linux_old1/drivers/block/nvme-core.c

3186 lines
79 KiB
C

/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/nvme.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kdev_t.h>
#include <linux/kthread.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/poison.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/t10-pi.h>
#include <linux/types.h>
#include <scsi/sg.h>
#include <asm-generic/io-64-nonatomic-lo-hi.h>
#define NVME_MINORS (1U << MINORBITS)
#define NVME_Q_DEPTH 1024
#define NVME_AQ_DEPTH 64
#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
#define ADMIN_TIMEOUT (admin_timeout * HZ)
#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
static unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
static unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
static int nvme_major;
module_param(nvme_major, int, 0);
static int nvme_char_major;
module_param(nvme_char_major, int, 0);
static int use_threaded_interrupts;
module_param(use_threaded_interrupts, int, 0);
static DEFINE_SPINLOCK(dev_list_lock);
static LIST_HEAD(dev_list);
static struct task_struct *nvme_thread;
static struct workqueue_struct *nvme_workq;
static wait_queue_head_t nvme_kthread_wait;
static struct class *nvme_class;
static void nvme_reset_failed_dev(struct work_struct *ws);
static int nvme_process_cq(struct nvme_queue *nvmeq);
struct async_cmd_info {
struct kthread_work work;
struct kthread_worker *worker;
struct request *req;
u32 result;
int status;
void *ctx;
};
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
*/
struct nvme_queue {
struct device *q_dmadev;
struct nvme_dev *dev;
char irqname[24]; /* nvme4294967295-65535\0 */
spinlock_t q_lock;
struct nvme_command *sq_cmds;
volatile struct nvme_completion *cqes;
dma_addr_t sq_dma_addr;
dma_addr_t cq_dma_addr;
u32 __iomem *q_db;
u16 q_depth;
s16 cq_vector;
u16 sq_head;
u16 sq_tail;
u16 cq_head;
u16 qid;
u8 cq_phase;
u8 cqe_seen;
struct async_cmd_info cmdinfo;
struct blk_mq_hw_ctx *hctx;
};
/*
* Check we didin't inadvertently grow the command struct
*/
static inline void _nvme_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
}
typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
struct nvme_completion *);
struct nvme_cmd_info {
nvme_completion_fn fn;
void *ctx;
int aborted;
struct nvme_queue *nvmeq;
struct nvme_iod iod[0];
};
/*
* Max size of iod being embedded in the request payload
*/
#define NVME_INT_PAGES 2
#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
/*
* Will slightly overestimate the number of pages needed. This is OK
* as it only leads to a small amount of wasted memory for the lifetime of
* the I/O.
*/
static int nvme_npages(unsigned size, struct nvme_dev *dev)
{
unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
}
static unsigned int nvme_cmd_size(struct nvme_dev *dev)
{
unsigned int ret = sizeof(struct nvme_cmd_info);
ret += sizeof(struct nvme_iod);
ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
return ret;
}
static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[0];
WARN_ON(nvmeq->hctx);
nvmeq->hctx = hctx;
hctx->driver_data = nvmeq;
return 0;
}
static int nvme_admin_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[0];
BUG_ON(!nvmeq);
cmd->nvmeq = nvmeq;
return 0;
}
static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
struct nvme_queue *nvmeq = hctx->driver_data;
nvmeq->hctx = NULL;
}
static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_dev *dev = data;
struct nvme_queue *nvmeq = dev->queues[
(hctx_idx % dev->queue_count) + 1];
if (!nvmeq->hctx)
nvmeq->hctx = hctx;
/* nvmeq queues are shared between namespaces. We assume here that
* blk-mq map the tags so they match up with the nvme queue tags. */
WARN_ON(nvmeq->hctx->tags != hctx->tags);
hctx->driver_data = nvmeq;
return 0;
}
static int nvme_init_request(void *data, struct request *req,
unsigned int hctx_idx, unsigned int rq_idx,
unsigned int numa_node)
{
struct nvme_dev *dev = data;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
BUG_ON(!nvmeq);
cmd->nvmeq = nvmeq;
return 0;
}
static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
nvme_completion_fn handler)
{
cmd->fn = handler;
cmd->ctx = ctx;
cmd->aborted = 0;
blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
}
static void *iod_get_private(struct nvme_iod *iod)
{
return (void *) (iod->private & ~0x1UL);
}
/*
* If bit 0 is set, the iod is embedded in the request payload.
*/
static bool iod_should_kfree(struct nvme_iod *iod)
{
return (iod->private & 0x01) == 0;
}
/* Special values must be less than 0x1000 */
#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
static void special_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
if (ctx == CMD_CTX_CANCELLED)
return;
if (ctx == CMD_CTX_COMPLETED) {
dev_warn(nvmeq->q_dmadev,
"completed id %d twice on queue %d\n",
cqe->command_id, le16_to_cpup(&cqe->sq_id));
return;
}
if (ctx == CMD_CTX_INVALID) {
dev_warn(nvmeq->q_dmadev,
"invalid id %d completed on queue %d\n",
cqe->command_id, le16_to_cpup(&cqe->sq_id));
return;
}
dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
}
static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
{
void *ctx;
if (fn)
*fn = cmd->fn;
ctx = cmd->ctx;
cmd->fn = special_completion;
cmd->ctx = CMD_CTX_CANCELLED;
return ctx;
}
static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct request *req = ctx;
u32 result = le32_to_cpup(&cqe->result);
u16 status = le16_to_cpup(&cqe->status) >> 1;
if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
++nvmeq->dev->event_limit;
if (status == NVME_SC_SUCCESS)
dev_warn(nvmeq->q_dmadev,
"async event result %08x\n", result);
blk_mq_free_hctx_request(nvmeq->hctx, req);
}
static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct request *req = ctx;
u16 status = le16_to_cpup(&cqe->status) >> 1;
u32 result = le32_to_cpup(&cqe->result);
blk_mq_free_hctx_request(nvmeq->hctx, req);
dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
++nvmeq->dev->abort_limit;
}
static void async_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct async_cmd_info *cmdinfo = ctx;
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
}
static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
unsigned int tag)
{
struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
return blk_mq_rq_to_pdu(req);
}
/*
* Called with local interrupts disabled and the q_lock held. May not sleep.
*/
static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
nvme_completion_fn *fn)
{
struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
void *ctx;
if (tag >= nvmeq->q_depth) {
*fn = special_completion;
return CMD_CTX_INVALID;
}
if (fn)
*fn = cmd->fn;
ctx = cmd->ctx;
cmd->fn = special_completion;
cmd->ctx = CMD_CTX_COMPLETED;
return ctx;
}
/**
* nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
* @nvmeq: The queue to use
* @cmd: The command to send
*
* Safe to use from interrupt context
*/
static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
u16 tail = nvmeq->sq_tail;
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
if (++tail == nvmeq->q_depth)
tail = 0;
writel(tail, nvmeq->q_db);
nvmeq->sq_tail = tail;
return 0;
}
static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&nvmeq->q_lock, flags);
ret = __nvme_submit_cmd(nvmeq, cmd);
spin_unlock_irqrestore(&nvmeq->q_lock, flags);
return ret;
}
static __le64 **iod_list(struct nvme_iod *iod)
{
return ((void *)iod) + iod->offset;
}
static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
unsigned nseg, unsigned long private)
{
iod->private = private;
iod->offset = offsetof(struct nvme_iod, sg[nseg]);
iod->npages = -1;
iod->length = nbytes;
iod->nents = 0;
}
static struct nvme_iod *
__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
unsigned long priv, gfp_t gfp)
{
struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
sizeof(__le64 *) * nvme_npages(bytes, dev) +
sizeof(struct scatterlist) * nseg, gfp);
if (iod)
iod_init(iod, bytes, nseg, priv);
return iod;
}
static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
gfp_t gfp)
{
unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
sizeof(struct nvme_dsm_range);
unsigned long mask = 0;
struct nvme_iod *iod;
if (rq->nr_phys_segments <= NVME_INT_PAGES &&
size <= NVME_INT_BYTES(dev)) {
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
iod = cmd->iod;
mask = 0x01;
iod_init(iod, size, rq->nr_phys_segments,
(unsigned long) rq | 0x01);
return iod;
}
return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
(unsigned long) rq, gfp);
}
void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
{
const int last_prp = dev->page_size / 8 - 1;
int i;
__le64 **list = iod_list(iod);
dma_addr_t prp_dma = iod->first_dma;
if (iod->npages == 0)
dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
for (i = 0; i < iod->npages; i++) {
__le64 *prp_list = list[i];
dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
prp_dma = next_prp_dma;
}
if (iod_should_kfree(iod))
kfree(iod);
}
static int nvme_error_status(u16 status)
{
switch (status & 0x7ff) {
case NVME_SC_SUCCESS:
return 0;
case NVME_SC_CAP_EXCEEDED:
return -ENOSPC;
default:
return -EIO;
}
}
static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
{
if (be32_to_cpu(pi->ref_tag) == v)
pi->ref_tag = cpu_to_be32(p);
}
static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
{
if (be32_to_cpu(pi->ref_tag) == p)
pi->ref_tag = cpu_to_be32(v);
}
/**
* nvme_dif_remap - remaps ref tags to bip seed and physical lba
*
* The virtual start sector is the one that was originally submitted by the
* block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
* start sector may be different. Remap protection information to match the
* physical LBA on writes, and back to the original seed on reads.
