linux_old1/drivers/block/swim3.c

1290 lines
32 KiB
C

/*
* Driver for the SWIM3 (Super Woz Integrated Machine 3)
* floppy controller found on Power Macintoshes.
*
* Copyright (C) 1996 Paul Mackerras.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* TODO:
* handle 2 drives
* handle GCR disks
*/
#undef DEBUG
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/fd.h>
#include <linux/ioctl.h>
#include <linux/blkdev.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <asm/io.h>
#include <asm/dbdma.h>
#include <asm/prom.h>
#include <asm/uaccess.h>
#include <asm/mediabay.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>
#define MAX_FLOPPIES 2
static DEFINE_MUTEX(swim3_mutex);
static struct gendisk *disks[MAX_FLOPPIES];
enum swim_state {
idle,
locating,
seeking,
settling,
do_transfer,
jogging,
available,
revalidating,
ejecting
};
#define REG(x) unsigned char x; char x ## _pad[15];
/*
* The names for these registers mostly represent speculation on my part.
* It will be interesting to see how close they are to the names Apple uses.
*/
struct swim3 {
REG(data);
REG(timer); /* counts down at 1MHz */
REG(error);
REG(mode);
REG(select); /* controls CA0, CA1, CA2 and LSTRB signals */
REG(setup);
REG(control); /* writing bits clears them */
REG(status); /* writing bits sets them in control */
REG(intr);
REG(nseek); /* # tracks to seek */
REG(ctrack); /* current track number */
REG(csect); /* current sector number */
REG(gap3); /* size of gap 3 in track format */
REG(sector); /* sector # to read or write */
REG(nsect); /* # sectors to read or write */
REG(intr_enable);
};
#define control_bic control
#define control_bis status
/* Bits in select register */
#define CA_MASK 7
#define LSTRB 8
/* Bits in control register */
#define DO_SEEK 0x80
#define FORMAT 0x40
#define SELECT 0x20
#define WRITE_SECTORS 0x10
#define DO_ACTION 0x08
#define DRIVE2_ENABLE 0x04
#define DRIVE_ENABLE 0x02
#define INTR_ENABLE 0x01
/* Bits in status register */
#define FIFO_1BYTE 0x80
#define FIFO_2BYTE 0x40
#define ERROR 0x20
#define DATA 0x08
#define RDDATA 0x04
#define INTR_PENDING 0x02
#define MARK_BYTE 0x01
/* Bits in intr and intr_enable registers */
#define ERROR_INTR 0x20
#define DATA_CHANGED 0x10
#define TRANSFER_DONE 0x08
#define SEEN_SECTOR 0x04
#define SEEK_DONE 0x02
#define TIMER_DONE 0x01
/* Bits in error register */
#define ERR_DATA_CRC 0x80
#define ERR_ADDR_CRC 0x40
#define ERR_OVERRUN 0x04
#define ERR_UNDERRUN 0x01
/* Bits in setup register */
#define S_SW_RESET 0x80
#define S_GCR_WRITE 0x40
#define S_IBM_DRIVE 0x20
#define S_TEST_MODE 0x10
#define S_FCLK_DIV2 0x08
#define S_GCR 0x04
#define S_COPY_PROT 0x02
#define S_INV_WDATA 0x01
/* Select values for swim3_action */
#define SEEK_POSITIVE 0
#define SEEK_NEGATIVE 4
#define STEP 1
#define MOTOR_ON 2
#define MOTOR_OFF 6
#define INDEX 3
#define EJECT 7
#define SETMFM 9
#define SETGCR 13
/* Select values for swim3_select and swim3_readbit */
#define STEP_DIR 0
#define STEPPING 1
#define MOTOR_ON 2
#define RELAX 3 /* also eject in progress */
#define READ_DATA_0 4
#define TWOMEG_DRIVE 5
#define SINGLE_SIDED 6 /* drive or diskette is 4MB type? */
#define DRIVE_PRESENT 7
#define DISK_IN 8
#define WRITE_PROT 9
#define TRACK_ZERO 10
#define TACHO 11
#define READ_DATA_1 12
#define MFM_MODE 13
#define SEEK_COMPLETE 14
#define ONEMEG_MEDIA 15
/* Definitions of values used in writing and formatting */
#define DATA_ESCAPE 0x99
#define GCR_SYNC_EXC 0x3f
#define GCR_SYNC_CONV 0x80
#define GCR_FIRST_MARK 0xd5
#define GCR_SECOND_MARK 0xaa
#define GCR_ADDR_MARK "\xd5\xaa\x00"
#define GCR_DATA_MARK "\xd5\xaa\x0b"
#define GCR_SLIP_BYTE "\x27\xaa"
#define GCR_SELF_SYNC "\x3f\xbf\x1e\x34\x3c\x3f"
#define DATA_99 "\x99\x99"
