801 lines
20 KiB
C
801 lines
20 KiB
C
/*
|
|
* Handle the memory map.
|
|
* The functions here do the job until bootmem takes over.
|
|
*
|
|
* Getting sanitize_e820_map() in sync with i386 version by applying change:
|
|
* - Provisions for empty E820 memory regions (reported by certain BIOSes).
|
|
* Alex Achenbach <xela@slit.de>, December 2002.
|
|
* Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/pfn.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/page.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sections.h>
|
|
|
|
struct e820map e820;
|
|
|
|
/*
|
|
* PFN of last memory page.
|
|
*/
|
|
unsigned long end_pfn;
|
|
EXPORT_SYMBOL(end_pfn);
|
|
|
|
/*
|
|
* end_pfn only includes RAM, while end_pfn_map includes all e820 entries.
|
|
* The direct mapping extends to end_pfn_map, so that we can directly access
|
|
* apertures, ACPI and other tables without having to play with fixmaps.
|
|
*/
|
|
unsigned long end_pfn_map;
|
|
|
|
/*
|
|
* Last pfn which the user wants to use.
|
|
*/
|
|
static unsigned long __initdata end_user_pfn = MAXMEM>>PAGE_SHIFT;
|
|
|
|
extern struct resource code_resource, data_resource, bss_resource;
|
|
|
|
/* Check for some hardcoded bad areas that early boot is not allowed to touch */
|
|
static inline int bad_addr(unsigned long *addrp, unsigned long size)
|
|
{
|
|
unsigned long addr = *addrp, last = addr + size;
|
|
|
|
/* various gunk below that needed for SMP startup */
|
|
if (addr < 0x8000) {
|
|
*addrp = PAGE_ALIGN(0x8000);
|
|
return 1;
|
|
}
|
|
|
|
/* direct mapping tables of the kernel */
|
|
if (last >= table_start<<PAGE_SHIFT && addr < table_end<<PAGE_SHIFT) {
|
|
*addrp = PAGE_ALIGN(table_end << PAGE_SHIFT);
|
|
return 1;
|
|
}
|
|
|
|
/* initrd */
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
|
|
unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
|
|
unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
|
|
unsigned long ramdisk_end = ramdisk_image+ramdisk_size;
|
|
|
|
if (last >= ramdisk_image && addr < ramdisk_end) {
|
|
*addrp = PAGE_ALIGN(ramdisk_end);
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|
|
/* kernel code */
|
|
if (last >= __pa_symbol(&_text) && addr < __pa_symbol(&_end)) {
|
|
*addrp = PAGE_ALIGN(__pa_symbol(&_end));
|
|
return 1;
|
|
}
|
|
|
|
if (last >= ebda_addr && addr < ebda_addr + ebda_size) {
|
|
*addrp = PAGE_ALIGN(ebda_addr + ebda_size);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/* NUMA memory to node map */
|
|
if (last >= nodemap_addr && addr < nodemap_addr + nodemap_size) {
|
|
*addrp = nodemap_addr + nodemap_size;
|
|
return 1;
|
|
}
|
|
#endif
|
|
/* XXX ramdisk image here? */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function checks if any part of the range <start,end> is mapped
|
|
* with type.
|
|
*/
|
|
int
|
|
e820_any_mapped(unsigned long start, unsigned long end, unsigned type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
if (type && ei->type != type)
|
|
continue;
|
|
if (ei->addr >= end || ei->addr + ei->size <= start)
|
|
continue;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(e820_any_mapped);
|
|
|
|
/*
|
|
* This function checks if the entire range <start,end> is mapped with type.
|
|
*
|
|
* Note: this function only works correct if the e820 table is sorted and
|
|
* not-overlapping, which is the case
|
|
*/
|
|
int __init e820_all_mapped(unsigned long start, unsigned long end,
|
|
unsigned type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
if (type && ei->type != type)
|
|
continue;
|
|
/* is the region (part) in overlap with the current region ?*/
|
|
if (ei->addr >= end || ei->addr + ei->size <= start)
|
|
continue;
|
|
|
|
/* if the region is at the beginning of <start,end> we move
|
|
* start to the end of the region since it's ok until there
|
|
*/
|
|
if (ei->addr <= start)
|
|
start = ei->addr + ei->size;
|
|
/*
|
|
* if start is now at or beyond end, we're done, full
|
|
* coverage
|
|
*/
|
|
if (start >= end)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find a free area in a specific range.
