linux_old1/drivers/clk/sunxi/clk-sunxi.c

485 lines
11 KiB
C

/*
* Copyright 2013 Emilio López
*
* Emilio López <emilio@elopez.com.ar>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/clk/sunxi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include "clk-factors.h"
static DEFINE_SPINLOCK(clk_lock);
/**
* sunxi_osc_clk_setup() - Setup function for gatable oscillator
*/
#define SUNXI_OSC24M_GATE 0
static void __init sunxi_osc_clk_setup(struct device_node *node)
{
struct clk *clk;
struct clk_fixed_rate *fixed;
struct clk_gate *gate;
const char *clk_name = node->name;
u32 rate;
/* allocate fixed-rate and gate clock structs */
fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
if (!fixed)
return;
gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
if (!gate) {
kfree(fixed);
return;
}
if (of_property_read_u32(node, "clock-frequency", &rate))
return;
/* set up gate and fixed rate properties */
gate->reg = of_iomap(node, 0);
gate->bit_idx = SUNXI_OSC24M_GATE;
gate->lock = &clk_lock;
fixed->fixed_rate = rate;
clk = clk_register_composite(NULL, clk_name,
NULL, 0,
NULL, NULL,
&fixed->hw, &clk_fixed_rate_ops,
&gate->hw, &clk_gate_ops,
CLK_IS_ROOT);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_get_pll1_factors() - calculates n, k, m, p factors for PLL1
* PLL1 rate is calculated as follows
* rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
* parent_rate is always 24Mhz
*/
static void sunxi_get_pll1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 div;
/* Normalize value to a 6M multiple */
div = *freq / 6000000;
*freq = 6000000 * div;
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
/* m is always zero for pll1 */
*m = 0;
/* k is 1 only on these cases */
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
*k = 1;
else
*k = 0;
/* p will be 3 for divs under 10 */
if (div < 10)
*p = 3;
/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
else if (div < 20 || (div < 32 && (div & 1)))
*p = 2;
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
* of divs between 40-62 */
else if (div < 40 || (div < 64 && (div & 2)))
*p = 1;
/* any other entries have p = 0 */
else
*p = 0;
/* calculate a suitable n based on k and p */
div <<= *p;
div /= (*k + 1);
*n = div / 4;
}
/**
* sunxi_get_apb1_factors() - calculates m, p factors for APB1
* APB1 rate is calculated as follows
* rate = (parent_rate >> p) / (m + 1);
*/
static void sunxi_get_apb1_factors(u32 *freq, u32 parent_rate,
u8 *n, u8 *k, u8 *m, u8 *p)
{
u8 calcm, calcp;
if (parent_rate < *freq)
*freq = parent_rate;
parent_rate = (parent_rate + (*freq - 1)) / *freq;
/* Invalid rate! */
if (parent_rate > 32)
return;
if (parent_rate <= 4)
calcp = 0;
else if (parent_rate <= 8)
calcp = 1;
else if (parent_rate <= 16)
calcp = 2;
else
calcp = 3;
calcm = (parent_rate >> calcp) - 1;
*freq = (parent_rate >> calcp) / (calcm + 1);
/* we were called to round the frequency, we can now return */
if (n == NULL)
return;
*m = calcm;
*p = calcp;
}
/**
* sunxi_factors_clk_setup() - Setup function for factor clocks
*/
struct factors_data {
struct clk_factors_config *table;
void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
};
static struct clk_factors_config pll1_config = {
.nshift = 8,
.nwidth = 5,
.kshift = 4,
.kwidth = 2,
.mshift = 0,
.mwidth = 2,
.pshift = 16,
.pwidth = 2,
};
static struct clk_factors_config apb1_config = {
.mshift = 0,
.mwidth = 5,
.pshift = 16,
.pwidth = 2,
};
static const __initconst struct factors_data pll1_data = {
.table = &pll1_config,
.getter = sunxi_get_pll1_factors,
};
static const __initconst struct factors_data apb1_data = {
.table = &apb1_config,
.getter = sunxi_get_apb1_factors,
};
static void __init sunxi_factors_clk_setup(struct device_node *node,
struct factors_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *parent;
void *reg;
reg = of_iomap(node, 0);
parent = of_clk_get_parent_name(node, 0);
clk = clk_register_factors(NULL, clk_name, parent, 0, reg,
data->table, data->getter, &clk_lock);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_mux_clk_setup() - Setup function for muxes
*/
#define SUNXI_MUX_GATE_WIDTH 2
struct mux_data {
u8 shift;
};
static const __initconst struct mux_data cpu_mux_data = {
.shift = 16,
};
static const __initconst struct mux_data apb1_mux_data = {
.shift = 24,
};
static void __init sunxi_mux_clk_setup(struct device_node *node,
struct mux_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *parents[5];
void *reg;
int i = 0;
reg = of_iomap(node, 0);
while (i < 5 && (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
i++;
clk = clk_register_mux(NULL, clk_name, parents, i, 0, reg,
data->shift, SUNXI_MUX_GATE_WIDTH,
0, &clk_lock);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_divider_clk_setup() - Setup function for simple divider clocks
*/
#define SUNXI_DIVISOR_WIDTH 2
struct div_data {
u8 shift;
u8 pow;
};
