 1;
}
return tbl;
}
void iommu_free_table(struct iommu_table *tbl, const char *node_name)
{
unsigned long bitmap_sz;
unsigned int order;
if (!tbl || !tbl->it_map) {
printk(KERN_ERR "%s: expected TCE map for %s\n", __func__,
node_name);
return;
}
/*
* In case we have reserved the first bit, we should not emit
* the warning below.
*/
if (tbl->it_offset == 0)
clear_bit(0, tbl->it_map);
#ifdef CONFIG_IOMMU_API
if (tbl->it_group) {
iommu_group_put(tbl->it_group);
BUG_ON(tbl->it_group);
}
#endif
/* verify that table contains no entries */
if (!bitmap_empty(tbl->it_map, tbl->it_size))
pr_warn("%s: Unexpected TCEs for %s\n", __func__, node_name);
/* calculate bitmap size in bytes */
bitmap_sz = BITS_TO_LONGS(tbl->it_size) * sizeof(unsigned long);
/* free bitmap */
order = get_order(bitmap_sz);
free_pages((unsigned long) tbl->it_map, order);
/* free table */
kfree(tbl);
}
/* Creates TCEs for a user provided buffer. The user buffer must be
* contiguous real kernel storage (not vmalloc). The address passed here
* comprises a page address and offset into that page. The dma_addr_t
* returned will point to the same byte within the page as was passed in.
*/
dma_addr_t iommu_map_page(struct device *dev, struct iommu_table *tbl,
struct page *page, unsigned long offset, size_t size,
unsigned long mask, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
dma_addr_t dma_handle = DMA_ERROR_CODE;
void *vaddr;
unsigned long uaddr;
unsigned int npages, align;
BUG_ON(direction == DMA_NONE);
vaddr = page_address(page) + offset;
uaddr = (unsigned long)vaddr;
npages = iommu_num_pages(uaddr, size, IOMMU_PAGE_SIZE(tbl));
if (tbl) {
align = 0;
if (tbl->it_page_shift < PAGE_SHIFT && size >= PAGE_SIZE &&
((unsigned long)vaddr & ~PAGE_MASK) == 0)
align = PAGE_SHIFT - tbl->it_page_shift;
dma_handle = iommu_alloc(dev, tbl, vaddr, npages, direction,
mask >> tbl->it_page_shift, align,
attrs);
if (dma_handle == DMA_ERROR_CODE) {
if (printk_ratelimit()) {
dev_info(dev, "iommu_alloc failed, tbl %p "
"vaddr %p npages %d\n", tbl, vaddr,
npages);
}
} else
dma_handle |= (uaddr & ~IOMMU_PAGE_MASK(tbl));
}
return dma_handle;
}
void iommu_unmap_page(struct iommu_table *tbl, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
unsigned int npages;
BUG_ON(direction == DMA_NONE);
if (tbl) {
npages = iommu_num_pages(dma_handle, size,
IOMMU_PAGE_SIZE(tbl));
iommu_free(tbl, dma_handle, npages);
}
}
/* Allocates a contiguous real buffer and creates mappings over it.
* Returns the virtual address of the buffer and sets dma_handle
* to the dma address (mapping) of the first page.
*/
void *iommu_alloc_coherent(struct device *dev, struct iommu_table *tbl,
size_t size, dma_addr_t *dma_handle,
unsigned long mask, gfp_t flag, int node)
{
void *ret = NULL;
dma_addr_t mapping;
unsigned int order;
unsigned int nio_pages, io_order;
struct page *page;
size = PAGE_ALIGN(size);
order = get_order(size);
/*
* Client asked for way too much space. This is checked later
* anyway. It is easier to debug here for the drivers than in
* the tce tables.
