1611 lines
41 KiB
C
1611 lines
41 KiB
C
/*
|
|
* Copyright (c) 2008, Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "core.h"
|
|
#include "regd.h"
|
|
|
|
static u32 ath_chainmask_sel_up_rssi_thres =
|
|
ATH_CHAINMASK_SEL_UP_RSSI_THRES;
|
|
static u32 ath_chainmask_sel_down_rssi_thres =
|
|
ATH_CHAINMASK_SEL_DOWN_RSSI_THRES;
|
|
static u32 ath_chainmask_sel_period =
|
|
ATH_CHAINMASK_SEL_TIMEOUT;
|
|
|
|
/* return bus cachesize in 4B word units */
|
|
|
|
static void bus_read_cachesize(struct ath_softc *sc, int *csz)
|
|
{
|
|
u8 u8tmp;
|
|
|
|
pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
|
|
*csz = (int)u8tmp;
|
|
|
|
/*
|
|
* This check was put in to avoid "unplesant" consequences if
|
|
* the bootrom has not fully initialized all PCI devices.
|
|
* Sometimes the cache line size register is not set
|
|
*/
|
|
|
|
if (*csz == 0)
|
|
*csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
|
|
}
|
|
|
|
static u8 parse_mpdudensity(u8 mpdudensity)
|
|
{
|
|
/*
|
|
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
|
|
* 0 for no restriction
|
|
* 1 for 1/4 us
|
|
* 2 for 1/2 us
|
|
* 3 for 1 us
|
|
* 4 for 2 us
|
|
* 5 for 4 us
|
|
* 6 for 8 us
|
|
* 7 for 16 us
|
|
*/
|
|
switch (mpdudensity) {
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
/* Our lower layer calculations limit our precision to
|
|
1 microsecond */
|
|
return 1;
|
|
case 4:
|
|
return 2;
|
|
case 5:
|
|
return 4;
|
|
case 6:
|
|
return 8;
|
|
case 7:
|
|
return 16;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set current operating mode
|
|
*/
|
|
static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
|
|
{
|
|
sc->sc_curmode = mode;
|
|
/*
|
|
* All protection frames are transmited at 2Mb/s for
|
|
* 11g, otherwise at 1Mb/s.
|
|
* XXX select protection rate index from rate table.
|
|
*/
|
|
sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* Set up rate table (legacy rates)
|
|
*/
|
|
static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
|
|
{
|
|
struct ath_rate_table *rate_table = NULL;
|
|
struct ieee80211_supported_band *sband;
|
|
struct ieee80211_rate *rate;
|
|
int i, maxrates;
|
|
|
|
switch (band) {
|
|
case IEEE80211_BAND_2GHZ:
|
|
rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
|
|
break;
|
|
case IEEE80211_BAND_5GHZ:
|
|
rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (rate_table == NULL)
|
|
return;
|
|
|
|
sband = &sc->sbands[band];
|
|
rate = sc->rates[band];
|
|
|
|
if (rate_table->rate_cnt > ATH_RATE_MAX)
|
|
maxrates = ATH_RATE_MAX;
|
|
else
|
|
maxrates = rate_table->rate_cnt;
|
|
|
|
for (i = 0; i < maxrates; i++) {
|
|
rate[i].bitrate = rate_table->info[i].ratekbps / 100;
|
|
rate[i].hw_value = rate_table->info[i].ratecode;
|
|
sband->n_bitrates++;
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"%s: Rate: %2dMbps, ratecode: %2d\n",
|
|
__func__,
|
|
rate[i].bitrate / 10,
|
|
rate[i].hw_value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up channel list
|
|
*/
|
|
static int ath_setup_channels(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int nchan, i, a = 0, b = 0;
|
|
u8 regclassids[ATH_REGCLASSIDS_MAX];
|
|
u32 nregclass = 0;
|
|
struct ieee80211_supported_band *band_2ghz;
|
|
struct ieee80211_supported_band *band_5ghz;
|
|
struct ieee80211_channel *chan_2ghz;
|
|
struct ieee80211_channel *chan_5ghz;
|
|
struct ath9k_channel *c;
|
|
|
|
/* Fill in ah->ah_channels */
|
|
if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
|
|
regclassids, ATH_REGCLASSIDS_MAX,
|
|
&nregclass, CTRY_DEFAULT, false, 1)) {
|
|
u32 rd = ah->ah_currentRD;
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to collect channel list; "
|
|
"regdomain likely %u country code %u\n",
|
|
__func__, rd, CTRY_DEFAULT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
|