static const __initconst struct div_data axi_data = {
.shift = 0,
.pow = 0,
};
static const __initconst struct div_data ahb_data = {
.shift = 4,
.pow = 1,
};
static const __initconst struct div_data apb0_data = {
.shift = 8,
.pow = 1,
};
static void __init sunxi_divider_clk_setup(struct device_node *node,
struct div_data *data)
{
struct clk *clk;
const char *clk_name = node->name;
const char *clk_parent;
void *reg;
reg = of_iomap(node, 0);
clk_parent = of_clk_get_parent_name(node, 0);
clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
reg, data->shift, SUNXI_DIVISOR_WIDTH,
data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
&clk_lock);
if (clk) {
of_clk_add_provider(node, of_clk_src_simple_get, clk);
clk_register_clkdev(clk, clk_name, NULL);
}
}
/**
* sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
*/
#define SUNXI_GATES_MAX_SIZE 64
struct gates_data {
DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
};
static const __initconst struct gates_data sun4i_axi_gates_data = {
.mask = {1},
};
static const __initconst struct gates_data sun4i_ahb_gates_data = {
.mask = {0x7F77FFF, 0x14FB3F},
};
static const __initconst struct gates_data sun5i_a13_ahb_gates_data = {
.mask = {0x107067e7, 0x185111},
};
static const __initconst struct gates_data sun4i_apb0_gates_data = {
.mask = {0x4EF},
};
static const __initconst struct gates_data sun5i_a13_apb0_gates_data = {
.mask = {0x61},
};
static const __initconst struct gates_data sun4i_apb1_gates_data = {
.mask = {0xFF00F7},
};
static const __initconst struct gates_data sun5i_a13_apb1_gates_data = {
.mask = {0xa0007},
};
static void __init sunxi_gates_clk_setup(struct device_node *node,
struct gates_data *data)
{
struct clk_onecell_data *clk_data;
const char *clk_parent;
const char *clk_name;
void *reg;
int qty;
int i = 0;
int j = 0;
int ignore;
reg = of_iomap(node, 0);
clk_parent = of_clk_get_parent_name(node, 0);
/* Worst-case size approximation and memory allocation */
qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
if (!clk_data)
return;
clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
if (!clk_data->clks) {
kfree(clk_data);
return;
}
for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
of_property_read_string_index(node, "clock-output-names",
j, &clk_name);
/* No driver claims this clock, but it should remain gated */
ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
clk_data->clks[i] = clk_register_gate(NULL, clk_name,
clk_parent, ignore,
reg + 4 * (i/32), i % 32,
0, &clk_lock);
WARN_ON(IS_ERR(clk_data->clks[i]));
j++;
}
/* Adjust to the real max */
clk_data->clk_num = i;
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
}
/* Matches for of_clk_init */
static const __initconst struct of_device_id clk_match[] = {
{.compatible = "allwinner,sun4i-osc-clk", .data = sunxi_osc_clk_setup,},
{}
};
/* Matches for factors clocks */
static const __initconst struct of_device_id clk_factors_match[] = {
{.compatible = "allwinner,sun4i-pll1-clk", .data = &pll1_data,},
{.compatible = "allwinner,sun4i-apb1-clk", .data = &apb1_data,},
{}
};
/* Matches for divider clocks */
static const __initconst struct of_device_id clk_div_match[] = {
{.compatible = "allwinner,sun4i-axi-clk", .data = &axi_data,},
{.compatible = "allwinner,sun4i-ahb-clk", .data = &ahb_data,},
{.compatible = "allwinner,sun4i-apb0-clk", .data = &apb0_data,},
{}
};
/* Matches for mux clocks */
static const __initconst struct of_device_id clk_mux_match[] = {
{.compatible = "allwinner,sun4i-cpu-clk", .data = &cpu_mux_data,},
{.compatible = "allwinner,sun4i-apb1-mux-clk", .data = &apb1_mux_data,},
{}
};
/* Matches for gate clocks */
static const __initconst struct of_device_id clk_gates_match[] = {
{.compatible = "allwinner,sun4i-axi-gates-clk", .data = &sun4i_axi_gates_data,},
{.compatible = "allwinner,sun4i-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
{.compatible = "allwinner,sun4i-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
{.compatible = "allwinner,sun4i-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
{}
};
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
void *function)
{
struct device_node *np;
const struct div_data *data;
const struct of_device_id *match;
void (*setup_function)(struct device_node *, const void *) = function;
for_each_matching_node(np, clk_match) {
match = of_match_node(clk_match, np);
data = match->data;
setup_function(np, data);
}
}
void __init sunxi_init_clocks(void)
{
/* Register all the simple sunxi clocks on DT */
of_clk_init(clk_match);
/* Register factor clocks */
of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
/* Register divider clocks */
of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
/* Register mux clocks */
of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
/* Register gate clocks */
of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
}