#define MFM_ADDR_MARK "\x99\xa1\x99\xa1\x99\xa1\x99\xfe"
#define MFM_INDEX_MARK "\x99\xc2\x99\xc2\x99\xc2\x99\xfc"
#define MFM_GAP_LEN 12
struct floppy_state {
enum swim_state state;
struct swim3 __iomem *swim3; /* hardware registers */
struct dbdma_regs __iomem *dma; /* DMA controller registers */
int swim3_intr; /* interrupt number for SWIM3 */
int dma_intr; /* interrupt number for DMA channel */
int cur_cyl; /* cylinder head is on, or -1 */
int cur_sector; /* last sector we saw go past */
int req_cyl; /* the cylinder for the current r/w request */
int head; /* head number ditto */
int req_sector; /* sector number ditto */
int scount; /* # sectors we're transferring at present */
int retries;
int settle_time;
int secpercyl; /* disk geometry information */
int secpertrack;
int total_secs;
int write_prot; /* 1 if write-protected, 0 if not, -1 dunno */
struct dbdma_cmd *dma_cmd;
int ref_count;
int expect_cyl;
struct timer_list timeout;
int timeout_pending;
int ejected;
wait_queue_head_t wait;
int wanted;
struct macio_dev *mdev;
char dbdma_cmd_space[5 * sizeof(struct dbdma_cmd)];
int index;
struct request *cur_req;
};
#define swim3_err(fmt, arg...) dev_err(&fs->mdev->ofdev.dev, "[fd%d] " fmt, fs->index, arg)
#define swim3_warn(fmt, arg...) dev_warn(&fs->mdev->ofdev.dev, "[fd%d] " fmt, fs->index, arg)
#define swim3_info(fmt, arg...) dev_info(&fs->mdev->ofdev.dev, "[fd%d] " fmt, fs->index, arg)
#ifdef DEBUG
#define swim3_dbg(fmt, arg...) dev_dbg(&fs->mdev->ofdev.dev, "[fd%d] " fmt, fs->index, arg)
#else
#define swim3_dbg(fmt, arg...) do { } while(0)
#endif
static struct floppy_state floppy_states[MAX_FLOPPIES];
static int floppy_count = 0;
static DEFINE_SPINLOCK(swim3_lock);
static unsigned short write_preamble[] = {
0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, /* gap field */
0, 0, 0, 0, 0, 0, /* sync field */
0x99a1, 0x99a1, 0x99a1, 0x99fb, /* data address mark */
0x990f /* no escape for 512 bytes */
};
static unsigned short write_postamble[] = {
0x9904, /* insert CRC */
0x4e4e, 0x4e4e,
0x9908, /* stop writing */
0, 0, 0, 0, 0, 0
};
static void seek_track(struct floppy_state *fs, int n);
static void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count);
static void act(struct floppy_state *fs);
static void scan_timeout(unsigned long data);
static void seek_timeout(unsigned long data);
static void settle_timeout(unsigned long data);
static void xfer_timeout(unsigned long data);
static irqreturn_t swim3_interrupt(int irq, void *dev_id);
/*static void fd_dma_interrupt(int irq, void *dev_id);*/
static int grab_drive(struct floppy_state *fs, enum swim_state state,
int interruptible);
static void release_drive(struct floppy_state *fs);
static int fd_eject(struct floppy_state *fs);
static int floppy_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long param);
static int floppy_open(struct block_device *bdev, fmode_t mode);
static void floppy_release(struct gendisk *disk, fmode_t mode);
static unsigned int floppy_check_events(struct gendisk *disk,
unsigned int clearing);
static int floppy_revalidate(struct gendisk *disk);
static bool swim3_end_request(struct floppy_state *fs, int err, unsigned int nr_bytes)
{
struct request *req = fs->cur_req;
int rc;
swim3_dbg(" end request, err=%d nr_bytes=%d, cur_req=%p\n",
err, nr_bytes, req);
if (err)
nr_bytes = blk_rq_cur_bytes(req);
rc = __blk_end_request(req, err, nr_bytes);
if (rc)
return true;
fs->cur_req = NULL;
return false;
}
static void swim3_select(struct floppy_state *fs, int sel)
{
struct swim3 __iomem *sw = fs->swim3;
out_8(&sw->select, RELAX);
if (sel & 8)
out_8(&sw->control_bis, SELECT);
else
out_8(&sw->control_bic, SELECT);
out_8(&sw->select, sel & CA_MASK);
}