|
band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
|
|
chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
|
|
chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
|
|
|
|
for (i = 0; i < nchan; i++) {
|
|
c = &ah->ah_channels[i];
|
|
if (IS_CHAN_2GHZ(c)) {
|
|
chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
|
|
chan_2ghz[a].center_freq = c->channel;
|
|
chan_2ghz[a].max_power = c->maxTxPower;
|
|
|
|
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
|
|
chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
|
|
if (c->channelFlags & CHANNEL_PASSIVE)
|
|
chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
|
|
|
band_2ghz->n_channels = ++a;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"%s: 2MHz channel: %d, "
|
|
"channelFlags: 0x%x\n",
|
|
__func__, c->channel, c->channelFlags);
|
|
} else if (IS_CHAN_5GHZ(c)) {
|
|
chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
|
|
chan_5ghz[b].center_freq = c->channel;
|
|
chan_5ghz[b].max_power = c->maxTxPower;
|
|
|
|
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
|
|
chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
|
|
if (c->channelFlags & CHANNEL_PASSIVE)
|
|
chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
|
|
|
|
band_5ghz->n_channels = ++b;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"%s: 5MHz channel: %d, "
|
|
"channelFlags: 0x%x\n",
|
|
__func__, c->channel, c->channelFlags);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine mode from channel flags
|
|
*
|
|
* This routine will provide the enumerated WIRELESSS_MODE value based
|
|
* on the settings of the channel flags. If no valid set of flags
|
|
* exist, the lowest mode (11b) is selected.
|
|
*/
|
|
|
|
static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
|
|
{
|
|
if (chan->chanmode == CHANNEL_A)
|
|
return ATH9K_MODE_11A;
|
|
else if (chan->chanmode == CHANNEL_G)
|
|
return ATH9K_MODE_11G;
|
|
else if (chan->chanmode == CHANNEL_B)
|
|
return ATH9K_MODE_11B;
|
|
else if (chan->chanmode == CHANNEL_A_HT20)
|
|
return ATH9K_MODE_11NA_HT20;
|
|
else if (chan->chanmode == CHANNEL_G_HT20)
|
|
return ATH9K_MODE_11NG_HT20;
|
|
else if (chan->chanmode == CHANNEL_A_HT40PLUS)
|
|
return ATH9K_MODE_11NA_HT40PLUS;
|
|
else if (chan->chanmode == CHANNEL_A_HT40MINUS)
|
|
return ATH9K_MODE_11NA_HT40MINUS;
|
|
else if (chan->chanmode == CHANNEL_G_HT40PLUS)
|
|
return ATH9K_MODE_11NG_HT40PLUS;
|
|
else if (chan->chanmode == CHANNEL_G_HT40MINUS)
|
|
return ATH9K_MODE_11NG_HT40MINUS;
|
|
|
|
WARN_ON(1); /* should not get here */
|
|
|
|
return ATH9K_MODE_11B;
|
|
}
|
|
|
|
/*
|
|
* Set the current channel
|
|
*
|
|
* Set/change channels. If the channel is really being changed, it's done
|
|
* by reseting the chip. To accomplish this we must first cleanup any pending
|
|
* DMA, then restart stuff after a la ath_init.
|
|
*/
|
|
int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
bool fastcc = true, stopped;
|
|
|
|
if (sc->sc_flags & SC_OP_INVALID) /* the device is invalid or removed */
|
|
return -EIO;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG,
|
|
"%s: %u (%u MHz) -> %u (%u MHz), cflags:%x\n",
|
|
__func__,
|
|
ath9k_hw_mhz2ieee(ah, sc->sc_ah->ah_curchan->channel,
|
|
sc->sc_ah->ah_curchan->channelFlags),
|
|
sc->sc_ah->ah_curchan->channel,
|
|
ath9k_hw_mhz2ieee(ah, hchan->channel, hchan->channelFlags),
|
|
hchan->channel, hchan->channelFlags);
|
|
|
|
if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
|
|
hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
|
|
(sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
|
|
(sc->sc_flags & SC_OP_FULL_RESET)) {
|
|
int status;
|
|
/*
|
|
* This is only performed if the channel settings have
|
|
* actually changed.
