linux_old1/drivers/media/video/mt9t031.c

808 lines
21 KiB
C

/*
* Driver for MT9T031 CMOS Image Sensor from Micron
*
* Copyright (C) 2008, Guennadi Liakhovetski, DENX Software Engineering <lg@denx.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/videodev2.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/log2.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-chip-ident.h>
#include <media/soc_camera.h>
/* mt9t031 i2c address 0x5d
* The platform has to define i2c_board_info and link to it from
* struct soc_camera_link */
/* mt9t031 selected register addresses */
#define MT9T031_CHIP_VERSION 0x00
#define MT9T031_ROW_START 0x01
#define MT9T031_COLUMN_START 0x02
#define MT9T031_WINDOW_HEIGHT 0x03
#define MT9T031_WINDOW_WIDTH 0x04
#define MT9T031_HORIZONTAL_BLANKING 0x05
#define MT9T031_VERTICAL_BLANKING 0x06
#define MT9T031_OUTPUT_CONTROL 0x07
#define MT9T031_SHUTTER_WIDTH_UPPER 0x08
#define MT9T031_SHUTTER_WIDTH 0x09
#define MT9T031_PIXEL_CLOCK_CONTROL 0x0a
#define MT9T031_FRAME_RESTART 0x0b
#define MT9T031_SHUTTER_DELAY 0x0c
#define MT9T031_RESET 0x0d
#define MT9T031_READ_MODE_1 0x1e
#define MT9T031_READ_MODE_2 0x20
#define MT9T031_READ_MODE_3 0x21
#define MT9T031_ROW_ADDRESS_MODE 0x22
#define MT9T031_COLUMN_ADDRESS_MODE 0x23
#define MT9T031_GLOBAL_GAIN 0x35
#define MT9T031_CHIP_ENABLE 0xF8
#define MT9T031_MAX_HEIGHT 1536
#define MT9T031_MAX_WIDTH 2048
#define MT9T031_MIN_HEIGHT 2
#define MT9T031_MIN_WIDTH 2
#define MT9T031_HORIZONTAL_BLANK 142
#define MT9T031_VERTICAL_BLANK 25
#define MT9T031_COLUMN_SKIP 32
#define MT9T031_ROW_SKIP 20
#define MT9T031_BUS_PARAM (SOCAM_PCLK_SAMPLE_RISING | \
SOCAM_PCLK_SAMPLE_FALLING | SOCAM_HSYNC_ACTIVE_HIGH | \
SOCAM_VSYNC_ACTIVE_HIGH | SOCAM_DATA_ACTIVE_HIGH | \
SOCAM_MASTER | SOCAM_DATAWIDTH_10)
static const struct soc_camera_data_format mt9t031_colour_formats[] = {
{
.name = "Bayer (sRGB) 10 bit",
.depth = 10,
.fourcc = V4L2_PIX_FMT_SGRBG10,
.colorspace = V4L2_COLORSPACE_SRGB,
}
};
struct mt9t031 {
struct v4l2_subdev subdev;
int model; /* V4L2_IDENT_MT9T031* codes from v4l2-chip-ident.h */
unsigned char autoexposure;
u16 xskip;
u16 yskip;
};
static struct mt9t031 *to_mt9t031(const struct i2c_client *client)
{
return container_of(i2c_get_clientdata(client), struct mt9t031, subdev);
}
static int reg_read(struct i2c_client *client, const u8 reg)
{
s32 data = i2c_smbus_read_word_data(client, reg);
return data < 0 ? data : swab16(data);
}
static int reg_write(struct i2c_client *client, const u8 reg,
const u16 data)
{
return i2c_smbus_write_word_data(client, reg, swab16(data));
}
static int reg_set(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret | data);
}
static int reg_clear(struct i2c_client *client, const u8 reg,
const u16 data)
{
int ret;
ret = reg_read(client, reg);
if (ret < 0)
return ret;
return reg_write(client, reg, ret & ~data);
}
static int set_shutter(struct i2c_client *client, const u32 data)
{
int ret;
ret = reg_write(client, MT9T031_SHUTTER_WIDTH_UPPER, data >> 16);
if (ret >= 0)
ret = reg_write(client, MT9T031_SHUTTER_WIDTH, data & 0xffff);