static void swim3_action(struct floppy_state *fs, int action)
{
struct swim3 __iomem *sw = fs->swim3;
swim3_select(fs, action);
udelay(1);
out_8(&sw->select, sw->select | LSTRB);
udelay(2);
out_8(&sw->select, sw->select & ~LSTRB);
udelay(1);
}
static int swim3_readbit(struct floppy_state *fs, int bit)
{
struct swim3 __iomem *sw = fs->swim3;
int stat;
swim3_select(fs, bit);
udelay(1);
stat = in_8(&sw->status);
return (stat & DATA) == 0;
}
static void start_request(struct floppy_state *fs)
{
struct request *req;
unsigned long x;
swim3_dbg("start request, initial state=%d\n", fs->state);
if (fs->state == idle && fs->wanted) {
fs->state = available;
wake_up(&fs->wait);
return;
}
while (fs->state == idle) {
swim3_dbg("start request, idle loop, cur_req=%p\n", fs->cur_req);
if (!fs->cur_req) {
fs->cur_req = blk_fetch_request(disks[fs->index]->queue);
swim3_dbg(" fetched request %p\n", fs->cur_req);
if (!fs->cur_req)
break;
}
req = fs->cur_req;
if (fs->mdev->media_bay &&
check_media_bay(fs->mdev->media_bay) != MB_FD) {
swim3_dbg("%s", " media bay absent, dropping req\n");
swim3_end_request(fs, -ENODEV, 0);
continue;
}
#if 0 /* This is really too verbose */
swim3_dbg("do_fd_req: dev=%s cmd=%d sec=%ld nr_sec=%u buf=%p\n",
req->rq_disk->disk_name, req->cmd,
(long)blk_rq_pos(req), blk_rq_sectors(req),
bio_data(req->bio));
swim3_dbg(" errors=%d current_nr_sectors=%u\n",
req->errors, blk_rq_cur_sectors(req));
#endif
if (blk_rq_pos(req) >= fs->total_secs) {
swim3_dbg(" pos out of bounds (%ld, max is %ld)\n",
(long)blk_rq_pos(req), (long)fs->total_secs);
swim3_end_request(fs, -EIO, 0);
continue;
}
if (fs->ejected) {
swim3_dbg("%s", " disk ejected\n");
swim3_end_request(fs, -EIO, 0);
continue;
}
if (rq_data_dir(req) == WRITE) {
if (fs->write_prot < 0)
fs->write_prot = swim3_readbit(fs, WRITE_PROT);
if (fs->write_prot) {
swim3_dbg("%s", " try to write, disk write protected\n");
swim3_end_request(fs, -EIO, 0);
continue;
}
}
/* Do not remove the cast. blk_rq_pos(req) is now a
* sector_t and can be 64 bits, but it will never go
* past 32 bits for this driver anyway, so we can
* safely cast it down and not have to do a 64/32
* division
*/
fs->req_cyl = ((long)blk_rq_pos(req)) / fs->secpercyl;
x = ((long)blk_rq_pos(req)) % fs->secpercyl;
fs->head = x / fs->secpertrack;
fs->req_sector = x % fs->secpertrack + 1;
fs->state = do_transfer;
fs->retries = 0;
act(fs);
}
}
static void do_fd_request(struct request_queue * q)
{
start_request(q->queuedata);
}
static void set_timeout(struct floppy_state *fs, int nticks,
void (*proc)(unsigned long))
{
if (fs->timeout_pending)
del_timer(&fs->timeout);
fs->timeout.expires = jiffies + nticks;
fs->timeout.function = proc;
fs->timeout.data = (unsigned long) fs;
add_timer(&fs->timeout);
fs->timeout_pending = 1;
}
static inline void scan_track(struct floppy_state *fs)
{
struct swim3 __iomem *sw = fs->swim3;
swim3_select(fs, READ_DATA_0);
in_8(&sw->intr); /* clear SEEN_SECTOR bit */
in_8(&sw->error);
out_8(&sw->intr_enable, SEEN_SECTOR);
out_8(&sw->control_bis, DO_ACTION);
/* enable intr when track found */
set_timeout(fs, HZ, scan_timeout); /* enable timeout */
}
static inline void seek_track(struct floppy_state *fs, int n)
{
struct swim3 __iomem *sw = fs->swim3;
if (n >= 0) {
swim3_action(fs, SEEK_POSITIVE);
sw->nseek = n;
} else {
swim3_action(fs, SEEK_NEGATIVE);
sw->nseek = -n;
}
fs->expect_cyl = (fs->cur_cyl >= 0)? fs->cur_cyl + n: -1;
swim3_select(fs, STEP);
in_8(&sw->error);
/* enable intr when seek finished */
out_8(&sw->intr_enable, SEEK_DONE);
out_8(&sw->control_bis, DO_SEEK);
set_timeout(fs, 3*HZ, seek_timeout); /* enable timeout */
fs->settle_time = 0;
}
static inline void init_dma(struct dbdma_cmd *cp, int cmd,
void *buf, int count)
{