|
|
*/
|
|
unsigned long __init find_e820_area(unsigned long start, unsigned long end,
|
|
unsigned size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
unsigned long addr = ei->addr, last;
|
|
|
|
if (ei->type != E820_RAM)
|
|
continue;
|
|
if (addr < start)
|
|
addr = start;
|
|
if (addr > ei->addr + ei->size)
|
|
continue;
|
|
while (bad_addr(&addr, size) && addr+size <= ei->addr+ei->size)
|
|
;
|
|
last = PAGE_ALIGN(addr) + size;
|
|
if (last > ei->addr + ei->size)
|
|
continue;
|
|
if (last > end)
|
|
continue;
|
|
return addr;
|
|
}
|
|
return -1UL;
|
|
}
|
|
|
|
/*
|
|
* Find the highest page frame number we have available
|
|
*/
|
|
unsigned long __init e820_end_of_ram(void)
|
|
{
|
|
unsigned long end_pfn;
|
|
|
|
end_pfn = find_max_pfn_with_active_regions();
|
|
|
|
if (end_pfn > end_pfn_map)
|
|
end_pfn_map = end_pfn;
|
|
if (end_pfn_map > MAXMEM>>PAGE_SHIFT)
|
|
end_pfn_map = MAXMEM>>PAGE_SHIFT;
|
|
if (end_pfn > end_user_pfn)
|
|
end_pfn = end_user_pfn;
|
|
if (end_pfn > end_pfn_map)
|
|
end_pfn = end_pfn_map;
|
|
|
|
printk(KERN_INFO "end_pfn_map = %lu\n", end_pfn_map);
|
|
return end_pfn;
|
|
}
|
|
|
|
/*
|
|
* Mark e820 reserved areas as busy for the resource manager.
|
|
*/
|
|
void __init e820_reserve_resources(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct resource *res;
|
|
res = alloc_bootmem_low(sizeof(struct resource));
|
|
switch (e820.map[i].type) {
|
|
case E820_RAM: res->name = "System RAM"; break;
|
|
case E820_ACPI: res->name = "ACPI Tables"; break;
|
|
case E820_NVS: res->name = "ACPI Non-volatile Storage"; break;
|
|
default: res->name = "reserved";
|
|
}
|
|
res->start = e820.map[i].addr;
|
|
res->end = res->start + e820.map[i].size - 1;
|
|
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
request_resource(&iomem_resource, res);
|
|
if (e820.map[i].type == E820_RAM) {
|
|
/*
|
|
* We don't know which RAM region contains kernel data,
|
|
* so we try it repeatedly and let the resource manager
|
|
* test it.
|
|
*/
|
|
request_resource(res, &code_resource);
|
|
request_resource(res, &data_resource);
|
|
request_resource(res, &bss_resource);
|
|
#ifdef CONFIG_KEXEC
|
|
if (crashk_res.start != crashk_res.end)
|
|
request_resource(res, &crashk_res);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the ranges of physical addresses that do not correspond to
|
|
* e820 RAM areas and mark the corresponding pages as nosave for software
|
|
* suspend and suspend to RAM.
|
|
*
|
|
* This function requires the e820 map to be sorted and without any
|
|
* overlapping entries and assumes the first e820 area to be RAM.
|
|
*/
|
|
void __init e820_mark_nosave_regions(void)
|
|
{
|
|
int i;
|
|
unsigned long paddr;
|
|
|
|
paddr = round_down(e820.map[0].addr + e820.map[0].size, PAGE_SIZE);
|
|
for (i = 1; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
if (paddr < ei->addr)
|
|
register_nosave_region(PFN_DOWN(paddr),
|
|
PFN_UP(ei->addr));
|
|
|
|
paddr = round_down(ei->addr + ei->size, PAGE_SIZE);
|
|
if (ei->type != E820_RAM)
|
|
register_nosave_region(PFN_UP(ei->addr),
|
|
PFN_DOWN(paddr));
|
|
|
|
if (paddr >= (end_pfn << PAGE_SHIFT))
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finds an active region in the address range from start_pfn to end_pfn and
|
|
* returns its range in ei_startpfn and ei_endpfn for the e820 entry.