return ret;
}
static int get_shutter(struct i2c_client *client, u32 *data)
{
int ret;
ret = reg_read(client, MT9T031_SHUTTER_WIDTH_UPPER);
*data = ret << 16;
if (ret >= 0)
ret = reg_read(client, MT9T031_SHUTTER_WIDTH);
*data |= ret & 0xffff;
return ret < 0 ? ret : 0;
}
static int mt9t031_idle(struct i2c_client *client)
{
int ret;
/* Disable chip output, synchronous option update */
ret = reg_write(client, MT9T031_RESET, 1);
if (ret >= 0)
ret = reg_write(client, MT9T031_RESET, 0);
if (ret >= 0)
ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2);
return ret >= 0 ? 0 : -EIO;
}
static int mt9t031_disable(struct i2c_client *client)
{
/* Disable the chip */
reg_clear(client, MT9T031_OUTPUT_CONTROL, 2);
return 0;
}
static int mt9t031_init(struct soc_camera_device *icd)
{
struct i2c_client *client = to_i2c_client(to_soc_camera_control(icd));
return mt9t031_idle(client);
}
static int mt9t031_release(struct soc_camera_device *icd)
{
struct i2c_client *client = to_i2c_client(to_soc_camera_control(icd));
return mt9t031_disable(client);
}
static int mt9t031_s_stream(struct v4l2_subdev *sd, int enable)
{
struct i2c_client *client = sd->priv;
int ret;
if (enable)
/* Switch to master "normal" mode */
ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 2);
else
/* Stop sensor readout */
ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 2);
if (ret < 0)
return -EIO;
return 0;
}
static int mt9t031_set_bus_param(struct soc_camera_device *icd,
unsigned long flags)
{
struct i2c_client *client = to_i2c_client(to_soc_camera_control(icd));
/* The caller should have queried our parameters, check anyway */
if (flags & ~MT9T031_BUS_PARAM)
return -EINVAL;
if (flags & SOCAM_PCLK_SAMPLE_FALLING)
reg_clear(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000);
else
reg_set(client, MT9T031_PIXEL_CLOCK_CONTROL, 0x8000);
return 0;
}
static unsigned long mt9t031_query_bus_param(struct soc_camera_device *icd)
{
struct soc_camera_link *icl = to_soc_camera_link(icd);
return soc_camera_apply_sensor_flags(icl, MT9T031_BUS_PARAM);
}
/* Round up minima and round down maxima */
static void recalculate_limits(struct soc_camera_device *icd,
u16 xskip, u16 yskip)
{
icd->rect_max.left = (MT9T031_COLUMN_SKIP + xskip - 1) / xskip;
icd->rect_max.top = (MT9T031_ROW_SKIP + yskip - 1) / yskip;
icd->width_min = (MT9T031_MIN_WIDTH + xskip - 1) / xskip;
icd->height_min = (MT9T031_MIN_HEIGHT + yskip - 1) / yskip;
icd->rect_max.width = MT9T031_MAX_WIDTH / xskip;
icd->rect_max.height = MT9T031_MAX_HEIGHT / yskip;
}
static int mt9t031_set_params(struct soc_camera_device *icd,
struct v4l2_rect *rect, u16 xskip, u16 yskip)
{
struct i2c_client *client = to_i2c_client(to_soc_camera_control(icd));
struct mt9t031 *mt9t031 = to_mt9t031(client);
int ret;
u16 xbin, ybin, width, height, left, top;
const u16 hblank = MT9T031_HORIZONTAL_BLANK,
vblank = MT9T031_VERTICAL_BLANK;
width = rect->width * xskip;
height = rect->height * yskip;
left = rect->left * xskip;
top = rect->top * yskip;
xbin = min(xskip, (u16)3);
ybin = min(yskip, (u16)3);