*
* Type 0 and 3 do not have a ref tag, so no remapping required.
*/
static void nvme_dif_remap(struct request *req,
void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
{
struct nvme_ns *ns = req->rq_disk->private_data;
struct bio_integrity_payload *bip;
struct t10_pi_tuple *pi;
void *p, *pmap;
u32 i, nlb, ts, phys, virt;
if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
return;
bip = bio_integrity(req->bio);
if (!bip)
return;
pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
if (!pmap)
return;
p = pmap;
virt = bip_get_seed(bip);
phys = nvme_block_nr(ns, blk_rq_pos(req));
nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ts = ns->disk->integrity->tuple_size;
for (i = 0; i < nlb; i++, virt++, phys++) {
pi = (struct t10_pi_tuple *)p;
dif_swap(phys, virt, pi);
p += ts;
}
kunmap_atomic(pmap);
}
static void req_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct nvme_iod *iod = ctx;
struct request *req = iod_get_private(iod);
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
u16 status = le16_to_cpup(&cqe->status) >> 1;
if (unlikely(status)) {
if (!(status & NVME_SC_DNR || blk_noretry_request(req))
&& (jiffies - req->start_time) < req->timeout) {
unsigned long flags;
blk_mq_requeue_request(req);
spin_lock_irqsave(req->q->queue_lock, flags);
if (!blk_queue_stopped(req->q))
blk_mq_kick_requeue_list(req->q);
spin_unlock_irqrestore(req->q->queue_lock, flags);
return;
}
req->errors = nvme_error_status(status);
} else
req->errors = 0;
if (cmd_rq->aborted)
dev_warn(&nvmeq->dev->pci_dev->dev,
"completing aborted command with status:%04x\n",
status);
if (iod->nents) {
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (blk_integrity_rq(req)) {
if (!rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_complete);
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
}
}
nvme_free_iod(nvmeq->dev, iod);
blk_mq_complete_request(req);
}
/* length is in bytes. gfp flags indicates whether we may sleep. */
int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
gfp_t gfp)
{
struct dma_pool *pool;
int length = total_len;
struct scatterlist *sg = iod->sg;
int dma_len = sg_dma_len(sg);
u64 dma_addr = sg_dma_address(sg);
int offset = offset_in_page(dma_addr);
__le64 *prp_list;
__le64 **list = iod_list(iod);
dma_addr_t prp_dma;
int nprps, i;
u32 page_size = dev->page_size;
length -= (page_size - offset);
if (length <= 0)
return total_len;
dma_len -= (page_size - offset);
if (dma_len) {
dma_addr += (page_size - offset);
} else {
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
if (length <= page_size) {
iod->first_dma = dma_addr;
return total_len;
}
nprps = DIV_ROUND_UP(length, page_size);
if (nprps <= (256 / 8)) {
pool = dev->prp_small_pool;
iod->npages = 0;
} else {
pool = dev->prp_page_pool;
iod->npages = 1;
}
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
if (!prp_list) {
iod->first_dma = dma_addr;
iod->npages = -1;
return (total_len - length) + page_size;
}
list[0] = prp_list;
iod->first_dma = prp_dma;
i = 0;
for (;;) {
if (i == page_size >> 3) {
__le64 *old_prp_list = prp_list;
prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
if (!prp_list)
return total_len - length;
list[iod->npages++] = prp_list;
prp_list[0] = old_prp_list[i - 1];
old_prp_list[i - 1] = cpu_to_le64(prp_dma);
i = 1;
}
prp_list[i++] = cpu_to_le64(dma_addr);
dma_len -= page_size;
dma_addr += page_size;
length -= page_size;
if (length <= 0)
break;
if (dma_len > 0)
continue;
BUG_ON(dma_len < 0);
sg = sg_next(sg);
dma_addr = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
}
return total_len;
}
/*
* We reuse the small pool to allocate the 16-byte range here as it is not
* worth having a special pool for these or additional cases to handle freeing
* the iod.
*/
static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
struct request *req, struct nvme_iod *iod)
{
struct nvme_dsm_range *range =
(struct nvme_dsm_range *)iod_list(iod)[0];
struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
range->cattr = cpu_to_le32(0);
range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
memset(cmnd, 0, sizeof(*cmnd));
cmnd->dsm.opcode = nvme_cmd_dsm;
cmnd->dsm.command_id = req->tag;
cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
cmnd->dsm.nr = 0;
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
writel(nvmeq->sq_tail, nvmeq->q_db);
}
static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
int cmdid)
{
struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
memset(cmnd, 0, sizeof(*cmnd));
cmnd->common.opcode = nvme_cmd_flush;
cmnd->common.command_id = cmdid;
cmnd->common.nsid = cpu_to_le32(ns->ns_id);
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
writel(nvmeq->sq_tail, nvmeq->q_db);
}
static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
struct nvme_ns *ns)
{
struct request *req = iod_get_private(iod);
struct nvme_command *cmnd;
u16 control = 0;
u32 dsmgmt = 0;
if (req->cmd_flags & REQ_FUA)
control |= NVME_RW_FUA;
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
control |= NVME_RW_LR;
if (req->cmd_flags & REQ_RAHEAD)
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
memset(cmnd, 0, sizeof(*cmnd));
cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
cmnd->rw.command_id = req->tag;
cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
if (blk_integrity_rq(req)) {
cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
control |= NVME_RW_PRINFO_PRCHK_GUARD;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
control |= NVME_RW_PRINFO_PRCHK_GUARD |
NVME_RW_PRINFO_PRCHK_REF;
cmnd->rw.reftag = cpu_to_le32(
nvme_block_nr(ns, blk_rq_pos(req)));
break;
}
} else if (ns->ms)
control |= NVME_RW_PRINFO_PRACT;
cmnd->rw.control = cpu_to_le16(control);
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
if (++nvmeq->sq_tail == nvmeq->q_depth)
nvmeq->sq_tail = 0;
writel(nvmeq->sq_tail, nvmeq->q_db);
return 0;
}
static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_queue *nvmeq = hctx->driver_data;
struct request *req = bd->rq;
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_iod *iod;
enum dma_data_direction dma_dir;
/*
* If formated with metadata, require the block layer provide a buffer
* unless this namespace is formated such that the metadata can be
* stripped/generated by the controller with PRACT=1.
*/
if (ns->ms && !blk_integrity_rq(req)) {
if (!(ns->pi_type && ns->ms == 8)) {
req->errors = -EFAULT;
blk_mq_complete_request(req);
return BLK_MQ_RQ_QUEUE_OK;
}
}
iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
if (!iod)
return BLK_MQ_RQ_QUEUE_BUSY;
if (req->cmd_flags & REQ_DISCARD) {
void *range;
/*
* We reuse the small pool to allocate the 16-byte range here
* as it is not worth having a special pool for these or
* additional cases to handle freeing the iod.