*/
if (order >= IOMAP_MAX_ORDER) {
dev_info(dev, "iommu_alloc_consistent size too large: 0x%lx\n",
size);
return NULL;
}
if (!tbl)
return NULL;
/* Alloc enough pages (and possibly more) */
page = alloc_pages_node(node, flag, order);
if (!page)
return NULL;
ret = page_address(page);
memset(ret, 0, size);
/* Set up tces to cover the allocated range */
nio_pages = size >> tbl->it_page_shift;
io_order = get_iommu_order(size, tbl);
mapping = iommu_alloc(dev, tbl, ret, nio_pages, DMA_BIDIRECTIONAL,
mask >> tbl->it_page_shift, io_order, NULL);
if (mapping == DMA_ERROR_CODE) {
free_pages((unsigned long)ret, order);
return NULL;
}
*dma_handle = mapping;
return ret;
}
void iommu_free_coherent(struct iommu_table *tbl, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
if (tbl) {
unsigned int nio_pages;
size = PAGE_ALIGN(size);
nio_pages = size >> tbl->it_page_shift;
iommu_free(tbl, dma_handle, nio_pages);
size = PAGE_ALIGN(size);
free_pages((unsigned long)vaddr, get_order(size));
}
}
#ifdef CONFIG_IOMMU_API
/*
* SPAPR TCE API
*/
static void group_release(void *iommu_data)
{
struct iommu_table *tbl = iommu_data;
tbl->it_group = NULL;
}
void iommu_register_group(struct iommu_table *tbl,
int pci_domain_number, unsigned long pe_num)
{
struct iommu_group *grp;
char *name;
grp = iommu_group_alloc();
if (IS_ERR(grp)) {
pr_warn("powerpc iommu api: cannot create new group, err=%ld\n",
PTR_ERR(grp));
return;
}
tbl->it_group = grp;
iommu_group_set_iommudata(grp, tbl, group_release);
name = kasprintf(GFP_KERNEL, "domain%d-pe%lx",
pci_domain_number, pe_num);
if (!name)
return;
iommu_group_set_name(grp, name);
kfree(name);
}
enum dma_data_direction iommu_tce_direction(unsigned long tce)
{
if ((tce & TCE_PCI_READ) && (tce & TCE_PCI_WRITE))
return DMA_BIDIRECTIONAL;
else if (tce & TCE_PCI_READ)
return DMA_TO_DEVICE;
else if (tce & TCE_PCI_WRITE)
return DMA_FROM_DEVICE;
else
return DMA_NONE;
}
EXPORT_SYMBOL_GPL(iommu_tce_direction);
void iommu_flush_tce(struct iommu_table *tbl)
{
/* Flush/invalidate TLB caches if necessary */
if (ppc_md.tce_flush)
ppc_md.tce_flush(tbl);
/* Make sure updates are seen by hardware */
mb();
}
EXPORT_SYMBOL_GPL(iommu_flush_tce);
int iommu_tce_clear_param_check(struct iommu_table *tbl,
unsigned long ioba, unsigned long tce_value,
unsigned long npages)
{
/* ppc_md.tce_free() does not support any value but 0 */
if (tce_value)
return -EINVAL;
if (ioba & ~IOMMU_PAGE_MASK(tbl))
return -EINVAL;
ioba >>= tbl->it_page_shift;
if (ioba < tbl->it_offset)
return -EINVAL;
if ((ioba + npages) > (tbl->it_offset + tbl->it_size))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(iommu_tce_clear_param_check);
int iommu_tce_put_param_check(struct iommu_table *tbl,
unsigned long ioba, unsigned long tce)
{
if (!(tce & (TCE_PCI_WRITE | TCE_PCI_READ)))
return -EINVAL;
if (tce & ~(IOMMU_PAGE_MASK(tbl) | TCE_PCI_WRITE | TCE_PCI_READ))
return -EINVAL;
if (ioba & ~IOMMU_PAGE_MASK(tbl))
return -EINVAL;
ioba >>= tbl->it_page_shift;
if (ioba < tbl->it_offset)
return -EINVAL;
if ((ioba + 1) > (tbl->it_offset + tbl->it_size))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(iommu_tce_put_param_check);
unsigned long iommu_clear_tce(struct iommu_table *tbl, unsigned long entry)
{
unsigned long oldtce;
struct iommu_pool *pool = get_pool(tbl, entry);
spin_lock(&(pool->lock));
oldtce = ppc_md.tce_get(tbl, entry);
if (oldtce & (TCE_PCI_WRITE | TCE_PCI_READ))
ppc_md.tce_free(tbl, entry, 1);
else
oldtce = 0;
spin_unlock(&(pool->lock));
return oldtce;
}
EXPORT_SYMBOL_GPL(iommu_clear_tce);
int iommu_clear_tces_and_put_pages(struct iommu_table *tbl,
unsigned long entry, unsigned long pages)
{
unsigned long oldtce;
struct page *page;
for ( ; pages; --pages, ++entry) {
oldtce = iommu_clear_tce(tbl, entry);
if (!oldtce)
continue;
page = pfn_to_page(oldtce >> PAGE_SHIFT);
WARN_ON(!page);
if (page) {
if (oldtce & TCE_PCI_WRITE)
SetPageDirty(page);
put_page(page);
}
}
return 0;
}
EXPORT_SYMBOL_GPL(iommu_clear_tces_and_put_pages);
/*
* hwaddr is a kernel virtual address here (0xc... bazillion),
* tce_build converts it to a physical address.