|
|
*/
|
|
static int __init e820_find_active_region(const struct e820entry *ei,
|
|
unsigned long start_pfn,
|
|
unsigned long end_pfn,
|
|
unsigned long *ei_startpfn,
|
|
unsigned long *ei_endpfn)
|
|
{
|
|
*ei_startpfn = round_up(ei->addr, PAGE_SIZE) >> PAGE_SHIFT;
|
|
*ei_endpfn = round_down(ei->addr + ei->size, PAGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
/* Skip map entries smaller than a page */
|
|
if (*ei_startpfn >= *ei_endpfn)
|
|
return 0;
|
|
|
|
/* Check if end_pfn_map should be updated */
|
|
if (ei->type != E820_RAM && *ei_endpfn > end_pfn_map)
|
|
end_pfn_map = *ei_endpfn;
|
|
|
|
/* Skip if map is outside the node */
|
|
if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
|
|
*ei_startpfn >= end_pfn)
|
|
return 0;
|
|
|
|
/* Check for overlaps */
|
|
if (*ei_startpfn < start_pfn)
|
|
*ei_startpfn = start_pfn;
|
|
if (*ei_endpfn > end_pfn)
|
|
*ei_endpfn = end_pfn;
|
|
|
|
/* Obey end_user_pfn to save on memmap */
|
|
if (*ei_startpfn >= end_user_pfn)
|
|
return 0;
|
|
if (*ei_endpfn > end_user_pfn)
|
|
*ei_endpfn = end_user_pfn;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Walk the e820 map and register active regions within a node */
|
|
void __init
|
|
e820_register_active_regions(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long ei_startpfn;
|
|
unsigned long ei_endpfn;
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++)
|
|
if (e820_find_active_region(&e820.map[i],
|
|
start_pfn, end_pfn,
|
|
&ei_startpfn, &ei_endpfn))
|
|
add_active_range(nid, ei_startpfn, ei_endpfn);
|
|
}
|
|
|
|
/*
|
|
* Add a memory region to the kernel e820 map.
|
|
*/
|
|
void __init add_memory_region(unsigned long start, unsigned long size, int type)
|
|
{
|
|
int x = e820.nr_map;
|
|
|
|
if (x == E820MAX) {
|
|
printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
|
|
return;
|
|
}
|
|
|
|
e820.map[x].addr = start;
|
|
e820.map[x].size = size;
|
|
e820.map[x].type = type;
|
|
e820.nr_map++;
|
|
}
|
|
|
|
/*
|
|
* Find the hole size (in bytes) in the memory range.
|
|
* @start: starting address of the memory range to scan
|
|
* @end: ending address of the memory range to scan
|
|
*/
|
|
unsigned long __init e820_hole_size(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long end_pfn = end >> PAGE_SHIFT;
|
|
unsigned long ei_startpfn, ei_endpfn, ram = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
if (e820_find_active_region(&e820.map[i],
|
|
start_pfn, end_pfn,
|
|
&ei_startpfn, &ei_endpfn))
|
|
ram += ei_endpfn - ei_startpfn;
|
|
}
|
|
return end - start - (ram << PAGE_SHIFT);
|
|
}
|
|
|
|
void __init e820_print_map(char *who)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
|
|
(unsigned long long) e820.map[i].addr,
|
|
(unsigned long long)
|
|
(e820.map[i].addr + e820.map[i].size));
|
|
switch (e820.map[i].type) {
|
|
case E820_RAM:
|
|
printk(KERN_CONT "(usable)\n");
|
|
break;
|
|
case E820_RESERVED:
|
|
printk(KERN_CONT "(reserved)\n");
|
|
break;
|
|
case E820_ACPI:
|
|
printk(KERN_CONT "(ACPI data)\n");
|
|
break;
|
|
case E820_NVS:
|
|
printk(KERN_CONT "(ACPI NVS)\n");
|
|
break;
|
|
default:
|
|
printk(KERN_CONT "type %u\n", e820.map[i].type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sanitize the BIOS e820 map.
|
|
*
|
|
* Some e820 responses include overlapping entries. The following
|
|
* replaces the original e820 map with a new one, removing overlaps.
|
|
*
|
|
*/
|
|
static int __init sanitize_e820_map(struct e820entry *biosmap, char *pnr_map)
|
|
{
|
|
struct change_member {
|
|
struct e820entry *pbios; /* pointer to original bios entry */
|
|
unsigned long long addr; /* address for this change point */
|
|
};
|
|
static struct change_member change_point_list[2*E820MAX] __initdata;
|
|
static struct change_member *change_point[2*E820MAX] __initdata;
|
|
static struct e820entry *overlap_list[E820MAX] __initdata;
|
|
static struct e820entry new_bios[E820MAX] __initdata;
|
|
struct change_member *change_tmp;
|
|
unsigned long current_type, last_type;
|
|
unsigned long long last_addr;
|
|
int chgidx, still_changing;
|
|
int overlap_entries;
|
|
int new_bios_entry;
|
|
int old_nr, new_nr, chg_nr;
|
|
int i;
|
|
|
|
/*
|
|
Visually we're performing the following
|
|
(1,2,3,4 = memory types)...