dev_dbg(&icd->dev, "xskip %u, width %u/%u, yskip %u, height %u/%u\n",
xskip, width, rect->width, yskip, height, rect->height);
/* Could just do roundup(rect->left, [xy]bin * 2); but this is cheaper */
switch (xbin) {
case 2:
left = (left + 3) & ~3;
break;
case 3:
left = roundup(left, 6);
}
switch (ybin) {
case 2:
top = (top + 3) & ~3;
break;
case 3:
top = roundup(top, 6);
}
/* Disable register update, reconfigure atomically */
ret = reg_set(client, MT9T031_OUTPUT_CONTROL, 1);
if (ret < 0)
return ret;
/* Blanking and start values - default... */
ret = reg_write(client, MT9T031_HORIZONTAL_BLANKING, hblank);
if (ret >= 0)
ret = reg_write(client, MT9T031_VERTICAL_BLANKING, vblank);
if (yskip != mt9t031->yskip || xskip != mt9t031->xskip) {
/* Binning, skipping */
if (ret >= 0)
ret = reg_write(client, MT9T031_COLUMN_ADDRESS_MODE,
((xbin - 1) << 4) | (xskip - 1));
if (ret >= 0)
ret = reg_write(client, MT9T031_ROW_ADDRESS_MODE,
((ybin - 1) << 4) | (yskip - 1));
}
dev_dbg(&icd->dev, "new physical left %u, top %u\n", left, top);
/* The caller provides a supported format, as guaranteed by
* icd->try_fmt_cap(), soc_camera_s_crop() and soc_camera_cropcap() */
if (ret >= 0)
ret = reg_write(client, MT9T031_COLUMN_START, left);
if (ret >= 0)
ret = reg_write(client, MT9T031_ROW_START, top);
if (ret >= 0)
ret = reg_write(client, MT9T031_WINDOW_WIDTH, width - 1);
if (ret >= 0)
ret = reg_write(client, MT9T031_WINDOW_HEIGHT,
height + icd->y_skip_top - 1);
if (ret >= 0 && mt9t031->autoexposure) {
ret = set_shutter(client, height + icd->y_skip_top + vblank);
if (ret >= 0) {
const u32 shutter_max = MT9T031_MAX_HEIGHT + vblank;
const struct v4l2_queryctrl *qctrl =
soc_camera_find_qctrl(icd->ops,
V4L2_CID_EXPOSURE);
icd->exposure = (shutter_max / 2 + (height +
icd->y_skip_top + vblank - 1) *
(qctrl->maximum - qctrl->minimum)) /
shutter_max + qctrl->minimum;
}
}
/* Re-enable register update, commit all changes */
if (ret >= 0)
ret = reg_clear(client, MT9T031_OUTPUT_CONTROL, 1);
return ret < 0 ? ret : 0;
}
static int mt9t031_set_crop(struct soc_camera_device *icd,
struct v4l2_rect *rect)
{
struct i2c_client *client = to_i2c_client(to_soc_camera_control(icd));
struct mt9t031 *mt9t031 = to_mt9t031(client);
/* Make sure we don't exceed sensor limits */
if (rect->left + rect->width > icd->rect_max.left + icd->rect_max.width)
rect->left = icd->rect_max.width + icd->rect_max.left -
rect->width;
if (rect->top + rect->height > icd->rect_max.height + icd->rect_max.top)
rect->top = icd->rect_max.height + icd->rect_max.top -
rect->height;
/* CROP - no change in scaling, or in limits */
return mt9t031_set_params(icd, rect, mt9t031->xskip, mt9t031->yskip);
}
static int mt9t031_s_fmt(struct v4l2_subdev *sd, struct v4l2_format *f)
{
struct i2c_client *client = sd->priv;
struct mt9t031 *mt9t031 = to_mt9t031(client);
struct soc_camera_device *icd = client->dev.platform_data;
int ret;
u16 xskip, yskip;
struct v4l2_rect rect = {
.left = icd->rect_current.left,
.top = icd->rect_current.top,
.width = f->fmt.pix.width,
.height = f->fmt.pix.height,
};
/*
* try_fmt has put rectangle within limits.