*/
range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
GFP_ATOMIC,
&iod->first_dma);
if (!range)
goto retry_cmd;
iod_list(iod)[0] = (__le64 *)range;
iod->npages = 0;
} else if (req->nr_phys_segments) {
dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
sg_init_table(iod->sg, req->nr_phys_segments);
iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
if (!iod->nents)
goto error_cmd;
if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
goto retry_cmd;
if (blk_rq_bytes(req) !=
nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
iod->nents, dma_dir);
goto retry_cmd;
}
if (blk_integrity_rq(req)) {
if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
goto error_cmd;
sg_init_table(iod->meta_sg, 1);
if (blk_rq_map_integrity_sg(
req->q, req->bio, iod->meta_sg) != 1)
goto error_cmd;
if (rq_data_dir(req))
nvme_dif_remap(req, nvme_dif_prep);
if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
goto error_cmd;
}
}
nvme_set_info(cmd, iod, req_completion);
spin_lock_irq(&nvmeq->q_lock);
if (req->cmd_flags & REQ_DISCARD)
nvme_submit_discard(nvmeq, ns, req, iod);
else if (req->cmd_flags & REQ_FLUSH)
nvme_submit_flush(nvmeq, ns, req->tag);
else
nvme_submit_iod(nvmeq, iod, ns);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
return BLK_MQ_RQ_QUEUE_OK;
error_cmd:
nvme_free_iod(nvmeq->dev, iod);
return BLK_MQ_RQ_QUEUE_ERROR;
retry_cmd:
nvme_free_iod(nvmeq->dev, iod);
return BLK_MQ_RQ_QUEUE_BUSY;
}
static int nvme_process_cq(struct nvme_queue *nvmeq)
{
u16 head, phase;
head = nvmeq->cq_head;
phase = nvmeq->cq_phase;
for (;;) {
void *ctx;
nvme_completion_fn fn;
struct nvme_completion cqe = nvmeq->cqes[head];
if ((le16_to_cpu(cqe.status) & 1) != phase)
break;
nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
fn(nvmeq, ctx, &cqe);
}
/* If the controller ignores the cq head doorbell and continuously
* writes to the queue, it is theoretically possible to wrap around
* the queue twice and mistakenly return IRQ_NONE. Linux only
* requires that 0.1% of your interrupts are handled, so this isn't
* a big problem.
*/
if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
return 0;
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
nvmeq->cqe_seen = 1;
return 1;
}
/* Admin queue isn't initialized as a request queue. If at some point this
* happens anyway, make sure to notify the user */
static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
WARN_ON_ONCE(1);
return BLK_MQ_RQ_QUEUE_ERROR;
}
static irqreturn_t nvme_irq(int irq, void *data)
{
irqreturn_t result;
struct nvme_queue *nvmeq = data;
spin_lock(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
nvmeq->cqe_seen = 0;
spin_unlock(&nvmeq->q_lock);
return result;
}
static irqreturn_t nvme_irq_check(int irq, void *data)
{
struct nvme_queue *nvmeq = data;
struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
return IRQ_NONE;
return IRQ_WAKE_THREAD;
}
struct sync_cmd_info {
struct task_struct *task;
u32 result;
int status;
};
static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
struct nvme_completion *cqe)
{
struct sync_cmd_info *cmdinfo = ctx;
cmdinfo->result = le32_to_cpup(&cqe->result);
cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
wake_up_process(cmdinfo->task);
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
u32 *result, unsigned timeout)
{
struct sync_cmd_info cmdinfo;
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd_rq->nvmeq;
cmdinfo.task = current;
cmdinfo.status = -EINTR;
cmd->common.command_id = req->tag;
nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
set_current_state(TASK_UNINTERRUPTIBLE);
nvme_submit_cmd(nvmeq, cmd);
schedule();
if (result)
*result = cmdinfo.result;
return cmdinfo.status;
}
static int nvme_submit_async_admin_req(struct nvme_dev *dev)
{
struct nvme_queue *nvmeq = dev->queues[0];
struct nvme_command c;
struct nvme_cmd_info *cmd_info;
struct request *req;
req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
if (IS_ERR(req))
return PTR_ERR(req);
req->cmd_flags |= REQ_NO_TIMEOUT;
cmd_info = blk_mq_rq_to_pdu(req);
nvme_set_info(cmd_info, req, async_req_completion);
memset(&c, 0, sizeof(c));
c.common.opcode = nvme_admin_async_event;
c.common.command_id = req->tag;
return __nvme_submit_cmd(nvmeq, &c);
}
static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
struct nvme_command *cmd,
struct async_cmd_info *cmdinfo, unsigned timeout)
{
struct nvme_queue *nvmeq = dev->queues[0];
struct request *req;
struct nvme_cmd_info *cmd_rq;
req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
if (IS_ERR(req))
return PTR_ERR(req);
req->timeout = timeout;
cmd_rq = blk_mq_rq_to_pdu(req);
cmdinfo->req = req;
nvme_set_info(cmd_rq, cmdinfo, async_completion);
cmdinfo->status = -EINTR;
cmd->common.command_id = req->tag;
return nvme_submit_cmd(nvmeq, cmd);
}
static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result, unsigned timeout)
{
int res;
struct request *req;
req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
if (IS_ERR(req))
return PTR_ERR(req);
res = nvme_submit_sync_cmd(req, cmd, result, timeout);
blk_mq_free_request(req);
return res;
}
int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result)
{
return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
}
int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
struct nvme_command *cmd, u32 *result)
{
int res;
struct request *req;
req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
false);
if (IS_ERR(req))
return PTR_ERR(req);
res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
blk_mq_free_request(req);
return res;
}
static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
c.create_cq.cqid = cpu_to_le16(qid);
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
c.create_sq.sqid = cpu_to_le16(qid);
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
}
static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
{
return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
dma_addr_t dma_addr)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(nsid);
c.identify.prp1 = cpu_to_le64(dma_addr);
c.identify.cns = cpu_to_le32(cns);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
return nvme_submit_admin_cmd(dev, &c, result);
}
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
return nvme_submit_admin_cmd(dev, &c, result);
}
/**
* nvme_abort_req - Attempt aborting a request
*
* Schedule controller reset if the command was already aborted once before and
* still hasn't been returned to the driver, or if this is the admin queue.
*/
static void nvme_abort_req(struct request *req)
{
struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd_rq->nvmeq;
struct nvme_dev *dev = nvmeq->dev;
struct request *abort_req;
struct nvme_cmd_info *abort_cmd;
struct nvme_command cmd;
if (!nvmeq->qid || cmd_rq->aborted) {
unsigned long flags;
spin_lock_irqsave(&dev_list_lock, flags);
if (work_busy(&dev->reset_work))
goto out;
list_del_init(&dev->node);
dev_warn(&dev->pci_dev->dev,
"I/O %d QID %d timeout, reset controller\n",
req->tag, nvmeq->qid);
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
out:
spin_unlock_irqrestore(&dev_list_lock, flags);
return;
}
if (!dev->abort_limit)
return;
abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
false);
if (IS_ERR(abort_req))
return;
abort_cmd = blk_mq_rq_to_pdu(abort_req);
nvme_set_info(abort_cmd, abort_req, abort_completion);
memset(&cmd, 0, sizeof(cmd));
cmd.abort.opcode = nvme_admin_abort_cmd;
cmd.abort.cid = req->tag;
cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
cmd.abort.command_id = abort_req->tag;
--dev->abort_limit;
cmd_rq->aborted = 1;
dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
nvmeq->qid);
if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
dev_warn(nvmeq->q_dmadev,
"Could not abort I/O %d QID %d",
req->tag, nvmeq->qid);
blk_mq_free_request(abort_req);
}
}
static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
struct request *req, void *data, bool reserved)
{
struct nvme_queue *nvmeq = data;
void *ctx;
nvme_completion_fn fn;
struct nvme_cmd_info *cmd;
struct nvme_completion cqe;
if (!blk_mq_request_started(req))
return;
cmd = blk_mq_rq_to_pdu(req);
if (cmd->ctx == CMD_CTX_CANCELLED)
return;
if (blk_queue_dying(req->q))
cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
else
cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
req->tag, nvmeq->qid);
ctx = cancel_cmd_info(cmd, &fn);
fn(nvmeq, ctx, &cqe);
}
static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
{
struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
struct nvme_queue *nvmeq = cmd->nvmeq;
dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
nvmeq->qid);
spin_lock_irq(&nvmeq->q_lock);
nvme_abort_req(req);
spin_unlock_irq(&nvmeq->q_lock);
/*
* The aborted req will be completed on receiving the abort req.
* We enable the timer again. If hit twice, it'll cause a device reset,
* as the device then is in a faulty state.