|
|
*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc, false); /* clear pending tx frames */
|
|
stopped = ath_stoprecv(sc); /* turn off frame recv */
|
|
|
|
/* XXX: do not flush receive queue here. We don't want
|
|
* to flush data frames already in queue because of
|
|
* changing channel. */
|
|
|
|
if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
|
|
fastcc = false;
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah, hchan,
|
|
sc->sc_ht_info.tx_chan_width,
|
|
sc->sc_tx_chainmask,
|
|
sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing,
|
|
fastcc, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to reset channel %u (%uMhz) "
|
|
"flags 0x%x hal status %u\n", __func__,
|
|
ath9k_hw_mhz2ieee(ah, hchan->channel,
|
|
hchan->channelFlags),
|
|
hchan->channel, hchan->channelFlags, status);
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
return -EIO;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
|
|
sc->sc_flags &= ~SC_OP_FULL_RESET;
|
|
|
|
/* Re-enable rx framework */
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to restart recv logic\n", __func__);
|
|
return -EIO;
|
|
}
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
ath_setcurmode(sc, ath_chan2mode(hchan));
|
|
|
|
ath_update_txpow(sc); /* update tx power state */
|
|
/*
|
|
* Re-enable interrupts.
|
|
*/
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**********************/
|
|
/* Chainmask Handling */
|
|
/**********************/
|
|
|
|
static void ath_chainmask_sel_timertimeout(unsigned long data)
|
|
{
|
|
struct ath_chainmask_sel *cm = (struct ath_chainmask_sel *)data;
|
|
cm->switch_allowed = 1;
|
|
}
|
|
|
|
/* Start chainmask select timer */
|
|
static void ath_chainmask_sel_timerstart(struct ath_chainmask_sel *cm)
|
|
{
|
|
cm->switch_allowed = 0;
|
|
mod_timer(&cm->timer, ath_chainmask_sel_period);
|
|
}
|
|
|
|
/* Stop chainmask select timer */
|
|
static void ath_chainmask_sel_timerstop(struct ath_chainmask_sel *cm)
|
|
{
|
|
cm->switch_allowed = 0;
|
|
del_timer_sync(&cm->timer);
|
|
}
|
|
|
|
static void ath_chainmask_sel_init(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
|
|
|
|
memset(cm, 0, sizeof(struct ath_chainmask_sel));
|
|
|
|
cm->cur_tx_mask = sc->sc_tx_chainmask;
|
|
cm->cur_rx_mask = sc->sc_rx_chainmask;
|
|
cm->tx_avgrssi = ATH_RSSI_DUMMY_MARKER;
|
|
setup_timer(&cm->timer,
|
|
ath_chainmask_sel_timertimeout, (unsigned long) cm);
|
|
}
|
|
|
|
int ath_chainmask_sel_logic(struct ath_softc *sc, struct ath_node *an)
|
|
{
|
|
struct ath_chainmask_sel *cm = &an->an_chainmask_sel;
|
|
|
|
/*
|
|
* Disable auto-swtiching in one of the following if conditions.