cp->req_count = cpu_to_le16(count);
cp->command = cpu_to_le16(cmd);
cp->phy_addr = cpu_to_le32(virt_to_bus(buf));
cp->xfer_status = 0;
}
static inline void setup_transfer(struct floppy_state *fs)
{
int n;
struct swim3 __iomem *sw = fs->swim3;
struct dbdma_cmd *cp = fs->dma_cmd;
struct dbdma_regs __iomem *dr = fs->dma;
struct request *req = fs->cur_req;
if (blk_rq_cur_sectors(req) <= 0) {
swim3_warn("%s", "Transfer 0 sectors ?\n");
return;
}
if (rq_data_dir(req) == WRITE)
n = 1;
else {
n = fs->secpertrack - fs->req_sector + 1;
if (n > blk_rq_cur_sectors(req))
n = blk_rq_cur_sectors(req);
}
swim3_dbg(" setup xfer at sect %d (of %d) head %d for %d\n",
fs->req_sector, fs->secpertrack, fs->head, n);
fs->scount = n;
swim3_select(fs, fs->head? READ_DATA_1: READ_DATA_0);
out_8(&sw->sector, fs->req_sector);
out_8(&sw->nsect, n);
out_8(&sw->gap3, 0);
out_le32(&dr->cmdptr, virt_to_bus(cp));
if (rq_data_dir(req) == WRITE) {
/* Set up 3 dma commands: write preamble, data, postamble */
init_dma(cp, OUTPUT_MORE, write_preamble, sizeof(write_preamble));
++cp;
init_dma(cp, OUTPUT_MORE, bio_data(req->bio), 512);
++cp;
init_dma(cp, OUTPUT_LAST, write_postamble, sizeof(write_postamble));
} else {
init_dma(cp, INPUT_LAST, bio_data(req->bio), n * 512);
}
++cp;
out_le16(&cp->command, DBDMA_STOP);
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
in_8(&sw->error);
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
if (rq_data_dir(req) == WRITE)
out_8(&sw->control_bis, WRITE_SECTORS);
in_8(&sw->intr);
out_le32(&dr->control, (RUN << 16) | RUN);
/* enable intr when transfer complete */
out_8(&sw->intr_enable, TRANSFER_DONE);
out_8(&sw->control_bis, DO_ACTION);
set_timeout(fs, 2*HZ, xfer_timeout); /* enable timeout */
}
static void act(struct floppy_state *fs)
{
for (;;) {
swim3_dbg(" act loop, state=%d, req_cyl=%d, cur_cyl=%d\n",
fs->state, fs->req_cyl, fs->cur_cyl);
switch (fs->state) {
case idle:
return; /* XXX shouldn't get here */
case locating:
if (swim3_readbit(fs, TRACK_ZERO)) {
swim3_dbg("%s", " locate track 0\n");
fs->cur_cyl = 0;
if (fs->req_cyl == 0)
fs->state = do_transfer;
else
fs->state = seeking;
break;
}
scan_track(fs);
return;
case seeking:
if (fs->cur_cyl < 0) {
fs->expect_cyl = -1;
fs->state = locating;
break;
}
if (fs->req_cyl == fs->cur_cyl) {
swim3_warn("%s", "Whoops, seeking 0\n");
fs->state = do_transfer;
break;
}
seek_track(fs, fs->req_cyl - fs->cur_cyl);
return;
case settling:
/* check for SEEK_COMPLETE after 30ms */
fs->settle_time = (HZ + 32) / 33;
set_timeout(fs, fs->settle_time, settle_timeout);
return;
case do_transfer:
if (fs->cur_cyl != fs->req_cyl) {
if (fs->retries > 5) {
swim3_err("Wrong cylinder in transfer, want: %d got %d\n",
fs->req_cyl, fs->cur_cyl);
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
return;
}
fs->state = seeking;
break;
}
setup_transfer(fs);
return;
case jogging:
seek_track(fs, -5);
return;
default:
swim3_err("Unknown state %d\n", fs->state);
return;
}
}
}
static void scan_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
unsigned long flags;
swim3_dbg("* scan timeout, state=%d\n", fs->state);
spin_lock_irqsave(&swim3_lock, flags);
fs->timeout_pending = 0;
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
fs->cur_cyl = -1;
if (fs->retries > 5) {
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
start_request(fs);
} else {
fs->state = jogging;
act(fs);
}
spin_unlock_irqrestore(&swim3_lock, flags);
}
static void seek_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
unsigned long flags;
swim3_dbg("* seek timeout, state=%d\n", fs->state);
spin_lock_irqsave(&swim3_lock, flags);
fs->timeout_pending = 0;
out_8(&sw->control_bic, DO_SEEK);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