*/
return BLK_EH_RESET_TIMER;
}
static void nvme_free_queue(struct nvme_queue *nvmeq)
{
dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
nvmeq->sq_cmds, nvmeq->sq_dma_addr);
kfree(nvmeq);
}
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
{
int i;
for (i = dev->queue_count - 1; i >= lowest; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
dev->queue_count--;
dev->queues[i] = NULL;
nvme_free_queue(nvmeq);
}
}
/**
* nvme_suspend_queue - put queue into suspended state
* @nvmeq - queue to suspend
*/
static int nvme_suspend_queue(struct nvme_queue *nvmeq)
{
int vector;
spin_lock_irq(&nvmeq->q_lock);
if (nvmeq->cq_vector == -1) {
spin_unlock_irq(&nvmeq->q_lock);
return 1;
}
vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
nvmeq->dev->online_queues--;
nvmeq->cq_vector = -1;
spin_unlock_irq(&nvmeq->q_lock);
irq_set_affinity_hint(vector, NULL);
free_irq(vector, nvmeq);
return 0;
}
static void nvme_clear_queue(struct nvme_queue *nvmeq)
{
struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
spin_lock_irq(&nvmeq->q_lock);
if (hctx && hctx->tags)
blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
}
static void nvme_disable_queue(struct nvme_dev *dev, int qid)
{
struct nvme_queue *nvmeq = dev->queues[qid];
if (!nvmeq)
return;
if (nvme_suspend_queue(nvmeq))
return;
/* Don't tell the adapter to delete the admin queue.
* Don't tell a removed adapter to delete IO queues. */
if (qid && readl(&dev->bar->csts) != -1) {
adapter_delete_sq(dev, qid);
adapter_delete_cq(dev, qid);
}
if (!qid && dev->admin_q)
blk_mq_freeze_queue_start(dev->admin_q);
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
spin_unlock_irq(&nvmeq->q_lock);
}
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
int depth)
{
struct device *dmadev = &dev->pci_dev->dev;
struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
if (!nvmeq)
return NULL;
nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
&nvmeq->cq_dma_addr, GFP_KERNEL);
if (!nvmeq->cqes)
goto free_nvmeq;
nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
&nvmeq->sq_dma_addr, GFP_KERNEL);
if (!nvmeq->sq_cmds)
goto free_cqdma;
nvmeq->q_dmadev = dmadev;
nvmeq->dev = dev;
snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
dev->instance, qid);
spin_lock_init(&nvmeq->q_lock);
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
nvmeq->q_depth = depth;
nvmeq->qid = qid;
dev->queue_count++;
dev->queues[qid] = nvmeq;
return nvmeq;
free_cqdma:
dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
nvmeq->cq_dma_addr);
free_nvmeq:
kfree(nvmeq);
return NULL;
}
static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
const char *name)
{
if (use_threaded_interrupts)
return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
nvme_irq_check, nvme_irq, IRQF_SHARED,
name, nvmeq);
return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
IRQF_SHARED, name, nvmeq);
}
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
{
struct nvme_dev *dev = nvmeq->dev;
spin_lock_irq(&nvmeq->q_lock);
nvmeq->sq_tail = 0;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
dev->online_queues++;
spin_unlock_irq(&nvmeq->q_lock);
}
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
{
struct nvme_dev *dev = nvmeq->dev;
int result;
nvmeq->cq_vector = qid - 1;
result = adapter_alloc_cq(dev, qid, nvmeq);
if (result < 0)
return result;
result = adapter_alloc_sq(dev, qid, nvmeq);
if (result < 0)
goto release_cq;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result < 0)
goto release_sq;
nvme_init_queue(nvmeq, qid);
return result;
release_sq:
adapter_delete_sq(dev, qid);
release_cq:
adapter_delete_cq(dev, qid);
return result;
}
static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
{
unsigned long timeout;
u32 bit = enabled ? NVME_CSTS_RDY : 0;
timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(&dev->pci_dev->dev,
"Device not ready; aborting %s\n", enabled ?
"initialisation" : "reset");
return -ENODEV;
}
}
return 0;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config &= ~NVME_CC_ENABLE;
writel(dev->ctrl_config, &dev->bar->cc);
return nvme_wait_ready(dev, cap, false);
}
static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_ENABLE;
writel(dev->ctrl_config, &dev->bar->cc);
return nvme_wait_ready(dev, cap, true);
}
static int nvme_shutdown_ctrl(struct nvme_dev *dev)
{
unsigned long timeout;
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_SHN_NORMAL;
writel(dev->ctrl_config, &dev->bar->cc);
timeout = SHUTDOWN_TIMEOUT + jiffies;
while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
NVME_CSTS_SHST_CMPLT) {
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(&dev->pci_dev->dev,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
}
return 0;
}
static struct blk_mq_ops nvme_mq_admin_ops = {
.queue_rq = nvme_admin_queue_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_admin_init_hctx,
.exit_hctx = nvme_exit_hctx,
.init_request = nvme_admin_init_request,
.timeout = nvme_timeout,
};
static struct blk_mq_ops nvme_mq_ops = {
.queue_rq = nvme_queue_rq,
.map_queue = blk_mq_map_queue,
.init_hctx = nvme_init_hctx,
.exit_hctx = nvme_exit_hctx,
.init_request = nvme_init_request,
.timeout = nvme_timeout,
};
static void nvme_dev_remove_admin(struct nvme_dev *dev)
{
if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
blk_cleanup_queue(dev->admin_q);
blk_mq_free_tag_set(&dev->admin_tagset);
}
}
static int nvme_alloc_admin_tags(struct nvme_dev *dev)
{
if (!dev->admin_q) {
dev->admin_tagset.ops = &nvme_mq_admin_ops;
dev->admin_tagset.nr_hw_queues = 1;
dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
dev->admin_tagset.timeout = ADMIN_TIMEOUT;
dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
dev->admin_tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->admin_tagset))
return -ENOMEM;
dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
if (IS_ERR(dev->admin_q)) {
blk_mq_free_tag_set(&dev->admin_tagset);
return -ENOMEM;
}
if (!blk_get_queue(dev->admin_q)) {
nvme_dev_remove_admin(dev);
return -ENODEV;
}
} else
blk_mq_unfreeze_queue(dev->admin_q);
return 0;
}
static int nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
u64 cap = readq(&dev->bar->cap);
struct nvme_queue *nvmeq;
unsigned page_shift = PAGE_SHIFT;
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
if (page_shift < dev_page_min) {
dev_err(&dev->pci_dev->dev,
"Minimum device page size (%u) too large for "
"host (%u)\n", 1 << dev_page_min,
1 << page_shift);
return -ENODEV;
}
if (page_shift > dev_page_max) {
dev_info(&dev->pci_dev->dev,
"Device maximum page size (%u) smaller than "
"host (%u); enabling work-around\n",
1 << dev_page_max, 1 << page_shift);
page_shift = dev_page_max;
}
result = nvme_disable_ctrl(dev, cap);
if (result < 0)
return result;
nvmeq = dev->queues[0];
if (!nvmeq) {
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
if (!nvmeq)
return -ENOMEM;
}
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
dev->page_size = 1 << page_shift;
dev->ctrl_config = NVME_CC_CSS_NVM;
dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
writel(aqa, &dev->bar->aqa);
writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
result = nvme_enable_ctrl(dev, cap);
if (result)
goto free_nvmeq;
nvmeq->cq_vector = 0;
result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
if (result)
goto free_nvmeq;
return result;
free_nvmeq:
nvme_free_queues(dev, 0);
return result;
}
struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
unsigned long addr, unsigned length)
{
int i, err, count, nents, offset;
struct scatterlist *sg;
struct page **pages;
struct nvme_iod *iod;
if (addr & 3)
return ERR_PTR(-EINVAL);
if (!length || length > INT_MAX - PAGE_SIZE)
return ERR_PTR(-EINVAL);