|
|
* sc_chainmask_auto_sel is used for internal global auto-switching
|
|
* enabled/disabled setting
|
|
*/
|
|
if (sc->sc_ah->ah_caps.tx_chainmask != ATH_CHAINMASK_SEL_3X3) {
|
|
cm->cur_tx_mask = sc->sc_tx_chainmask;
|
|
return cm->cur_tx_mask;
|
|
}
|
|
|
|
if (cm->tx_avgrssi == ATH_RSSI_DUMMY_MARKER)
|
|
return cm->cur_tx_mask;
|
|
|
|
if (cm->switch_allowed) {
|
|
/* Switch down from tx 3 to tx 2. */
|
|
if (cm->cur_tx_mask == ATH_CHAINMASK_SEL_3X3 &&
|
|
ATH_RSSI_OUT(cm->tx_avgrssi) >=
|
|
ath_chainmask_sel_down_rssi_thres) {
|
|
cm->cur_tx_mask = sc->sc_tx_chainmask;
|
|
|
|
/* Don't let another switch happen until
|
|
* this timer expires */
|
|
ath_chainmask_sel_timerstart(cm);
|
|
}
|
|
/* Switch up from tx 2 to 3. */
|
|
else if (cm->cur_tx_mask == sc->sc_tx_chainmask &&
|
|
ATH_RSSI_OUT(cm->tx_avgrssi) <=
|
|
ath_chainmask_sel_up_rssi_thres) {
|
|
cm->cur_tx_mask = ATH_CHAINMASK_SEL_3X3;
|
|
|
|
/* Don't let another switch happen
|
|
* until this timer expires */
|
|
ath_chainmask_sel_timerstart(cm);
|
|
}
|
|
}
|
|
|
|
return cm->cur_tx_mask;
|
|
}
|
|
|
|
/*
|
|
* Update tx/rx chainmask. For legacy association,
|
|
* hard code chainmask to 1x1, for 11n association, use
|
|
* the chainmask configuration.
|
|
*/
|
|
|
|
void ath_update_chainmask(struct ath_softc *sc, int is_ht)
|
|
{
|
|
sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
|
|
if (is_ht) {
|
|
sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
|
|
sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
|
|
} else {
|
|
sc->sc_tx_chainmask = 1;
|
|
sc->sc_rx_chainmask = 1;
|
|
}
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s: tx chmask: %d, rx chmask: %d\n",
|
|
__func__, sc->sc_tx_chainmask, sc->sc_rx_chainmask);
|
|
}
|
|
|
|
/*******/
|
|
/* ANI */
|
|
/*******/
|
|
|
|
/*
|
|
* This routine performs the periodic noise floor calibration function
|
|
* that is used to adjust and optimize the chip performance. This
|
|
* takes environmental changes (location, temperature) into account.
|
|
* When the task is complete, it reschedules itself depending on the
|
|
* appropriate interval that was calculated.
|
|
*/
|
|
|
|
static void ath_ani_calibrate(unsigned long data)
|
|
{
|
|
struct ath_softc *sc;
|
|
struct ath_hal *ah;
|
|
bool longcal = false;
|
|
bool shortcal = false;
|
|
bool aniflag = false;
|
|
unsigned int timestamp = jiffies_to_msecs(jiffies);
|
|
u32 cal_interval;
|
|
|
|
sc = (struct ath_softc *)data;
|
|
ah = sc->sc_ah;
|
|
|
|
/*
|
|
* don't calibrate when we're scanning.
|
|
* we are most likely not on our home channel.
|
|
*/
|
|
if (sc->rx_filter & FIF_BCN_PRBRESP_PROMISC)
|
|
return;
|
|
|
|
/* Long calibration runs independently of short calibration. */
|
|
if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
|
|
longcal = true;
|
|
DPRINTF(sc, ATH_DBG_ANI, "%s: longcal @%lu\n",
|
|
__func__, jiffies);
|
|
sc->sc_ani.sc_longcal_timer = timestamp;
|
|
}
|
|
|
|
/* Short calibration applies only while sc_caldone is false */
|
|
if (!sc->sc_ani.sc_caldone) {
|
|
if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
|
|
ATH_SHORT_CALINTERVAL) {
|
|
shortcal = true;
|
|
DPRINTF(sc, ATH_DBG_ANI, "%s: shortcal @%lu\n",
|
|
__func__, jiffies);
|
|
sc->sc_ani.sc_shortcal_timer = timestamp;
|
|
sc->sc_ani.sc_resetcal_timer = timestamp;
|
|
}
|
|
} else {
|
|
if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
|
|
ATH_RESTART_CALINTERVAL) {
|
|
ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
|
|
&sc->sc_ani.sc_caldone);
|
|
if (sc->sc_ani.sc_caldone)
|
|
sc->sc_ani.sc_resetcal_timer = timestamp;
|
|
}
|
|
}
|
|
|
|
/* Verify whether we must check ANI */
|
|
if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
|
|
ATH_ANI_POLLINTERVAL) {
|
|
aniflag = true;