swim3_err("%s", "Seek timeout\n");
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
start_request(fs);
spin_unlock_irqrestore(&swim3_lock, flags);
}
static void settle_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
unsigned long flags;
swim3_dbg("* settle timeout, state=%d\n", fs->state);
spin_lock_irqsave(&swim3_lock, flags);
fs->timeout_pending = 0;
if (swim3_readbit(fs, SEEK_COMPLETE)) {
out_8(&sw->select, RELAX);
fs->state = locating;
act(fs);
goto unlock;
}
out_8(&sw->select, RELAX);
if (fs->settle_time < 2*HZ) {
++fs->settle_time;
set_timeout(fs, 1, settle_timeout);
goto unlock;
}
swim3_err("%s", "Seek settle timeout\n");
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
start_request(fs);
unlock:
spin_unlock_irqrestore(&swim3_lock, flags);
}
static void xfer_timeout(unsigned long data)
{
struct floppy_state *fs = (struct floppy_state *) data;
struct swim3 __iomem *sw = fs->swim3;
struct dbdma_regs __iomem *dr = fs->dma;
unsigned long flags;
int n;
swim3_dbg("* xfer timeout, state=%d\n", fs->state);
spin_lock_irqsave(&swim3_lock, flags);
fs->timeout_pending = 0;
out_le32(&dr->control, RUN << 16);
/* We must wait a bit for dbdma to stop */
for (n = 0; (in_le32(&dr->status) & ACTIVE) && n < 1000; n++)
udelay(1);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
out_8(&sw->select, RELAX);
swim3_err("Timeout %sing sector %ld\n",
(rq_data_dir(fs->cur_req)==WRITE? "writ": "read"),
(long)blk_rq_pos(fs->cur_req));
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
start_request(fs);
spin_unlock_irqrestore(&swim3_lock, flags);
}
static irqreturn_t swim3_interrupt(int irq, void *dev_id)
{
struct floppy_state *fs = (struct floppy_state *) dev_id;
struct swim3 __iomem *sw = fs->swim3;
int intr, err, n;
int stat, resid;
struct dbdma_regs __iomem *dr;
struct dbdma_cmd *cp;
unsigned long flags;
struct request *req = fs->cur_req;
swim3_dbg("* interrupt, state=%d\n", fs->state);
spin_lock_irqsave(&swim3_lock, flags);
intr = in_8(&sw->intr);
err = (intr & ERROR_INTR)? in_8(&sw->error): 0;
if ((intr & ERROR_INTR) && fs->state != do_transfer)
swim3_err("Non-transfer error interrupt: state=%d, dir=%x, intr=%x, err=%x\n",
fs->state, rq_data_dir(req), intr, err);
switch (fs->state) {
case locating:
if (intr & SEEN_SECTOR) {
out_8(&sw->control_bic, DO_ACTION | WRITE_SECTORS);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
if (sw->ctrack == 0xff) {
swim3_err("%s", "Seen sector but cyl=ff?\n");
fs->cur_cyl = -1;
if (fs->retries > 5) {
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
start_request(fs);
} else {
fs->state = jogging;
act(fs);
}
break;
}
fs->cur_cyl = sw->ctrack;
fs->cur_sector = sw->csect;
if (fs->expect_cyl != -1 && fs->expect_cyl != fs->cur_cyl)
swim3_err("Expected cyl %d, got %d\n",
fs->expect_cyl, fs->cur_cyl);
fs->state = do_transfer;
act(fs);
}
break;
case seeking:
case jogging:
if (sw->nseek == 0) {
out_8(&sw->control_bic, DO_SEEK);
out_8(&sw->select, RELAX);
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
if (fs->state == seeking)
++fs->retries;
fs->state = settling;
act(fs);
}
break;
case settling:
out_8(&sw->intr_enable, 0);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
act(fs);
break;
case do_transfer:
if ((intr & (ERROR_INTR | TRANSFER_DONE)) == 0)
break;
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
out_8(&sw->select, RELAX);
del_timer(&fs->timeout);
fs->timeout_pending = 0;
dr = fs->dma;
cp = fs->dma_cmd;
if (rq_data_dir(req) == WRITE)
++cp;
/*
* Check that the main data transfer has finished.
* On writing, the swim3 sometimes doesn't use
* up all the bytes of the postamble, so we can still
* see DMA active here. That doesn't matter as long
* as all the sector data has been transferred.