* S_FMT - use binning and skipping for scaling, recalculate
* limits, used for cropping
*/
/* Is this more optimal than just a division? */
for (xskip = 8; xskip > 1; xskip--)
if (rect.width * xskip <= MT9T031_MAX_WIDTH)
break;
for (yskip = 8; yskip > 1; yskip--)
if (rect.height * yskip <= MT9T031_MAX_HEIGHT)
break;
recalculate_limits(icd, xskip, yskip);
ret = mt9t031_set_params(icd, &rect, xskip, yskip);
if (!ret) {
mt9t031->xskip = xskip;
mt9t031->yskip = yskip;
}
return ret;
}
static int mt9t031_try_fmt(struct v4l2_subdev *sd, struct v4l2_format *f)
{
struct v4l2_pix_format *pix = &f->fmt.pix;
v4l_bound_align_image(
&pix->width, MT9T031_MIN_WIDTH, MT9T031_MAX_WIDTH, 1,
&pix->height, MT9T031_MIN_HEIGHT, MT9T031_MAX_HEIGHT, 1, 0);
return 0;
}
static int mt9t031_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *id)
{
struct i2c_client *client = sd->priv;
struct mt9t031 *mt9t031 = to_mt9t031(client);
if (id->match.type != V4L2_CHIP_MATCH_I2C_ADDR)
return -EINVAL;
if (id->match.addr != client->addr)
return -ENODEV;
id->ident = mt9t031->model;
id->revision = 0;
return 0;
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int mt9t031_g_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = sd->priv;
if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff)
return -EINVAL;
if (reg->match.addr != client->addr)
return -ENODEV;
reg->val = reg_read(client, reg->reg);
if (reg->val > 0xffff)
return -EIO;
return 0;
}
static int mt9t031_s_register(struct v4l2_subdev *sd,
struct v4l2_dbg_register *reg)
{
struct i2c_client *client = sd->priv;
if (reg->match.type != V4L2_CHIP_MATCH_I2C_ADDR || reg->reg > 0xff)
return -EINVAL;
if (reg->match.addr != client->addr)
return -ENODEV;
if (reg_write(client, reg->reg, reg->val) < 0)
return -EIO;
return 0;
}
#endif
static const struct v4l2_queryctrl mt9t031_controls[] = {
{
.id = V4L2_CID_VFLIP,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Flip Vertically",
.minimum = 0,
.maximum = 1,
.step = 1,
.default_value = 0,
}, {
.id = V4L2_CID_HFLIP,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Flip Horizontally",
.minimum = 0,
.maximum = 1,
.step = 1,
.default_value = 0,
}, {
.id = V4L2_CID_GAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Gain",
.minimum = 0,
.maximum = 127,
.step = 1,
.default_value = 64,
.flags = V4L2_CTRL_FLAG_SLIDER,
}, {
.id = V4L2_CID_EXPOSURE,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Exposure",
.minimum = 1,
.maximum = 255,
.step = 1,
.default_value = 255,
.flags = V4L2_CTRL_FLAG_SLIDER,
}, {
.id = V4L2_CID_EXPOSURE_AUTO,
.type = V4L2_CTRL_TYPE_BOOLEAN,
.name = "Automatic Exposure",
.minimum = 0,
.maximum = 1,
.step = 1,
.default_value = 1,
}
};
static struct soc_camera_ops mt9t031_ops = {
.init = mt9t031_init,
.release = mt9t031_release,
.set_crop = mt9t031_set_crop,
.set_bus_param = mt9t031_set_bus_param,
.query_bus_param = mt9t031_query_bus_param,
.controls = mt9t031_controls,
.num_controls = ARRAY_SIZE(mt9t031_controls),
};
static int mt9t031_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct i2c_client *client = sd->priv;
struct mt9t031 *mt9t031 = to_mt9t031(client);
int data;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
data = reg_read(client, MT9T031_READ_MODE_2);
if (data < 0)
return -EIO;
ctrl->value = !!(data & 0x8000);
break;
case V4L2_CID_HFLIP:
data = reg_read(client, MT9T031_READ_MODE_2);
if (data < 0)
return -EIO;
ctrl->value = !!(data & 0x4000);
break;
case V4L2_CID_EXPOSURE_AUTO:
ctrl->value = mt9t031->autoexposure;
break;
}
return 0;
}