|
|
sc->sc_ani.sc_checkani_timer = timestamp;
|
|
}
|
|
|
|
/* Skip all processing if there's nothing to do. */
|
|
if (longcal || shortcal || aniflag) {
|
|
/* Call ANI routine if necessary */
|
|
if (aniflag)
|
|
ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
|
|
ah->ah_curchan);
|
|
|
|
/* Perform calibration if necessary */
|
|
if (longcal || shortcal) {
|
|
bool iscaldone = false;
|
|
|
|
if (ath9k_hw_calibrate(ah, ah->ah_curchan,
|
|
sc->sc_rx_chainmask, longcal,
|
|
&iscaldone)) {
|
|
if (longcal)
|
|
sc->sc_ani.sc_noise_floor =
|
|
ath9k_hw_getchan_noise(ah,
|
|
ah->ah_curchan);
|
|
|
|
DPRINTF(sc, ATH_DBG_ANI,
|
|
"%s: calibrate chan %u/%x nf: %d\n",
|
|
__func__,
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags,
|
|
sc->sc_ani.sc_noise_floor);
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_ANY,
|
|
"%s: calibrate chan %u/%x failed\n",
|
|
__func__,
|
|
ah->ah_curchan->channel,
|
|
ah->ah_curchan->channelFlags);
|
|
}
|
|
sc->sc_ani.sc_caldone = iscaldone;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set timer interval based on previous results.
|
|
* The interval must be the shortest necessary to satisfy ANI,
|
|
* short calibration and long calibration.
|
|
*/
|
|
|
|
cal_interval = ATH_ANI_POLLINTERVAL;
|
|
if (!sc->sc_ani.sc_caldone)
|
|
cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
|
|
|
|
mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
|
|
}
|
|
|
|
/********/
|
|
/* Core */
|
|
/********/
|
|
|
|
int ath_open(struct ath_softc *sc, struct ath9k_channel *initial_chan)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int status;
|
|
int error = 0;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s: mode %d\n",
|
|
__func__, sc->sc_ah->ah_opmode);
|
|
|
|
/* Reset SERDES registers */
|
|
ath9k_hw_configpcipowersave(ah, 0);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah, initial_chan,
|
|
sc->sc_ht_info.tx_chan_width,
|
|
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing, false, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to reset hardware; hal status %u "
|
|
"(freq %u flags 0x%x)\n", __func__, status,
|
|
initial_chan->channel, initial_chan->channelFlags);
|
|
error = -EIO;
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
goto done;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
/*
|
|
* This is needed only to setup initial state
|
|
* but it's best done after a reset.
|
|
*/
|
|
ath_update_txpow(sc);
|
|
|
|
/*
|
|
* Setup the hardware after reset:
|
|
* The receive engine is set going.
|
|
* Frame transmit is handled entirely
|
|
* in the frame output path; there's nothing to do
|
|
* here except setup the interrupt mask.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to start recv logic\n", __func__);
|
|
error = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
/* Setup our intr mask. */
|
|
sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
|
|
| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
|
|
| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
|
|
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
|
|
sc->sc_imask |= ATH9K_INT_GTT;
|
|
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
|
|
sc->sc_imask |= ATH9K_INT_CST;
|
|
|
|
/*
|
|
* Enable MIB interrupts when there are hardware phy counters.
|
|
* Note we only do this (at the moment) for station mode.
|
|
*/
|
|
if (ath9k_hw_phycounters(ah) &&
|
|
((sc->sc_ah->ah_opmode == ATH9K_M_STA) ||
|
|
(sc->sc_ah->ah_opmode == ATH9K_M_IBSS)))
|
|
sc->sc_imask |= ATH9K_INT_MIB;
|
|
/*
|
|
* Some hardware processes the TIM IE and fires an
|
|
* interrupt when the TIM bit is set. For hardware
|
|
* that does, if not overridden by configuration,
|
|
* enable the TIM interrupt when operating as station.