*/
int iommu_tce_build(struct iommu_table *tbl, unsigned long entry,
unsigned long hwaddr, enum dma_data_direction direction)
{
int ret = -EBUSY;
unsigned long oldtce;
struct iommu_pool *pool = get_pool(tbl, entry);
spin_lock(&(pool->lock));
oldtce = ppc_md.tce_get(tbl, entry);
/* Add new entry if it is not busy */
if (!(oldtce & (TCE_PCI_WRITE | TCE_PCI_READ)))
ret = ppc_md.tce_build(tbl, entry, 1, hwaddr, direction, NULL);
spin_unlock(&(pool->lock));
/* if (unlikely(ret))
pr_err("iommu_tce: %s failed on hwaddr=%lx ioba=%lx kva=%lx ret=%d\n",
__func__, hwaddr, entry << tbl->it_page_shift,
hwaddr, ret); */
return ret;
}
EXPORT_SYMBOL_GPL(iommu_tce_build);
int iommu_put_tce_user_mode(struct iommu_table *tbl, unsigned long entry,
unsigned long tce)
{
int ret;
struct page *page = NULL;
unsigned long hwaddr, offset = tce & IOMMU_PAGE_MASK(tbl) & ~PAGE_MASK;
enum dma_data_direction direction = iommu_tce_direction(tce);
ret = get_user_pages_fast(tce & PAGE_MASK, 1,
direction != DMA_TO_DEVICE, &page);
if (unlikely(ret != 1)) {
/* pr_err("iommu_tce: get_user_pages_fast failed tce=%lx ioba=%lx ret=%d\n",
tce, entry << tbl->it_page_shift, ret); */
return -EFAULT;
}
hwaddr = (unsigned long) page_address(page) + offset;
ret = iommu_tce_build(tbl, entry, hwaddr, direction);
if (ret)
put_page(page);
if (ret < 0)
pr_err("iommu_tce: %s failed ioba=%lx, tce=%lx, ret=%d\n",
__func__, entry << tbl->it_page_shift, tce, ret);
return ret;
}
EXPORT_SYMBOL_GPL(iommu_put_tce_user_mode);
int iommu_take_ownership(struct iommu_table *tbl)
{
unsigned long sz = (tbl->it_size + 7) >> 3;
if (tbl->it_offset == 0)
clear_bit(0, tbl->it_map);
if (!bitmap_empty(tbl->it_map, tbl->it_size)) {
pr_err("iommu_tce: it_map is not empty");
return -EBUSY;
}
memset(tbl->it_map, 0xff, sz);
iommu_clear_tces_and_put_pages(tbl, tbl->it_offset, tbl->it_size);
/*
* Disable iommu bypass, otherwise the user can DMA to all of
* our physical memory via the bypass window instead of just
* the pages that has been explicitly mapped into the iommu
*/
if (tbl->set_bypass)
tbl->set_bypass(tbl, false);
return 0;
}
EXPORT_SYMBOL_GPL(iommu_take_ownership);
void iommu_release_ownership(struct iommu_table *tbl)
{
unsigned long sz = (tbl->it_size + 7) >> 3;
iommu_clear_tces_and_put_pages(tbl, tbl->it_offset, tbl->it_size);
memset(tbl->it_map, 0, sz);
/* Restore bit#0 set by iommu_init_table() */
if (tbl->it_offset == 0)
set_bit(0, tbl->it_map);
/* The kernel owns the device now, we can restore the iommu bypass */
if (tbl->set_bypass)
tbl->set_bypass(tbl, true);
}
EXPORT_SYMBOL_GPL(iommu_release_ownership);
int iommu_add_device(struct device *dev)
{
struct iommu_table *tbl;
/*
* The sysfs entries should be populated before
* binding IOMMU group. If sysfs entries isn't
* ready, we simply bail.
*/
if (!device_is_registered(dev))
return -ENOENT;
if (dev->iommu_group) {
pr_debug("%s: Skipping device %s with iommu group %d\n",
__func__, dev_name(dev),
iommu_group_id(dev->iommu_group));
return -EBUSY;
}
tbl = get_iommu_table_base(dev);
if (!tbl || !tbl->it_group) {
pr_debug("%s: Skipping device %s with no tbl\n",
__func__, dev_name(dev));
return 0;
}
pr_debug("%s: Adding %s to iommu group %d\n",
__func__, dev_name(dev),
iommu_group_id(tbl->it_group));
if (PAGE_SIZE < IOMMU_PAGE_SIZE(tbl)) {
pr_err("%s: Invalid IOMMU page size %lx (%lx) on %s\n",
__func__, IOMMU_PAGE_SIZE(tbl),
PAGE_SIZE, dev_name(dev));
return -EINVAL;
}
return iommu_group_add_device(tbl->it_group, dev);
}
EXPORT_SYMBOL_GPL(iommu_add_device);
void iommu_del_device(struct device *dev)
{
/*
* Some devices might not have IOMMU table and group
* and we needn't detach them from the associated
* IOMMU groups
*/
if (!dev->iommu_group) {
pr_debug("iommu_tce: skipping device %s with no tbl\n",
dev_name(dev));
return;
}
iommu_group_remove_device(dev);
}
EXPORT_SYMBOL_GPL(iommu_del_device);
#endif /* CONFIG_IOMMU_API */