*/
if ((intr & ERROR_INTR) == 0 && cp->xfer_status == 0) {
/* wait a little while for DMA to complete */
for (n = 0; n < 100; ++n) {
if (cp->xfer_status != 0)
break;
udelay(1);
barrier();
}
}
/* turn off DMA */
out_le32(&dr->control, (RUN | PAUSE) << 16);
stat = le16_to_cpu(cp->xfer_status);
resid = le16_to_cpu(cp->res_count);
if (intr & ERROR_INTR) {
n = fs->scount - 1 - resid / 512;
if (n > 0) {
blk_update_request(req, 0, n << 9);
fs->req_sector += n;
}
if (fs->retries < 5) {
++fs->retries;
act(fs);
} else {
swim3_err("Error %sing block %ld (err=%x)\n",
rq_data_dir(req) == WRITE? "writ": "read",
(long)blk_rq_pos(req), err);
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
}
} else {
if ((stat & ACTIVE) == 0 || resid != 0) {
/* musta been an error */
swim3_err("fd dma error: stat=%x resid=%d\n", stat, resid);
swim3_err(" state=%d, dir=%x, intr=%x, err=%x\n",
fs->state, rq_data_dir(req), intr, err);
swim3_end_request(fs, -EIO, 0);
fs->state = idle;
start_request(fs);
break;
}
fs->retries = 0;
if (swim3_end_request(fs, 0, fs->scount << 9)) {
fs->req_sector += fs->scount;
if (fs->req_sector > fs->secpertrack) {
fs->req_sector -= fs->secpertrack;
if (++fs->head > 1) {
fs->head = 0;
++fs->req_cyl;
}
}
act(fs);
} else
fs->state = idle;
}
if (fs->state == idle)
start_request(fs);
break;
default:
swim3_err("Don't know what to do in state %d\n", fs->state);
}
spin_unlock_irqrestore(&swim3_lock, flags);
return IRQ_HANDLED;
}
/*
static void fd_dma_interrupt(int irq, void *dev_id)
{
}
*/
/* Called under the mutex to grab exclusive access to a drive */
static int grab_drive(struct floppy_state *fs, enum swim_state state,
int interruptible)
{
unsigned long flags;
swim3_dbg("%s", "-> grab drive\n");
spin_lock_irqsave(&swim3_lock, flags);
if (fs->state != idle && fs->state != available) {
++fs->wanted;
/* this will enable irqs in order to sleep */
if (!interruptible)
wait_event_lock_irq(fs->wait,
fs->state == available,
swim3_lock);
else if (wait_event_interruptible_lock_irq(fs->wait,
fs->state == available,
swim3_lock)) {
--fs->wanted;
spin_unlock_irqrestore(&swim3_lock, flags);
return -EINTR;
}
--fs->wanted;
}
fs->state = state;
spin_unlock_irqrestore(&swim3_lock, flags);
return 0;
}
static void release_drive(struct floppy_state *fs)
{
unsigned long flags;
swim3_dbg("%s", "-> release drive\n");
spin_lock_irqsave(&swim3_lock, flags);
fs->state = idle;
start_request(fs);
spin_unlock_irqrestore(&swim3_lock, flags);
}
static int fd_eject(struct floppy_state *fs)
{
int err, n;
err = grab_drive(fs, ejecting, 1);
if (err)
return err;
swim3_action(fs, EJECT);
for (n = 20; n > 0; --n) {
if (signal_pending(current)) {
err = -EINTR;
break;
}
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
if (swim3_readbit(fs, DISK_IN) == 0)
break;
}
swim3_select(fs, RELAX);
udelay(150);
fs->ejected = 1;
release_drive(fs);
return err;
}
static struct floppy_struct floppy_type =
{ 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,NULL }; /* 7 1.44MB 3.5" */
static int floppy_locked_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long param)
{
struct floppy_state *fs = bdev->bd_disk->private_data;
int err;
if ((cmd & 0x80) && !capable(CAP_SYS_ADMIN))
return -EPERM;
if (fs->mdev->media_bay &&
check_media_bay(fs->mdev->media_bay) != MB_FD)
return -ENXIO;
switch (cmd) {
case FDEJECT:
if (fs->ref_count != 1)
return -EBUSY;
err = fd_eject(fs);
return err;
case FDGETPRM:
if (copy_to_user((void __user *) param, &floppy_type,
sizeof(struct floppy_struct)))
return -EFAULT;
return 0;
}
return -ENOTTY;
}
static int floppy_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long param)
{
int ret;
mutex_lock(&swim3_mutex);
ret = floppy_locked_ioctl(bdev, mode, cmd, param);
mutex_unlock(&swim3_mutex);
return ret;