|
|
*/
|
|
if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
|
|
(sc->sc_ah->ah_opmode == ATH9K_M_STA) &&
|
|
!sc->sc_config.swBeaconProcess)
|
|
sc->sc_imask |= ATH9K_INT_TIM;
|
|
|
|
ath_setcurmode(sc, ath_chan2mode(initial_chan));
|
|
|
|
sc->sc_flags &= ~SC_OP_INVALID;
|
|
|
|
/* Disable BMISS interrupt when we're not associated */
|
|
sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
|
|
ath9k_hw_set_interrupts(sc->sc_ah,sc->sc_imask);
|
|
|
|
ieee80211_wake_queues(sc->hw);
|
|
done:
|
|
return error;
|
|
}
|
|
|
|
void ath_stop(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Cleaning up\n", __func__);
|
|
|
|
ieee80211_stop_queues(sc->hw);
|
|
|
|
/* make sure h/w will not generate any interrupt
|
|
* before setting the invalid flag. */
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
|
|
if (!(sc->sc_flags & SC_OP_INVALID)) {
|
|
ath_draintxq(sc, false);
|
|
ath_stoprecv(sc);
|
|
ath9k_hw_phy_disable(ah);
|
|
} else
|
|
sc->sc_rxlink = NULL;
|
|
|
|
#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
|
|
if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
|
|
cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
|
|
#endif
|
|
/* disable HAL and put h/w to sleep */
|
|
ath9k_hw_disable(sc->sc_ah);
|
|
ath9k_hw_configpcipowersave(sc->sc_ah, 1);
|
|
|
|
sc->sc_flags |= SC_OP_INVALID;
|
|
}
|
|
|
|
int ath_reset(struct ath_softc *sc, bool retry_tx)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int status;
|
|
int error = 0;
|
|
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
ath_draintxq(sc, retry_tx);
|
|
ath_stoprecv(sc);
|
|
ath_flushrecv(sc);
|
|
|
|
/* Reset chip */
|
|
spin_lock_bh(&sc->sc_resetlock);
|
|
if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
|
|
sc->sc_ht_info.tx_chan_width,
|
|
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
|
|
sc->sc_ht_extprotspacing, false, &status)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to reset hardware; hal status %u\n",
|
|
__func__, status);
|
|
error = -EIO;
|
|
}
|
|
spin_unlock_bh(&sc->sc_resetlock);
|
|
|
|
if (ath_startrecv(sc) != 0)
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to start recv logic\n", __func__);
|
|
|
|
/*
|
|
* We may be doing a reset in response to a request
|
|
* that changes the channel so update any state that
|
|
* might change as a result.
|
|
*/
|
|
ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
|
|
|
|
ath_update_txpow(sc);
|
|
|
|
if (sc->sc_flags & SC_OP_BEACONS)
|
|
ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
|
|
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
|
|
/* Restart the txq */
|
|
if (retry_tx) {
|
|
int i;
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
|
|
if (ATH_TXQ_SETUP(sc, i)) {
|
|
spin_lock_bh(&sc->sc_txq[i].axq_lock);
|
|
ath_txq_schedule(sc, &sc->sc_txq[i]);
|
|
spin_unlock_bh(&sc->sc_txq[i].axq_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Interrupt handler. Most of the actual processing is deferred.
|
|
* It's the caller's responsibility to ensure the chip is awake. */
|
|
|
|
irqreturn_t ath_isr(int irq, void *dev)
|
|
{
|
|
struct ath_softc *sc = dev;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
enum ath9k_int status;
|
|
bool sched = false;
|
|
|
|
do {
|
|
if (sc->sc_flags & SC_OP_INVALID) {
|
|
/*
|
|
* The hardware is not ready/present, don't
|
|
* touch anything. Note this can happen early
|
|
* on if the IRQ is shared.
|
|
*/
|
|
return IRQ_NONE;
|
|
}
|
|
if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/*
|
|
* Figure out the reason(s) for the interrupt. Note
|
|
* that the hal returns a pseudo-ISR that may include
|
|
* bits we haven't explicitly enabled so we mask the
|
|
* value to insure we only process bits we requested.