static int mt9t031_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
struct i2c_client *client = sd->priv;
struct mt9t031 *mt9t031 = to_mt9t031(client);
struct soc_camera_device *icd = client->dev.platform_data;
const struct v4l2_queryctrl *qctrl;
int data;
qctrl = soc_camera_find_qctrl(&mt9t031_ops, ctrl->id);
if (!qctrl)
return -EINVAL;
switch (ctrl->id) {
case V4L2_CID_VFLIP:
if (ctrl->value)
data = reg_set(client, MT9T031_READ_MODE_2, 0x8000);
else
data = reg_clear(client, MT9T031_READ_MODE_2, 0x8000);
if (data < 0)
return -EIO;
break;
case V4L2_CID_HFLIP:
if (ctrl->value)
data = reg_set(client, MT9T031_READ_MODE_2, 0x4000);
else
data = reg_clear(client, MT9T031_READ_MODE_2, 0x4000);
if (data < 0)
return -EIO;
break;
case V4L2_CID_GAIN:
if (ctrl->value > qctrl->maximum || ctrl->value < qctrl->minimum)
return -EINVAL;
/* See Datasheet Table 7, Gain settings. */
if (ctrl->value <= qctrl->default_value) {
/* Pack it into 0..1 step 0.125, register values 0..8 */
unsigned long range = qctrl->default_value - qctrl->minimum;
data = ((ctrl->value - qctrl->minimum) * 8 + range / 2) / range;
dev_dbg(&icd->dev, "Setting gain %d\n", data);
data = reg_write(client, MT9T031_GLOBAL_GAIN, data);
if (data < 0)
return -EIO;
} else {
/* Pack it into 1.125..128 variable step, register values 9..0x7860 */
/* We assume qctrl->maximum - qctrl->default_value - 1 > 0 */
unsigned long range = qctrl->maximum - qctrl->default_value - 1;
/* calculated gain: map 65..127 to 9..1024 step 0.125 */
unsigned long gain = ((ctrl->value - qctrl->default_value - 1) *
1015 + range / 2) / range + 9;
if (gain <= 32) /* calculated gain 9..32 -> 9..32 */
data = gain;
else if (gain <= 64) /* calculated gain 33..64 -> 0x51..0x60 */
data = ((gain - 32) * 16 + 16) / 32 + 80;
else
/* calculated gain 65..1024 -> (1..120) << 8 + 0x60 */
data = (((gain - 64 + 7) * 32) & 0xff00) | 0x60;
dev_dbg(&icd->dev, "Setting gain from 0x%x to 0x%x\n",
reg_read(client, MT9T031_GLOBAL_GAIN), data);
data = reg_write(client, MT9T031_GLOBAL_GAIN, data);
if (data < 0)
return -EIO;
}
/* Success */
icd->gain = ctrl->value;
break;
case V4L2_CID_EXPOSURE:
/* mt9t031 has maximum == default */
if (ctrl->value > qctrl->maximum || ctrl->value < qctrl->minimum)
return -EINVAL;
else {
const unsigned long range = qctrl->maximum - qctrl->minimum;
const u32 shutter = ((ctrl->value - qctrl->minimum) * 1048 +
range / 2) / range + 1;
u32 old;
get_shutter(client, &old);
dev_dbg(&icd->dev, "Setting shutter width from %u to %u\n",
old, shutter);
if (set_shutter(client, shutter) < 0)
return -EIO;
icd->exposure = ctrl->value;
mt9t031->autoexposure = 0;
}
break;
case V4L2_CID_EXPOSURE_AUTO:
if (ctrl->value) {
const u16 vblank = MT9T031_VERTICAL_BLANK;
const u32 shutter_max = MT9T031_MAX_HEIGHT + vblank;
if (set_shutter(client, icd->rect_current.height +
icd->y_skip_top + vblank) < 0)
return -EIO;
qctrl = soc_camera_find_qctrl(icd->ops, V4L2_CID_EXPOSURE);
icd->exposure = (shutter_max / 2 +
(icd->rect_current.height +
icd->y_skip_top + vblank - 1) *
(qctrl->maximum - qctrl->minimum)) /
shutter_max + qctrl->minimum;
mt9t031->autoexposure = 1;
} else
mt9t031->autoexposure = 0;
break;
}
return 0;
}
/* Interface active, can use i2c. If it fails, it can indeed mean, that
* this wasn't our capture interface, so, we wait for the right one */
static int mt9t031_video_probe(struct i2c_client *client)
{
struct soc_camera_device *icd = client->dev.platform_data;
struct mt9t031 *mt9t031 = to_mt9t031(client);
s32 data;
/* We must have a parent by now. And it cannot be a wrong one.