offset = offset_in_page(addr);
count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
if (!pages)
return ERR_PTR(-ENOMEM);
err = get_user_pages_fast(addr, count, 1, pages);
if (err < count) {
count = err;
err = -EFAULT;
goto put_pages;
}
err = -ENOMEM;
iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
if (!iod)
goto put_pages;
sg = iod->sg;
sg_init_table(sg, count);
for (i = 0; i < count; i++) {
sg_set_page(&sg[i], pages[i],
min_t(unsigned, length, PAGE_SIZE - offset),
offset);
length -= (PAGE_SIZE - offset);
offset = 0;
}
sg_mark_end(&sg[i - 1]);
iod->nents = count;
nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (!nents)
goto free_iod;
kfree(pages);
return iod;
free_iod:
kfree(iod);
put_pages:
for (i = 0; i < count; i++)
put_page(pages[i]);
kfree(pages);
return ERR_PTR(err);
}
void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
struct nvme_iod *iod)
{
int i;
dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
for (i = 0; i < iod->nents; i++)
put_page(sg_page(&iod->sg[i]));
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_dev *dev = ns->dev;
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len;
int status, i;
struct nvme_iod *iod, *meta_iod = NULL;
dma_addr_t meta_dma_addr;
void *meta, *uninitialized_var(meta_mem);
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
length = (io.nblocks + 1) << ns->lba_shift;
meta_len = (io.nblocks + 1) * ns->ms;
if (meta_len && ((io.metadata & 3) || !io.metadata))
return -EINVAL;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
break;
default:
return -EINVAL;
}
if (IS_ERR(iod))
return PTR_ERR(iod);
memset(&c, 0, sizeof(c));
c.rw.opcode = io.opcode;
c.rw.flags = io.flags;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.slba = cpu_to_le64(io.slba);
c.rw.length = cpu_to_le16(io.nblocks);
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
if (meta_len) {
meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
meta_len);
if (IS_ERR(meta_iod)) {
status = PTR_ERR(meta_iod);
meta_iod = NULL;
goto unmap;
}
meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
&meta_dma_addr, GFP_KERNEL);
if (!meta_mem) {
status = -ENOMEM;
goto unmap;
}
if (io.opcode & 1) {
int meta_offset = 0;
for (i = 0; i < meta_iod->nents; i++) {
meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
meta_iod->sg[i].offset;
memcpy(meta_mem + meta_offset, meta,
meta_iod->sg[i].length);
kunmap_atomic(meta);
meta_offset += meta_iod->sg[i].length;
}
}
c.rw.metadata = cpu_to_le64(meta_dma_addr);
}
length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.rw.prp2 = cpu_to_le64(iod->first_dma);
if (length != (io.nblocks + 1) << ns->lba_shift)
status = -ENOMEM;
else
status = nvme_submit_io_cmd(dev, ns, &c, NULL);
if (meta_len) {
if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
int meta_offset = 0;
for (i = 0; i < meta_iod->nents; i++) {
meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
meta_iod->sg[i].offset;
memcpy(meta, meta_mem + meta_offset,
meta_iod->sg[i].length);
kunmap_atomic(meta);
meta_offset += meta_iod->sg[i].length;
}
}
dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
meta_dma_addr);
}
unmap:
nvme_unmap_user_pages(dev, io.opcode & 1, iod);
nvme_free_iod(dev, iod);
if (meta_iod) {
nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
nvme_free_iod(dev, meta_iod);
}
return status;
}
static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd)
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
int status, length;
struct nvme_iod *uninitialized_var(iod);
unsigned timeout;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
length = cmd.data_len;
if (cmd.data_len) {
iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
length);
if (IS_ERR(iod))
return PTR_ERR(iod);
length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
c.common.prp2 = cpu_to_le64(iod->first_dma);
}
timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
ADMIN_TIMEOUT;
if (length != cmd.data_len)
status = -ENOMEM;
else if (ns) {
struct request *req;
req = blk_mq_alloc_request(ns->queue, WRITE,
(GFP_KERNEL|__GFP_WAIT), false);
if (IS_ERR(req))
status = PTR_ERR(req);
else {
status = nvme_submit_sync_cmd(req, &c, &cmd.result,
timeout);
blk_mq_free_request(req);
}
} else
status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
if (cmd.data_len) {
nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
nvme_free_iod(dev, iod);
}
if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
sizeof(cmd.result)))
status = -EFAULT;
return status;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
unsigned long arg)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
switch (cmd) {
case NVME_IOCTL_ID:
force_successful_syscall_return();
return ns->ns_id;
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
case NVME_IOCTL_SUBMIT_IO:
return nvme_submit_io(ns, (void __user *)arg);
case SG_GET_VERSION_NUM:
return nvme_sg_get_version_num((void __user *)arg);
case SG_IO:
return nvme_sg_io(ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
#ifdef CONFIG_COMPAT
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case SG_IO:
return -ENOIOCTLCMD;
}
return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
int ret = 0;
struct nvme_ns *ns;
spin_lock(&dev_list_lock);
ns = bdev->bd_disk->private_data;
if (!ns)
ret = -ENXIO;
else if (!kref_get_unless_zero(&ns->dev->kref))
ret = -ENXIO;
spin_unlock(&dev_list_lock);
return ret;
}
static void nvme_free_dev(struct kref *kref);
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_dev *dev = ns->dev;
kref_put(&dev->kref, nvme_free_dev);
}
static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
{
/* some standard values */
geo->heads = 1 << 6;
geo->sectors = 1 << 5;
geo->cylinders = get_capacity(bd->bd_disk) >> 11;
return 0;
}
static void nvme_config_discard(struct nvme_ns *ns)
{
u32 logical_block_size = queue_logical_block_size(ns->queue);
ns->queue->limits.discard_zeroes_data = 0;
ns->queue->limits.discard_alignment = logical_block_size;
ns->queue->limits.discard_granularity = logical_block_size;
ns->queue->limits.max_discard_sectors = 0xffffffff;
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}
static int nvme_noop_verify(struct blk_integrity_iter *iter)
{
return 0;
}
static int nvme_noop_generate(struct blk_integrity_iter *iter)
{
return 0;
}
struct blk_integrity nvme_meta_noop = {
.name = "NVME_META_NOOP",
.generate_fn = nvme_noop_generate,
.verify_fn = nvme_noop_verify,
};
static void nvme_init_integrity(struct nvme_ns *ns)
{
struct blk_integrity integrity;
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
integrity = t10_pi_type3_crc;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
integrity = t10_pi_type1_crc;
break;
default:
integrity = nvme_meta_noop;
break;
}
integrity.tuple_size = ns->ms;
blk_integrity_register(ns->disk, &integrity);
blk_queue_max_integrity_segments(ns->queue, 1);
}
static int nvme_revalidate_disk(struct gendisk *disk)
{
struct nvme_ns *ns = disk->private_data;
struct nvme_dev *dev = ns->dev;
struct nvme_id_ns *id;
dma_addr_t dma_addr;
int lbaf, pi_type, old_ms;
unsigned short bs;
id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
GFP_KERNEL);
if (!id) {
dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
__func__);
return 0;
}
if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
dev_warn(&dev->pci_dev->dev,
"identify failed ns:%d, setting capacity to 0\n",
ns->ns_id);
memset(id, 0, sizeof(*id));
}
old_ms = ns->ms;
lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
ns->lba_shift = id->lbaf[lbaf].ds;
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
/*
* If identify namespace failed, use default 512 byte block size so
* block layer can use before failing read/write for 0 capacity.