}
static int floppy_open(struct block_device *bdev, fmode_t mode)
{
struct floppy_state *fs = bdev->bd_disk->private_data;
struct swim3 __iomem *sw = fs->swim3;
int n, err = 0;
if (fs->ref_count == 0) {
if (fs->mdev->media_bay &&
check_media_bay(fs->mdev->media_bay) != MB_FD)
return -ENXIO;
out_8(&sw->setup, S_IBM_DRIVE | S_FCLK_DIV2);
out_8(&sw->control_bic, 0xff);
out_8(&sw->mode, 0x95);
udelay(10);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE);
swim3_action(fs, MOTOR_ON);
fs->write_prot = -1;
fs->cur_cyl = -1;
for (n = 0; n < 2 * HZ; ++n) {
if (n >= HZ/30 && swim3_readbit(fs, SEEK_COMPLETE))
break;
if (signal_pending(current)) {
err = -EINTR;
break;
}
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
}
if (err == 0 && (swim3_readbit(fs, SEEK_COMPLETE) == 0
|| swim3_readbit(fs, DISK_IN) == 0))
err = -ENXIO;
swim3_action(fs, SETMFM);
swim3_select(fs, RELAX);
} else if (fs->ref_count == -1 || mode & FMODE_EXCL)
return -EBUSY;
if (err == 0 && (mode & FMODE_NDELAY) == 0
&& (mode & (FMODE_READ|FMODE_WRITE))) {
check_disk_change(bdev);
if (fs->ejected)
err = -ENXIO;
}
if (err == 0 && (mode & FMODE_WRITE)) {
if (fs->write_prot < 0)
fs->write_prot = swim3_readbit(fs, WRITE_PROT);
if (fs->write_prot)
err = -EROFS;
}
if (err) {
if (fs->ref_count == 0) {
swim3_action(fs, MOTOR_OFF);
out_8(&sw->control_bic, DRIVE_ENABLE | INTR_ENABLE);
swim3_select(fs, RELAX);
}
return err;
}
if (mode & FMODE_EXCL)
fs->ref_count = -1;
else
++fs->ref_count;
return 0;
}
static int floppy_unlocked_open(struct block_device *bdev, fmode_t mode)
{
int ret;
mutex_lock(&swim3_mutex);
ret = floppy_open(bdev, mode);
mutex_unlock(&swim3_mutex);
return ret;
}
static void floppy_release(struct gendisk *disk, fmode_t mode)
{
struct floppy_state *fs = disk->private_data;
struct swim3 __iomem *sw = fs->swim3;
mutex_lock(&swim3_mutex);
if (fs->ref_count > 0 && --fs->ref_count == 0) {
swim3_action(fs, MOTOR_OFF);
out_8(&sw->control_bic, 0xff);
swim3_select(fs, RELAX);
}
mutex_unlock(&swim3_mutex);
}
static unsigned int floppy_check_events(struct gendisk *disk,
unsigned int clearing)
{
struct floppy_state *fs = disk->private_data;
return fs->ejected ? DISK_EVENT_MEDIA_CHANGE : 0;
}
static int floppy_revalidate(struct gendisk *disk)
{
struct floppy_state *fs = disk->private_data;
struct swim3 __iomem *sw;
int ret, n;
if (fs->mdev->media_bay &&
check_media_bay(fs->mdev->media_bay) != MB_FD)
return -ENXIO;
sw = fs->swim3;
grab_drive(fs, revalidating, 0);
out_8(&sw->intr_enable, 0);
out_8(&sw->control_bis, DRIVE_ENABLE);
swim3_action(fs, MOTOR_ON); /* necessary? */
fs->write_prot = -1;
fs->cur_cyl = -1;
mdelay(1);
for (n = HZ; n > 0; --n) {
if (swim3_readbit(fs, SEEK_COMPLETE))
break;
if (signal_pending(current))
break;
swim3_select(fs, RELAX);
schedule_timeout_interruptible(1);
}
ret = swim3_readbit(fs, SEEK_COMPLETE) == 0
|| swim3_readbit(fs, DISK_IN) == 0;
if (ret)
swim3_action(fs, MOTOR_OFF);
else {
fs->ejected = 0;
swim3_action(fs, SETMFM);
}
swim3_select(fs, RELAX);
release_drive(fs);
return ret;
}
static const struct block_device_operations floppy_fops = {
.open = floppy_unlocked_open,
.release = floppy_release,
.ioctl = floppy_ioctl,
.check_events = floppy_check_events,
.revalidate_disk= floppy_revalidate,
};
static void swim3_mb_event(struct macio_dev* mdev, int mb_state)
{
struct floppy_state *fs = macio_get_drvdata(mdev);
struct swim3 __iomem *sw;
if (!fs)
return;
sw = fs->swim3;
if (mb_state != MB_FD)
return;
/* Clear state */
out_8(&sw->intr_enable, 0);
in_8(&sw->intr);
in_8(&sw->error);
}
static int swim3_add_device(struct macio_dev *mdev, int index)
{
struct device_node *swim = mdev->ofdev.dev.of_node;
struct floppy_state *fs = &floppy_states[index];
int rc = -EBUSY;
/* Do this first for message macros */
