linux_old1/arch/parisc/kernel/topology.c

143 lines
3.5 KiB
C

/*
* arch/parisc/kernel/topology.c
*
* Copyright (C) 2017 Helge Deller <deller@gmx.de>
*
* based on arch/arm/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <asm/topology.h>
/*
* cpu topology table
*/
struct cputopo_parisc cpu_topology[NR_CPUS] __read_mostly;
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
static void update_siblings_masks(unsigned int cpuid)
{
struct cputopo_parisc *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->socket_id != cpu_topo->socket_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
smp_wmb();
}
static int dualcores_found __initdata;
/*
* store_cpu_topology is called at boot when only one cpu is running
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
* which prevents simultaneous write access to cpu_topology array
*/
void __init store_cpu_topology(unsigned int cpuid)
{
struct cputopo_parisc *cpuid_topo = &cpu_topology[cpuid];
struct cpuinfo_parisc *p;
int max_socket = -1;
unsigned long cpu;
/* If the cpu topology has been already set, just return */
if (cpuid_topo->core_id != -1)
return;
/* create cpu topology mapping */
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = 0;
p = &per_cpu(cpu_data, cpuid);
for_each_online_cpu(cpu) {
const struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
if (cpu == cpuid) /* ignore current cpu */
continue;
if (cpuinfo->cpu_loc == p->cpu_loc) {
cpuid_topo->core_id = cpu_topology[cpu].core_id;
if (p->cpu_loc) {
cpuid_topo->core_id++;
cpuid_topo->socket_id = cpu_topology[cpu].socket_id;
dualcores_found = 1;
continue;
}
}
if (cpuid_topo->socket_id == -1)
max_socket = max(max_socket, cpu_topology[cpu].socket_id);
}
if (cpuid_topo->socket_id == -1)
cpuid_topo->socket_id = max_socket + 1;
update_siblings_masks(cpuid);
pr_info("CPU%u: thread %d, cpu %d, socket %d\n",
cpuid, cpu_topology[cpuid].thread_id,
cpu_topology[cpuid].core_id,
cpu_topology[cpuid].socket_id);
}
static struct sched_domain_topology_level parisc_mc_topology[] = {
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
};
/*
* init_cpu_topology is called at boot when only one cpu is running
* which prevent simultaneous write access to cpu_topology array
*/
void __init init_cpu_topology(void)
{
unsigned int cpu;
/* init core mask and capacity */
for_each_possible_cpu(cpu) {
struct cputopo_parisc *cpu_topo = &(cpu_topology[cpu]);
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
cpu_topo->socket_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
}
smp_wmb();
/* Set scheduler topology descriptor */
if (dualcores_found)
set_sched_topology(parisc_mc_topology);
}