|
|
*/
|
|
ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
|
|
|
|
status &= sc->sc_imask; /* discard unasked-for bits */
|
|
|
|
/*
|
|
* If there are no status bits set, then this interrupt was not
|
|
* for me (should have been caught above).
|
|
*/
|
|
|
|
if (!status)
|
|
return IRQ_NONE;
|
|
|
|
sc->sc_intrstatus = status;
|
|
|
|
if (status & ATH9K_INT_FATAL) {
|
|
/* need a chip reset */
|
|
sched = true;
|
|
} else if (status & ATH9K_INT_RXORN) {
|
|
/* need a chip reset */
|
|
sched = true;
|
|
} else {
|
|
if (status & ATH9K_INT_SWBA) {
|
|
/* schedule a tasklet for beacon handling */
|
|
tasklet_schedule(&sc->bcon_tasklet);
|
|
}
|
|
if (status & ATH9K_INT_RXEOL) {
|
|
/*
|
|
* NB: the hardware should re-read the link when
|
|
* RXE bit is written, but it doesn't work
|
|
* at least on older hardware revs.
|
|
*/
|
|
sched = true;
|
|
}
|
|
|
|
if (status & ATH9K_INT_TXURN)
|
|
/* bump tx trigger level */
|
|
ath9k_hw_updatetxtriglevel(ah, true);
|
|
/* XXX: optimize this */
|
|
if (status & ATH9K_INT_RX)
|
|
sched = true;
|
|
if (status & ATH9K_INT_TX)
|
|
sched = true;
|
|
if (status & ATH9K_INT_BMISS)
|
|
sched = true;
|
|
/* carrier sense timeout */
|
|
if (status & ATH9K_INT_CST)
|
|
sched = true;
|
|
if (status & ATH9K_INT_MIB) {
|
|
/*
|
|
* Disable interrupts until we service the MIB
|
|
* interrupt; otherwise it will continue to
|
|
* fire.
|
|
*/
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
/*
|
|
* Let the hal handle the event. We assume
|
|
* it will clear whatever condition caused
|
|
* the interrupt.
|
|
*/
|
|
ath9k_hw_procmibevent(ah, &sc->sc_halstats);
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
}
|
|
if (status & ATH9K_INT_TIM_TIMER) {
|
|
if (!(ah->ah_caps.hw_caps &
|
|
ATH9K_HW_CAP_AUTOSLEEP)) {
|
|
/* Clear RxAbort bit so that we can
|
|
* receive frames */
|
|
ath9k_hw_setrxabort(ah, 0);
|
|
sched = true;
|
|
}
|
|
}
|
|
}
|
|
} while (0);
|
|
|
|
if (sched) {
|
|
/* turn off every interrupt except SWBA */
|
|
ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
|
|
tasklet_schedule(&sc->intr_tq);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Deferred interrupt processing */
|
|
|
|
static void ath9k_tasklet(unsigned long data)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)data;
|
|
u32 status = sc->sc_intrstatus;
|
|
|
|
if (status & ATH9K_INT_FATAL) {
|
|
/* need a chip reset */
|
|
ath_reset(sc, false);
|
|
return;
|
|
} else {
|
|
|
|
if (status &
|
|
(ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
|
|
/* XXX: fill me in */
|
|
/*
|
|
if (status & ATH9K_INT_RXORN) {
|
|
}
|
|
if (status & ATH9K_INT_RXEOL) {
|
|
}
|
|
*/
|
|
spin_lock_bh(&sc->sc_rxflushlock);
|
|
ath_rx_tasklet(sc, 0);
|
|
spin_unlock_bh(&sc->sc_rxflushlock);
|
|
}
|
|
/* XXX: optimize this */
|
|
if (status & ATH9K_INT_TX)
|
|
ath_tx_tasklet(sc);
|
|
/* XXX: fill me in */
|
|
/*
|
|
if (status & ATH9K_INT_BMISS) {
|
|
}
|
|
if (status & (ATH9K_INT_TIM | ATH9K_INT_DTIMSYNC)) {
|
|
if (status & ATH9K_INT_TIM) {
|
|
}
|
|
if (status & ATH9K_INT_DTIMSYNC) {
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
/* re-enable hardware interrupt */
|
|
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
|
|
}
|
|
|
|
int ath_init(u16 devid, struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = NULL;
|
|
int status;
|
|
int error = 0, i;
|
|
int csz = 0;
|
|
|
|
/* XXX: hardware will not be ready until ath_open() being called */
|
|
sc->sc_flags |= SC_OP_INVALID;
|
|
sc->sc_debug = DBG_DEFAULT;
|
|
|
|
spin_lock_init(&sc->sc_resetlock);
|
|
tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
|
|
tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
|
|
(unsigned long)sc);
|
|
|
|
/*
|
|
* Cache line size is used to size and align various
|
|
* structures used to communicate with the hardware.