|
|
|
|
Sample memory map (w/overlaps):
|
|
____22__________________
|
|
______________________4_
|
|
____1111________________
|
|
_44_____________________
|
|
11111111________________
|
|
____________________33__
|
|
___________44___________
|
|
__________33333_________
|
|
______________22________
|
|
___________________2222_
|
|
_________111111111______
|
|
_____________________11_
|
|
_________________4______
|
|
|
|
Sanitized equivalent (no overlap):
|
|
1_______________________
|
|
_44_____________________
|
|
___1____________________
|
|
____22__________________
|
|
______11________________
|
|
_________1______________
|
|
__________3_____________
|
|
___________44___________
|
|
_____________33_________
|
|
_______________2________
|
|
________________1_______
|
|
_________________4______
|
|
___________________2____
|
|
____________________33__
|
|
______________________4_
|
|
*/
|
|
|
|
/* if there's only one memory region, don't bother */
|
|
if (*pnr_map < 2)
|
|
return -1;
|
|
|
|
old_nr = *pnr_map;
|
|
|
|
/* bail out if we find any unreasonable addresses in bios map */
|
|
for (i = 0; i < old_nr; i++)
|
|
if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
|
|
return -1;
|
|
|
|
/* create pointers for initial change-point information (for sorting) */
|
|
for (i = 0; i < 2 * old_nr; i++)
|
|
change_point[i] = &change_point_list[i];
|
|
|
|
/* record all known change-points (starting and ending addresses),
|
|
omitting those that are for empty memory regions */
|
|
chgidx = 0;
|
|
for (i = 0; i < old_nr; i++) {
|
|
if (biosmap[i].size != 0) {
|
|
change_point[chgidx]->addr = biosmap[i].addr;
|
|
change_point[chgidx++]->pbios = &biosmap[i];
|
|
change_point[chgidx]->addr = biosmap[i].addr +
|
|
biosmap[i].size;
|
|
change_point[chgidx++]->pbios = &biosmap[i];
|
|
}
|
|
}
|
|
chg_nr = chgidx;
|
|
|
|
/* sort change-point list by memory addresses (low -> high) */
|
|
still_changing = 1;
|
|
while (still_changing) {
|
|
still_changing = 0;
|
|
for (i = 1; i < chg_nr; i++) {
|
|
unsigned long long curaddr, lastaddr;
|
|
unsigned long long curpbaddr, lastpbaddr;
|
|
|
|
curaddr = change_point[i]->addr;
|
|
lastaddr = change_point[i - 1]->addr;
|
|
curpbaddr = change_point[i]->pbios->addr;
|
|
lastpbaddr = change_point[i - 1]->pbios->addr;
|
|
|
|
/*
|
|
* swap entries, when:
|
|
*
|
|
* curaddr > lastaddr or
|
|
* curaddr == lastaddr and curaddr == curpbaddr and
|
|
* lastaddr != lastpbaddr
|
|
*/
|
|
if (curaddr < lastaddr ||
|
|
(curaddr == lastaddr && curaddr == curpbaddr &&
|
|
lastaddr != lastpbaddr)) {
|
|
change_tmp = change_point[i];
|
|
change_point[i] = change_point[i-1];
|
|
change_point[i-1] = change_tmp;
|
|
still_changing = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* create a new bios memory map, removing overlaps */
|
|
overlap_entries = 0; /* number of entries in the overlap table */
|
|
new_bios_entry = 0; /* index for creating new bios map entries */
|
|
last_type = 0; /* start with undefined memory type */
|
|
last_addr = 0; /* start with 0 as last starting address */
|
|
|
|
/* loop through change-points, determining affect on the new bios map */
|
|
for (chgidx = 0; chgidx < chg_nr; chgidx++) {
|
|
/* keep track of all overlapping bios entries */
|
|
if (change_point[chgidx]->addr ==
|
|
change_point[chgidx]->pbios->addr) {
|
|
/*
|
|
* add map entry to overlap list (> 1 entry
|
|
* implies an overlap)
|
|
*/
|
|
overlap_list[overlap_entries++] =
|
|
change_point[chgidx]->pbios;
|
|
} else {
|
|
/*
|
|
* remove entry from list (order independent,
|
|
* so swap with last)
|
|
*/
|
|
for (i = 0; i < overlap_entries; i++) {
|
|
if (overlap_list[i] ==
|
|
change_point[chgidx]->pbios)
|
|
overlap_list[i] =
|
|
overlap_list[overlap_entries-1];
|
|
}
|
|
overlap_entries--;
|
|
}
|
|
/*
|
|
* if there are overlapping entries, decide which
|
|
* "type" to use (larger value takes precedence --
|
|
* 1=usable, 2,3,4,4+=unusable)
|
|
*/
|
|
current_type = 0;
|
|
for (i = 0; i < overlap_entries; i++)
|
|
if (overlap_list[i]->type > current_type)
|
|
current_type = overlap_list[i]->type;
|
|
/*
|
|
* continue building up new bios map based on this
|
|
* information
|
|
*/
|
|
if (current_type != last_type) {
|
|
if (last_type != 0) {
|
|
new_bios[new_bios_entry].size =
|
|
change_point[chgidx]->addr - last_addr;
|
|
/*
|
|
* move forward only if the new size
|
|
* was non-zero
|
|
*/
|
|
if (new_bios[new_bios_entry].size != 0)
|
|
/*
|
|
* no more space left for new
|
|
* bios entries ?