*/
if (ns->lba_shift == 0)
ns->lba_shift = 9;
bs = 1 << ns->lba_shift;
/* XXX: PI implementation requires metadata equal t10 pi tuple size */
pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
id->dps & NVME_NS_DPS_PI_MASK : 0;
if (disk->integrity && (ns->pi_type != pi_type || ns->ms != old_ms ||
bs != queue_logical_block_size(disk->queue) ||
(ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
blk_integrity_unregister(disk);
ns->pi_type = pi_type;
blk_queue_logical_block_size(ns->queue, bs);
if (ns->ms && !disk->integrity && (disk->flags & GENHD_FL_UP) &&
!(id->flbas & NVME_NS_FLBAS_META_EXT))
nvme_init_integrity(ns);
if (id->ncap == 0 || (ns->ms && !disk->integrity))
set_capacity(disk, 0);
else
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
if (dev->oncs & NVME_CTRL_ONCS_DSM)
nvme_config_discard(ns);
dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
return 0;
}
static const struct block_device_operations nvme_fops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.open = nvme_open,
.release = nvme_release,
.getgeo = nvme_getgeo,
.revalidate_disk= nvme_revalidate_disk,
};
static int nvme_kthread(void *data)
{
struct nvme_dev *dev, *next;
while (!kthread_should_stop()) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock(&dev_list_lock);
list_for_each_entry_safe(dev, next, &dev_list, node) {
int i;
if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
if (work_busy(&dev->reset_work))
continue;
list_del_init(&dev->node);
dev_warn(&dev->pci_dev->dev,
"Failed status: %x, reset controller\n",
readl(&dev->bar->csts));
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
continue;
}
for (i = 0; i < dev->queue_count; i++) {
struct nvme_queue *nvmeq = dev->queues[i];
if (!nvmeq)
continue;
spin_lock_irq(&nvmeq->q_lock);
nvme_process_cq(nvmeq);
while ((i == 0) && (dev->event_limit > 0)) {
if (nvme_submit_async_admin_req(dev))
break;
dev->event_limit--;
}
spin_unlock_irq(&nvmeq->q_lock);
}
}
spin_unlock(&dev_list_lock);
schedule_timeout(round_jiffies_relative(HZ));
}
return 0;
}
static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
{
struct nvme_ns *ns;
struct gendisk *disk;
int node = dev_to_node(&dev->pci_dev->dev);
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
if (!ns)
return;
ns->queue = blk_mq_init_queue(&dev->tagset);
if (IS_ERR(ns->queue))
goto out_free_ns;
queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
ns->dev = dev;
ns->queue->queuedata = ns;
disk = alloc_disk_node(0, node);
if (!disk)
goto out_free_queue;
ns->ns_id = nsid;
ns->disk = disk;
ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
list_add_tail(&ns->list, &dev->namespaces);
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
if (dev->max_hw_sectors)
blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
if (dev->stripe_size)
blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
if (dev->vwc & NVME_CTRL_VWC_PRESENT)
blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
disk->major = nvme_major;
disk->first_minor = 0;
disk->fops = &nvme_fops;
disk->private_data = ns;
disk->queue = ns->queue;
disk->driverfs_dev = dev->device;
disk->flags = GENHD_FL_EXT_DEVT;
sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
/*
* Initialize capacity to 0 until we establish the namespace format and
* setup integrity extentions if necessary. The revalidate_disk after
* add_disk allows the driver to register with integrity if the format
* requires it.
*/
set_capacity(disk, 0);
nvme_revalidate_disk(ns->disk);
add_disk(ns->disk);
if (ns->ms)
revalidate_disk(ns->disk);
return;
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
kfree(ns);
}
static void nvme_create_io_queues(struct nvme_dev *dev)
{
unsigned i;
for (i = dev->queue_count; i <= dev->max_qid; i++)
if (!nvme_alloc_queue(dev, i, dev->q_depth))
break;
for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
if (nvme_create_queue(dev->queues[i], i))
break;
}
static int set_queue_count(struct nvme_dev *dev, int count)
{
int status;
u32 result;
u32 q_count = (count - 1) | ((count - 1) << 16);
status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
&result);
if (status < 0)
return status;
if (status > 0) {
dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
status);
return 0;
}
return min(result & 0xffff, result >> 16) + 1;
}
static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
{
return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
}
static int nvme_setup_io_queues(struct nvme_dev *dev)
{
struct nvme_queue *adminq = dev->queues[0];
struct pci_dev *pdev = dev->pci_dev;
int result, i, vecs, nr_io_queues, size;
nr_io_queues = num_possible_cpus();
result = set_queue_count(dev, nr_io_queues);
if (result <= 0)
return result;
if (result < nr_io_queues)
nr_io_queues = result;
size = db_bar_size(dev, nr_io_queues);
if (size > 8192) {
iounmap(dev->bar);
do {
dev->bar = ioremap(pci_resource_start(pdev, 0), size);
if (dev->bar)
break;
if (!--nr_io_queues)
return -ENOMEM;
size = db_bar_size(dev, nr_io_queues);
} while (1);
dev->dbs = ((void __iomem *)dev->bar) + 4096;
adminq->q_db = dev->dbs;
}
/* Deregister the admin queue's interrupt */
free_irq(dev->entry[0].vector, adminq);
/*
* If we enable msix early due to not intx, disable it again before
* setting up the full range we need.
*/
if (!pdev->irq)
pci_disable_msix(pdev);
for (i = 0; i < nr_io_queues; i++)
dev->entry[i].entry = i;
vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
if (vecs < 0) {
vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
if (vecs < 0) {
vecs = 1;
} else {
for (i = 0; i < vecs; i++)
dev->entry[i].vector = i + pdev->irq;
}
}
/*
* Should investigate if there's a performance win from allocating
* more queues than interrupt vectors; it might allow the submission
* path to scale better, even if the receive path is limited by the
* number of interrupts.
*/
nr_io_queues = vecs;
dev->max_qid = nr_io_queues;
result = queue_request_irq(dev, adminq, adminq->irqname);
if (result)
goto free_queues;
/* Free previously allocated queues that are no longer usable */
nvme_free_queues(dev, nr_io_queues + 1);
nvme_create_io_queues(dev);
return 0;
free_queues:
nvme_free_queues(dev, 1);
return result;
}
/*
* Return: error value if an error occurred setting up the queues or calling
* Identify Device. 0 if these succeeded, even if adding some of the
* namespaces failed. At the moment, these failures are silent. TBD which
* failures should be reported.
*/
static int nvme_dev_add(struct nvme_dev *dev)
{
struct pci_dev *pdev = dev->pci_dev;
int res;
unsigned nn, i;
struct nvme_id_ctrl *ctrl;
void *mem;
dma_addr_t dma_addr;
int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
if (!mem)
return -ENOMEM;
res = nvme_identify(dev, 0, 1, dma_addr);
if (res) {
dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
return -EIO;
}
ctrl = mem;
nn = le32_to_cpup(&ctrl->nn);
dev->oncs = le16_to_cpup(&ctrl->oncs);
dev->abort_limit = ctrl->acl + 1;
dev->vwc = ctrl->vwc;
dev->event_limit = min(ctrl->aerl + 1, 8);
memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
if (ctrl->mdts)
dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
(pdev->device == 0x0953) && ctrl->vs[3]) {
unsigned int max_hw_sectors;
dev->stripe_size = 1 << (ctrl->vs[3] + shift);
max_hw_sectors = dev->stripe_size >> (shift - 9);
if (dev->max_hw_sectors) {
dev->max_hw_sectors = min(max_hw_sectors,
dev->max_hw_sectors);
} else
dev->max_hw_sectors = max_hw_sectors;
}
dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
dev->tagset.ops = &nvme_mq_ops;
dev->tagset.nr_hw_queues = dev->online_queues - 1;
dev->tagset.timeout = NVME_IO_TIMEOUT;
dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
dev->tagset.queue_depth =
min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
dev->tagset.cmd_size = nvme_cmd_size(dev);
dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
dev->tagset.driver_data = dev;
if (blk_mq_alloc_tag_set(&dev->tagset))
return 0;
for (i = 1; i <= nn; i++)
nvme_alloc_ns(dev, i);
return 0;
}
static int nvme_dev_map(struct nvme_dev *dev)
{
u64 cap;
int bars, result = -ENOMEM;
struct pci_dev *pdev = dev->pci_dev;
if (pci_enable_device_mem(pdev))
return result;
dev->entry[0].vector = pdev->irq;
pci_set_master(pdev);
bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (!bars)
goto disable_pci;
if (pci_request_selected_regions(pdev, bars, "nvme"))
goto disable_pci;
if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
goto disable;
dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
if (!dev->bar)
goto disable;
if (readl(&dev->bar->csts) == -1) {
result = -ENODEV;
goto unmap;
}
/*
* Some devices don't advertse INTx interrupts, pre-enable a single
* MSIX vec for setup. We'll adjust this later.
*/
if (!pdev->irq) {
result = pci_enable_msix(pdev, dev->entry, 1);
if (result < 0)
goto unmap;
}
cap = readq(&dev->bar->cap);
dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
dev->dbs = ((void __iomem *)dev->bar) + 4096;
return 0;
unmap:
iounmap(dev->bar);
dev->bar = NULL;
disable:
pci_release_regions(pdev);
disable_pci:
pci_disable_device(pdev);
return result;
}
static void nvme_dev_unmap(struct nvme_dev *dev)
{
if (dev->pci_dev->msi_enabled)
pci_disable_msi(dev->pci_dev);
else if (dev->pci_dev->msix_enabled)
pci_disable_msix(dev->pci_dev);
if (dev->bar) {
iounmap(dev->bar);
dev->bar = NULL;
pci_release_regions(dev->pci_dev);
}
if (pci_is_enabled(dev->pci_dev))
pci_disable_device(dev->pci_dev);
}
struct nvme_delq_ctx {
struct task_struct *waiter;
struct kthread_worker *worker;
atomic_t refcount;
};
static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
{
dq->waiter = current;
mb();
for (;;) {
set_current_state(TASK_KILLABLE);
if (!atomic_read(&dq->refcount))
break;
if (!schedule_timeout(ADMIN_TIMEOUT) ||
fatal_signal_pending(current)) {
/*
* Disable the controller first since we can't trust it
* at this point, but leave the admin queue enabled
* until all queue deletion requests are flushed.