memset(fs, 0, sizeof(*fs));
fs->mdev = mdev;
fs->index = index;
/* Check & Request resources */
if (macio_resource_count(mdev) < 2) {
swim3_err("%s", "No address in device-tree\n");
return -ENXIO;
}
if (macio_irq_count(mdev) < 1) {
swim3_err("%s", "No interrupt in device-tree\n");
return -ENXIO;
}
if (macio_request_resource(mdev, 0, "swim3 (mmio)")) {
swim3_err("%s", "Can't request mmio resource\n");
return -EBUSY;
}
if (macio_request_resource(mdev, 1, "swim3 (dma)")) {
swim3_err("%s", "Can't request dma resource\n");
macio_release_resource(mdev, 0);
return -EBUSY;
}
dev_set_drvdata(&mdev->ofdev.dev, fs);
if (mdev->media_bay == NULL)
pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 1);
fs->state = idle;
fs->swim3 = (struct swim3 __iomem *)
ioremap(macio_resource_start(mdev, 0), 0x200);
if (fs->swim3 == NULL) {
swim3_err("%s", "Couldn't map mmio registers\n");
rc = -ENOMEM;
goto out_release;
}
fs->dma = (struct dbdma_regs __iomem *)
ioremap(macio_resource_start(mdev, 1), 0x200);
if (fs->dma == NULL) {
swim3_err("%s", "Couldn't map dma registers\n");
iounmap(fs->swim3);
rc = -ENOMEM;
goto out_release;
}
fs->swim3_intr = macio_irq(mdev, 0);
fs->dma_intr = macio_irq(mdev, 1);
fs->cur_cyl = -1;
fs->cur_sector = -1;
fs->secpercyl = 36;
fs->secpertrack = 18;
fs->total_secs = 2880;
init_waitqueue_head(&fs->wait);
fs->dma_cmd = (struct dbdma_cmd *) DBDMA_ALIGN(fs->dbdma_cmd_space);
memset(fs->dma_cmd, 0, 2 * sizeof(struct dbdma_cmd));
fs->dma_cmd[1].command = cpu_to_le16(DBDMA_STOP);
if (mdev->media_bay == NULL || check_media_bay(mdev->media_bay) == MB_FD)
swim3_mb_event(mdev, MB_FD);
if (request_irq(fs->swim3_intr, swim3_interrupt, 0, "SWIM3", fs)) {
swim3_err("%s", "Couldn't request interrupt\n");
pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0);
goto out_unmap;
return -EBUSY;
}
init_timer(&fs->timeout);
swim3_info("SWIM3 floppy controller %s\n",
mdev->media_bay ? "in media bay" : "");
return 0;
out_unmap:
iounmap(fs->dma);
iounmap(fs->swim3);
out_release:
macio_release_resource(mdev, 0);
macio_release_resource(mdev, 1);
return rc;
}
static int swim3_attach(struct macio_dev *mdev,
const struct of_device_id *match)
{
struct gendisk *disk;
int index, rc;
index = floppy_count++;
if (index >= MAX_FLOPPIES)
return -ENXIO;
/* Add the drive */
rc = swim3_add_device(mdev, index);
if (rc)
return rc;
/* Now register that disk. Same comment about failure handling */
disk = disks[index] = alloc_disk(1);
if (disk == NULL)
return -ENOMEM;
disk->queue = blk_init_queue(do_fd_request, &swim3_lock);
if (disk->queue == NULL) {
put_disk(disk);
return -ENOMEM;
}
disk->queue->queuedata = &floppy_states[index];
if (index == 0) {
/* If we failed, there isn't much we can do as the driver is still
* too dumb to remove the device, just bail out
*/
if (register_blkdev(FLOPPY_MAJOR, "fd"))
return 0;
}
disk->major = FLOPPY_MAJOR;
disk->first_minor = index;
disk->fops = &floppy_fops;
disk->private_data = &floppy_states[index];
disk->flags |= GENHD_FL_REMOVABLE;
sprintf(disk->disk_name, "fd%d", index);
set_capacity(disk, 2880);
add_disk(disk);
return 0;
}
static struct of_device_id swim3_match[] =
{
{
.name = "swim3",
},
{
.compatible = "ohare-swim3"
},
{
.compatible = "swim3"
},
{ /* end of list */ }
};
static struct macio_driver swim3_driver =
{
.driver = {
.name = "swim3",
.of_match_table = swim3_match,
},
.probe = swim3_attach,
#ifdef CONFIG_PMAC_MEDIABAY
.mediabay_event = swim3_mb_event,
#endif
#if 0
.suspend = swim3_suspend,
.resume = swim3_resume,
#endif
};
int swim3_init(void)
{
macio_register_driver(&swim3_driver);
return 0;
}
module_init(swim3_init)
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul Mackerras");
MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);