|
|
*/
|
|
if (++new_bios_entry >= E820MAX)
|
|
break;
|
|
}
|
|
if (current_type != 0) {
|
|
new_bios[new_bios_entry].addr =
|
|
change_point[chgidx]->addr;
|
|
new_bios[new_bios_entry].type = current_type;
|
|
last_addr = change_point[chgidx]->addr;
|
|
}
|
|
last_type = current_type;
|
|
}
|
|
}
|
|
/* retain count for new bios entries */
|
|
new_nr = new_bios_entry;
|
|
|
|
/* copy new bios mapping into original location */
|
|
memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
|
|
*pnr_map = new_nr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the BIOS e820 map into a safe place.
|
|
*
|
|
* Sanity-check it while we're at it..
|
|
*
|
|
* If we're lucky and live on a modern system, the setup code
|
|
* will have given us a memory map that we can use to properly
|
|
* set up memory. If we aren't, we'll fake a memory map.
|
|
*/
|
|
static int __init copy_e820_map(struct e820entry *biosmap, int nr_map)
|
|
{
|
|
/* Only one memory region (or negative)? Ignore it */
|
|
if (nr_map < 2)
|
|
return -1;
|
|
|
|
do {
|
|
unsigned long start = biosmap->addr;
|
|
unsigned long size = biosmap->size;
|
|
unsigned long end = start + size;
|
|
unsigned long type = biosmap->type;
|
|
|
|
/* Overflow in 64 bits? Ignore the memory map. */
|
|
if (start > end)
|
|
return -1;
|
|
|
|
add_memory_region(start, size, type);
|
|
} while (biosmap++, --nr_map);
|
|
return 0;
|
|
}
|
|
|
|
void early_panic(char *msg)
|
|
{
|
|
early_printk(msg);
|
|
panic(msg);
|
|
}
|
|
|
|
void __init setup_memory_region(void)
|
|
{
|
|
/*
|
|
* Try to copy the BIOS-supplied E820-map.
|
|
*
|
|
* Otherwise fake a memory map; one section from 0k->640k,
|
|
* the next section from 1mb->appropriate_mem_k
|
|
*/
|
|
sanitize_e820_map(boot_params.e820_map, &boot_params.e820_entries);
|
|
if (copy_e820_map(boot_params.e820_map, boot_params.e820_entries) < 0)
|
|
early_panic("Cannot find a valid memory map");
|
|
printk(KERN_INFO "BIOS-provided physical RAM map:\n");
|
|
e820_print_map("BIOS-e820");
|
|
}
|
|
|
|
static int __init parse_memopt(char *p)
|
|
{
|
|
if (!p)
|
|
return -EINVAL;
|
|
end_user_pfn = memparse(p, &p);
|
|
end_user_pfn >>= PAGE_SHIFT;
|
|
return 0;
|
|
}
|
|
early_param("mem", parse_memopt);
|
|
|
|
static int userdef __initdata;
|
|
|
|
static int __init parse_memmap_opt(char *p)
|
|
{
|
|
char *oldp;
|
|
unsigned long long start_at, mem_size;
|
|
|
|
if (!strcmp(p, "exactmap")) {
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
/*
|
|
* If we are doing a crash dump, we still need to know
|
|
* the real mem size before original memory map is
|
|
* reset.