* FIXME: This may take a while if there are more h/w
* queues than admin tags.
*/
set_current_state(TASK_RUNNING);
nvme_disable_ctrl(dev, readq(&dev->bar->cap));
nvme_clear_queue(dev->queues[0]);
flush_kthread_worker(dq->worker);
nvme_disable_queue(dev, 0);
return;
}
}
set_current_state(TASK_RUNNING);
}
static void nvme_put_dq(struct nvme_delq_ctx *dq)
{
atomic_dec(&dq->refcount);
if (dq->waiter)
wake_up_process(dq->waiter);
}
static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
{
atomic_inc(&dq->refcount);
return dq;
}
static void nvme_del_queue_end(struct nvme_queue *nvmeq)
{
struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
nvme_put_dq(dq);
}
static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
kthread_work_func_t fn)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
init_kthread_work(&nvmeq->cmdinfo.work, fn);
return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
ADMIN_TIMEOUT);
}
static void nvme_del_cq_work_handler(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
nvme_del_queue_end(nvmeq);
}
static int nvme_delete_cq(struct nvme_queue *nvmeq)
{
return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
nvme_del_cq_work_handler);
}
static void nvme_del_sq_work_handler(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
int status = nvmeq->cmdinfo.status;
if (!status)
status = nvme_delete_cq(nvmeq);
if (status)
nvme_del_queue_end(nvmeq);
}
static int nvme_delete_sq(struct nvme_queue *nvmeq)
{
return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
nvme_del_sq_work_handler);
}
static void nvme_del_queue_start(struct kthread_work *work)
{
struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
cmdinfo.work);
if (nvme_delete_sq(nvmeq))
nvme_del_queue_end(nvmeq);
}
static void nvme_disable_io_queues(struct nvme_dev *dev)
{
int i;
DEFINE_KTHREAD_WORKER_ONSTACK(worker);
struct nvme_delq_ctx dq;
struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
&worker, "nvme%d", dev->instance);
if (IS_ERR(kworker_task)) {
dev_err(&dev->pci_dev->dev,
"Failed to create queue del task\n");
for (i = dev->queue_count - 1; i > 0; i--)
nvme_disable_queue(dev, i);
return;
}
dq.waiter = NULL;
atomic_set(&dq.refcount, 0);
dq.worker = &worker;
for (i = dev->queue_count - 1; i > 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
if (nvme_suspend_queue(nvmeq))
continue;
nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
nvmeq->cmdinfo.worker = dq.worker;
init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
}
nvme_wait_dq(&dq, dev);
kthread_stop(kworker_task);
}
/*
* Remove the node from the device list and check
* for whether or not we need to stop the nvme_thread.
*/
static void nvme_dev_list_remove(struct nvme_dev *dev)
{
struct task_struct *tmp = NULL;
spin_lock(&dev_list_lock);
list_del_init(&dev->node);
if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
tmp = nvme_thread;
nvme_thread = NULL;
}
spin_unlock(&dev_list_lock);
if (tmp)
kthread_stop(tmp);
}
static void nvme_freeze_queues(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
blk_mq_freeze_queue_start(ns->queue);
spin_lock(ns->queue->queue_lock);
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
spin_unlock(ns->queue->queue_lock);
blk_mq_cancel_requeue_work(ns->queue);
blk_mq_stop_hw_queues(ns->queue);
}
}
static void nvme_unfreeze_queues(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
blk_mq_unfreeze_queue(ns->queue);
blk_mq_start_stopped_hw_queues(ns->queue, true);
blk_mq_kick_requeue_list(ns->queue);
}
}
static void nvme_dev_shutdown(struct nvme_dev *dev)
{
int i;
u32 csts = -1;
nvme_dev_list_remove(dev);
if (dev->bar) {
nvme_freeze_queues(dev);
csts = readl(&dev->bar->csts);
}
if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
for (i = dev->queue_count - 1; i >= 0; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
nvme_suspend_queue(nvmeq);
}
} else {
nvme_disable_io_queues(dev);
nvme_shutdown_ctrl(dev);
nvme_disable_queue(dev, 0);
}
nvme_dev_unmap(dev);
for (i = dev->queue_count - 1; i >= 0; i--)
nvme_clear_queue(dev->queues[i]);
}
static void nvme_dev_remove(struct nvme_dev *dev)
{
struct nvme_ns *ns;
list_for_each_entry(ns, &dev->namespaces, list) {
if (ns->disk->flags & GENHD_FL_UP) {
if (ns->disk->integrity)
blk_integrity_unregister(ns->disk);
del_gendisk(ns->disk);
}
if (!blk_queue_dying(ns->queue)) {
blk_mq_abort_requeue_list(ns->queue);
blk_cleanup_queue(ns->queue);
}
}
}
static int nvme_setup_prp_pools(struct nvme_dev *dev)
{
struct device *dmadev = &dev->pci_dev->dev;
dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
PAGE_SIZE, PAGE_SIZE, 0);
if (!dev->prp_page_pool)
return -ENOMEM;
/* Optimisation for I/Os between 4k and 128k */
dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
256, 256, 0);
if (!dev->prp_small_pool) {
dma_pool_destroy(dev->prp_page_pool);
return -ENOMEM;
}
return 0;
}
static void nvme_release_prp_pools(struct nvme_dev *dev)
{
dma_pool_destroy(dev->prp_page_pool);
dma_pool_destroy(dev->prp_small_pool);
}
static DEFINE_IDA(nvme_instance_ida);
static int nvme_set_instance(struct nvme_dev *dev)
{
int instance, error;
do {
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
return -ENODEV;
spin_lock(&dev_list_lock);
error = ida_get_new(&nvme_instance_ida, &instance);
spin_unlock(&dev_list_lock);
} while (error == -EAGAIN);
if (error)
return -ENODEV;
dev->instance = instance;
return 0;
}
static void nvme_release_instance(struct nvme_dev *dev)
{
spin_lock(&dev_list_lock);
ida_remove(&nvme_instance_ida, dev->instance);
spin_unlock(&dev_list_lock);
}
static void nvme_free_namespaces(struct nvme_dev *dev)
{
struct nvme_ns *ns, *next;
list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
list_del(&ns->list);
spin_lock(&dev_list_lock);
ns->disk->private_data = NULL;
spin_unlock(&dev_list_lock);
put_disk(ns->disk);
kfree(ns);
}
}
static void nvme_free_dev(struct kref *kref)
{
struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
pci_dev_put(dev->pci_dev);
put_device(dev->device);
nvme_free_namespaces(dev);
nvme_release_instance(dev);
blk_mq_free_tag_set(&dev->tagset);
blk_put_queue(dev->admin_q);
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
}
static int nvme_dev_open(struct inode *inode, struct file *f)
{
struct nvme_dev *dev;
int instance = iminor(inode);
int ret = -ENODEV;
spin_lock(&dev_list_lock);
list_for_each_entry(dev, &dev_list, node) {
if (dev->instance == instance) {
if (!dev->admin_q) {
ret = -EWOULDBLOCK;
break;
}
if (!kref_get_unless_zero(&dev->kref))
break;
f->private_data = dev;
ret = 0;
break;
}
}
spin_unlock(&dev_list_lock);
return ret;
}
static int nvme_dev_release(struct inode *inode, struct file *f)
{
struct nvme_dev *dev = f->private_data;
kref_put(&dev->kref, nvme_free_dev);
return 0;
}
static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
struct nvme_dev *dev = f->private_data;
struct nvme_ns *ns;
switch (cmd) {
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(dev, NULL, (void __user *)arg);
case NVME_IOCTL_IO_CMD:
if (list_empty(&dev->namespaces))
return -ENOTTY;
ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
return nvme_user_cmd(dev, ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
static const struct file_operations nvme_dev_fops = {
.owner = THIS_MODULE,
.open = nvme_dev_open,
.release = nvme_dev_release,
.unlocked_ioctl = nvme_dev_ioctl,
.compat_ioctl = nvme_dev_ioctl,
};
static void nvme_set_irq_hints(struct nvme_dev *dev)
{
struct nvme_queue *nvmeq;
int i;
for (i = 0; i < dev->online_queues; i++) {
nvmeq = dev->queues[i];
if (!nvmeq->hctx)
continue;
irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
nvmeq->hctx->cpumask);
}
}
static int nvme_dev_start(struct nvme_dev *dev)
{
int result;
bool start_thread = false;
result = nvme_dev_map(dev);
if (result)
return result;
result = nvme_configure_admin_queue(dev);
if (result)
goto unmap;
spin_lock(&dev_list_lock);
if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
start_thread = true;
nvme_thread = NULL;
}
list_add(&dev->node, &dev_list);
spin_unlock(&dev_list_lock);
if (start_thread) {
nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
wake_up_all(&nvme_kthread_wait);
} else
wait_event_killable(nvme_kthread_wait, nvme_thread);
if (IS_ERR_OR_NULL(nvme_thread)) {
result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
goto disable;
}
nvme_init_queue(dev->queues[0], 0);
result = nvme_alloc_admin_tags(dev);
if (result)
goto disable;
result = nvme_setup_io_queues(dev);
if (result)
goto free_tags;
nvme_set_irq_hints(dev);
return result;
free_tags:
nvme_dev_remove_admin(dev);
disable:
nvme_disable_queue(dev, 0);
nvme_dev_list_remove(dev);
unmap:
nvme_dev_unmap(dev);
return result;
}
static int nvme_remove_dead_ctrl(void *arg)
{
struct nvme_dev *dev = (struct nvme_dev *)arg;
struct pci_dev *pdev = dev->pci_dev;
if (pci_get_drvdata(pdev))
pci_stop_and_remove_bus_device_locked(pdev);
kref_put(&dev->kref, nvme_free_dev);
return 0;
}
static void nvme_remove_disks(struct work_struct *ws)
{
struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
nvme_free_queues(dev, 1);
nvme_dev_remove(dev);
}
static int nvme_dev_resume(struct nvme_dev *dev)
{
int ret;
ret = nvme_dev_start(dev);
if (ret)
return ret;
if (dev->online_queues < 2) {
spin_lock(&dev_list_lock);
dev->reset_workfn = nvme_remove_disks;
queue_work(nvme_workq, &dev->reset_work);
spin_unlock(&dev_list_lock);
} else {
nvme_unfreeze_queues(dev);
nvme_set_irq_hints(dev);
}
return 0;
}
static void nvme_dev_reset(struct nvme_dev *dev)
{
nvme_dev_shutdown(dev);
if (nvme_dev_resume(dev)) {
dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
kref_get(&dev->kref);
if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
dev->instance))) {
dev_err(&dev->pci_dev->dev,
"Failed to start controller remove task\n");
kref_put(&dev->kref, nvme_free_dev);
}
}
}
static void nvme_reset_failed_dev(struct work_struct *ws)
{
struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
nvme_dev_reset(dev);
}
static void nvme_reset_workfn(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
dev->reset_workfn(work);
}
static void nvme_async_probe(struct work_struct *work);
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int node, result = -ENOMEM;
struct nvme_dev *dev;
node = dev_to_node(&pdev->dev);
if (node == NUMA_NO_NODE)
set_dev_node(&pdev->dev, 0);
dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
if (!dev)
return -ENOMEM;
dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
GFP_KERNEL, node);
if (!dev->entry)
goto free;
dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
GFP_KERNEL, node);
if (!dev->queues)
goto free;
INIT_LIST_HEAD(&dev->namespaces);
dev->reset_workfn = nvme_reset_failed_dev;
INIT_WORK(&dev->reset_work, nvme_reset_workfn);
dev->pci_dev = pci_dev_get(pdev);
pci_set_drvdata(pdev, dev);
result = nvme_set_instance(dev);
if (result)
goto put_pci;
result = nvme_setup_prp_pools(dev);
if (result)
goto release;
kref_init(&dev->kref);
dev->device = device_create(nvme_class, &pdev->dev,
MKDEV(nvme_char_major, dev->instance),
dev, "nvme%d", dev->instance);
if (IS_ERR(dev->device)) {
result = PTR_ERR(dev->device);
goto release_pools;
}
get_device(dev->device);
INIT_WORK(&dev->probe_work, nvme_async_probe);
schedule_work(&dev->probe_work);
return 0;
release_pools:
nvme_release_prp_pools(dev);
release:
nvme_release_instance(dev);
put_pci:
pci_dev_put(dev->pci_dev);
free:
kfree(dev->queues);
kfree(dev->entry);
kfree(dev);
return result;
}
static void nvme_async_probe(struct work_struct *work)
{
struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
int result;
result = nvme_dev_start(dev);
if (result)
goto reset;
if (dev->online_queues > 1)
result = nvme_dev_add(dev);
if (result)
goto reset;
nvme_set_irq_hints(dev);
return;
reset:
if (!work_busy(&dev->reset_work)) {
dev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &dev->reset_work);
}
}
static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
if (prepare)
nvme_dev_shutdown(dev);
else
nvme_dev_resume(dev);
}
static void nvme_shutdown(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
nvme_dev_shutdown(dev);
}
static void nvme_remove(struct pci_dev *pdev)
{
struct nvme_dev *dev = pci_get_drvdata(pdev);
spin_lock(&dev_list_lock);
list_del_init(&dev->node);
spin_unlock(&dev_list_lock);
pci_set_drvdata(pdev, NULL);
flush_work(&dev->probe_work);
flush_work(&dev->reset_work);
nvme_dev_shutdown(dev);
nvme_dev_remove(dev);
nvme_dev_remove_admin(dev);
device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
nvme_free_queues(dev, 0);
nvme_release_prp_pools(dev);
kref_put(&dev->kref, nvme_free_dev);
}
/* These functions are yet to be implemented */
#define nvme_error_detected NULL
#define nvme_dump_registers NULL
#define nvme_link_reset NULL
#define nvme_slot_reset NULL
#define nvme_error_resume NULL
#ifdef CONFIG_PM_SLEEP
static int nvme_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
nvme_dev_shutdown(ndev);
return 0;
}
static int nvme_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct nvme_dev *ndev = pci_get_drvdata(pdev);
if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
ndev->reset_workfn = nvme_reset_failed_dev;
queue_work(nvme_workq, &ndev->reset_work);
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
static const struct pci_error_handlers nvme_err_handler = {
.error_detected = nvme_error_detected,
.mmio_enabled = nvme_dump_registers,
.link_reset = nvme_link_reset,
.slot_reset = nvme_slot_reset,
.resume = nvme_error_resume,
.reset_notify = nvme_reset_notify,
};
/* Move to pci_ids.h later */
#define PCI_CLASS_STORAGE_EXPRESS 0x010802
static const struct pci_device_id nvme_id_table[] = {
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, nvme_id_table);
static struct pci_driver nvme_driver = {
.name = "nvme",
.id_table = nvme_id_table,
.probe = nvme_probe,
.remove = nvme_remove,
.shutdown = nvme_shutdown,
.driver = {
.pm = &nvme_dev_pm_ops,
},
.err_handler = &nvme_err_handler,
};
static int __init nvme_init(void)
{
int result;
init_waitqueue_head(&nvme_kthread_wait);
nvme_workq = create_singlethread_workqueue("nvme");
if (!nvme_workq)
return -ENOMEM;
result = register_blkdev(nvme_major, "nvme");
if (result < 0)
goto kill_workq;
else if (result > 0)
nvme_major = result;
result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
&nvme_dev_fops);
if (result < 0)
goto unregister_blkdev;
else if (result > 0)
nvme_char_major = result;
nvme_class = class_create(THIS_MODULE, "nvme");
if (!nvme_class)
goto unregister_chrdev;
result = pci_register_driver(&nvme_driver);
if (result)
goto destroy_class;
return 0;
destroy_class:
class_destroy(nvme_class);
unregister_chrdev:
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
unregister_blkdev:
unregister_blkdev(nvme_major, "nvme");
kill_workq:
destroy_workqueue(nvme_workq);
return result;
}
static void __exit nvme_exit(void)
{
pci_unregister_driver(&nvme_driver);
unregister_blkdev(nvme_major, "nvme");
destroy_workqueue(nvme_workq);
class_destroy(nvme_class);
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
_nvme_check_size();
}
MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_init);
module_exit(nvme_exit);