* So this entire test is completely redundant. */
if (!icd->dev.parent ||
to_soc_camera_host(icd->dev.parent)->nr != icd->iface)
return -ENODEV;
/* Enable the chip */
data = reg_write(client, MT9T031_CHIP_ENABLE, 1);
dev_dbg(&icd->dev, "write: %d\n", data);
/* Read out the chip version register */
data = reg_read(client, MT9T031_CHIP_VERSION);
switch (data) {
case 0x1621:
mt9t031->model = V4L2_IDENT_MT9T031;
icd->formats = mt9t031_colour_formats;
icd->num_formats = ARRAY_SIZE(mt9t031_colour_formats);
break;
default:
dev_err(&icd->dev,
"No MT9T031 chip detected, register read %x\n", data);
return -ENODEV;
}
dev_info(&icd->dev, "Detected a MT9T031 chip ID %x\n", data);
return 0;
}
static struct v4l2_subdev_core_ops mt9t031_subdev_core_ops = {
.g_ctrl = mt9t031_g_ctrl,
.s_ctrl = mt9t031_s_ctrl,
.g_chip_ident = mt9t031_g_chip_ident,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = mt9t031_g_register,
.s_register = mt9t031_s_register,
#endif
};
static struct v4l2_subdev_video_ops mt9t031_subdev_video_ops = {
.s_stream = mt9t031_s_stream,
.s_fmt = mt9t031_s_fmt,
.try_fmt = mt9t031_try_fmt,
};
static struct v4l2_subdev_ops mt9t031_subdev_ops = {
.core = &mt9t031_subdev_core_ops,
.video = &mt9t031_subdev_video_ops,
};
static int mt9t031_probe(struct i2c_client *client,
const struct i2c_device_id *did)
{
struct mt9t031 *mt9t031;
struct soc_camera_device *icd = client->dev.platform_data;
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct soc_camera_link *icl;
int ret;
if (!icd) {
dev_err(&client->dev, "MT9T031: missing soc-camera data!\n");
return -EINVAL;
}
icl = to_soc_camera_link(icd);
if (!icl) {
dev_err(&client->dev, "MT9T031 driver needs platform data\n");
return -EINVAL;
}
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
dev_warn(&adapter->dev,
"I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n");
return -EIO;
}
mt9t031 = kzalloc(sizeof(struct mt9t031), GFP_KERNEL);
if (!mt9t031)
return -ENOMEM;
v4l2_i2c_subdev_init(&mt9t031->subdev, client, &mt9t031_subdev_ops);
/* Second stage probe - when a capture adapter is there */
icd->ops = &mt9t031_ops;
icd->rect_max.left = MT9T031_COLUMN_SKIP;
icd->rect_max.top = MT9T031_ROW_SKIP;
icd->rect_current.left = icd->rect_max.left;
icd->rect_current.top = icd->rect_max.top;
icd->width_min = MT9T031_MIN_WIDTH;
icd->rect_max.width = MT9T031_MAX_WIDTH;
icd->height_min = MT9T031_MIN_HEIGHT;
icd->rect_max.height = MT9T031_MAX_HEIGHT;
icd->y_skip_top = 0;
/* Simulated autoexposure. If enabled, we calculate shutter width
* ourselves in the driver based on vertical blanking and frame width */
mt9t031->autoexposure = 1;
mt9t031->xskip = 1;
mt9t031->yskip = 1;
mt9t031_idle(client);
ret = mt9t031_video_probe(client);
mt9t031_disable(client);
if (ret) {
icd->ops = NULL;
i2c_set_clientdata(client, NULL);
kfree(mt9t031);
}
return ret;
}
static int mt9t031_remove(struct i2c_client *client)
{
struct mt9t031 *mt9t031 = to_mt9t031(client);
struct soc_camera_device *icd = client->dev.platform_data;
icd->ops = NULL;
i2c_set_clientdata(client, NULL);
client->driver = NULL;
kfree(mt9t031);
return 0;
}
static const struct i2c_device_id mt9t031_id[] = {
{ "mt9t031", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, mt9t031_id);
static struct i2c_driver mt9t031_i2c_driver = {
.driver = {
.name = "mt9t031",
},
.probe = mt9t031_probe,
.remove = mt9t031_remove,
.id_table = mt9t031_id,
};
static int __init mt9t031_mod_init(void)
{
return i2c_add_driver(&mt9t031_i2c_driver);
}
static void __exit mt9t031_mod_exit(void)
{
i2c_del_driver(&mt9t031_i2c_driver);
}
module_init(mt9t031_mod_init);
module_exit(mt9t031_mod_exit);
MODULE_DESCRIPTION("Micron MT9T031 Camera driver");
MODULE_AUTHOR("Guennadi Liakhovetski <lg@denx.de>");
MODULE_LICENSE("GPL v2");