|
|
*/
|
|
e820_register_active_regions(0, 0, -1UL);
|
|
saved_max_pfn = e820_end_of_ram();
|
|
remove_all_active_ranges();
|
|
#endif
|
|
end_pfn_map = 0;
|
|
e820.nr_map = 0;
|
|
userdef = 1;
|
|
return 0;
|
|
}
|
|
|
|
oldp = p;
|
|
mem_size = memparse(p, &p);
|
|
if (p == oldp)
|
|
return -EINVAL;
|
|
if (*p == '@') {
|
|
start_at = memparse(p+1, &p);
|
|
add_memory_region(start_at, mem_size, E820_RAM);
|
|
} else if (*p == '#') {
|
|
start_at = memparse(p+1, &p);
|
|
add_memory_region(start_at, mem_size, E820_ACPI);
|
|
} else if (*p == '$') {
|
|
start_at = memparse(p+1, &p);
|
|
add_memory_region(start_at, mem_size, E820_RESERVED);
|
|
} else {
|
|
end_user_pfn = (mem_size >> PAGE_SHIFT);
|
|
}
|
|
return *p == '\0' ? 0 : -EINVAL;
|
|
}
|
|
early_param("memmap", parse_memmap_opt);
|
|
|
|
void __init finish_e820_parsing(void)
|
|
{
|
|
if (userdef) {
|
|
printk(KERN_INFO "user-defined physical RAM map:\n");
|
|
e820_print_map("user");
|
|
}
|
|
}
|
|
|
|
unsigned long pci_mem_start = 0xaeedbabe;
|
|
EXPORT_SYMBOL(pci_mem_start);
|
|
|
|
/*
|
|
* Search for the biggest gap in the low 32 bits of the e820
|
|
* memory space. We pass this space to PCI to assign MMIO resources
|
|
* for hotplug or unconfigured devices in.
|
|
* Hopefully the BIOS let enough space left.
|
|
*/
|
|
__init void e820_setup_gap(void)
|
|
{
|
|
unsigned long gapstart, gapsize, round;
|
|
unsigned long last;
|
|
int i;
|
|
int found = 0;
|
|
|
|
last = 0x100000000ull;
|
|
gapstart = 0x10000000;
|
|
gapsize = 0x400000;
|
|
i = e820.nr_map;
|
|
while (--i >= 0) {
|
|
unsigned long long start = e820.map[i].addr;
|
|
unsigned long long end = start + e820.map[i].size;
|
|
|
|
/*
|
|
* Since "last" is at most 4GB, we know we'll
|
|
* fit in 32 bits if this condition is true
|
|
*/
|
|
if (last > end) {
|
|
unsigned long gap = last - end;
|
|
|
|
if (gap > gapsize) {
|
|
gapsize = gap;
|
|
gapstart = end;
|
|
found = 1;
|
|
}
|
|
}
|
|
if (start < last)
|
|
last = start;
|
|
}
|
|
|
|
if (!found) {
|
|
gapstart = (end_pfn << PAGE_SHIFT) + 1024*1024;
|
|
printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit "
|
|
"address range\n"
|
|
KERN_ERR "PCI: Unassigned devices with 32bit resource "
|
|
"registers may break!\n");
|
|
}
|
|
|
|
/*
|
|
* See how much we want to round up: start off with
|
|
* rounding to the next 1MB area.
|
|
*/
|
|
round = 0x100000;
|
|
while ((gapsize >> 4) > round)
|
|
round += round;
|
|
/* Fun with two's complement */
|
|
pci_mem_start = (gapstart + round) & -round;
|
|
|
|
printk(KERN_INFO
|
|
"Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
|
|
pci_mem_start, gapstart, gapsize);
|
|
}
|
|
|
|
int __init arch_get_ram_range(int slot, u64 *addr, u64 *size)
|
|
{
|
|
int i;
|
|
|
|
if (slot < 0 || slot >= e820.nr_map)
|
|
return -1;
|
|
for (i = slot; i < e820.nr_map; i++) {
|
|
if (e820.map[i].type != E820_RAM)
|
|
continue;
|
|
break;
|
|
}
|
|
if (i == e820.nr_map || e820.map[i].addr > (max_pfn << PAGE_SHIFT))
|
|
return -1;
|
|
*addr = e820.map[i].addr;
|
|
*size = min_t(u64, e820.map[i].size + e820.map[i].addr,
|
|
max_pfn << PAGE_SHIFT) - *addr;
|
|
return i + 1;
|
|
}
|