|
|
*/
|
|
bus_read_cachesize(sc, &csz);
|
|
/* XXX assert csz is non-zero */
|
|
sc->sc_cachelsz = csz << 2; /* convert to bytes */
|
|
|
|
ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
|
|
if (ah == NULL) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to attach hardware; HAL status %u\n",
|
|
__func__, status);
|
|
error = -ENXIO;
|
|
goto bad;
|
|
}
|
|
sc->sc_ah = ah;
|
|
|
|
/* Get the hardware key cache size. */
|
|
sc->sc_keymax = ah->ah_caps.keycache_size;
|
|
if (sc->sc_keymax > ATH_KEYMAX) {
|
|
DPRINTF(sc, ATH_DBG_KEYCACHE,
|
|
"%s: Warning, using only %u entries in %u key cache\n",
|
|
__func__, ATH_KEYMAX, sc->sc_keymax);
|
|
sc->sc_keymax = ATH_KEYMAX;
|
|
}
|
|
|
|
/*
|
|
* Reset the key cache since some parts do not
|
|
* reset the contents on initial power up.
|
|
*/
|
|
for (i = 0; i < sc->sc_keymax; i++)
|
|
ath9k_hw_keyreset(ah, (u16) i);
|
|
/*
|
|
* Mark key cache slots associated with global keys
|
|
* as in use. If we knew TKIP was not to be used we
|
|
* could leave the +32, +64, and +32+64 slots free.
|
|
* XXX only for splitmic.
|
|
*/
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
set_bit(i, sc->sc_keymap);
|
|
set_bit(i + 32, sc->sc_keymap);
|
|
set_bit(i + 64, sc->sc_keymap);
|
|
set_bit(i + 32 + 64, sc->sc_keymap);
|
|
}
|
|
|
|
/* Collect the channel list using the default country code */
|
|
|
|
error = ath_setup_channels(sc);
|
|
if (error)
|
|
goto bad;
|
|
|
|
/* default to MONITOR mode */
|
|
sc->sc_ah->ah_opmode = ATH9K_M_MONITOR;
|
|
|
|
/* Setup rate tables */
|
|
|
|
ath_rate_attach(sc);
|
|
ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
|
|
ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
|
|
|
|
/*
|
|
* Allocate hardware transmit queues: one queue for
|
|
* beacon frames and one data queue for each QoS
|
|
* priority. Note that the hal handles reseting
|
|
* these queues at the needed time.
|
|
*/
|
|
sc->sc_bhalq = ath_beaconq_setup(ah);
|
|
if (sc->sc_bhalq == -1) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to setup a beacon xmit queue\n", __func__);
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
|
|
if (sc->sc_cabq == NULL) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to setup CAB xmit queue\n", __func__);
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
|
|
ath_cabq_update(sc);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++)
|
|
sc->sc_haltype2q[i] = -1;
|
|
|
|
/* Setup data queues */
|
|
/* NB: ensure BK queue is the lowest priority h/w queue */
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to setup xmit queue for BK traffic\n",
|
|
__func__);
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to setup xmit queue for BE traffic\n",
|
|
__func__);
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to setup xmit queue for VI traffic\n",
|
|
__func__);
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to setup xmit queue for VO traffic\n",
|
|
__func__);
|
|
error = -EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
/* Initializes the noise floor to a reasonable default value.
|
|
* Later on this will be updated during ANI processing. */
|
|
|
|
sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
|
|
setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
|
|
|
|
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_TKIP, NULL)) {
|
|
/*
|
|
* Whether we should enable h/w TKIP MIC.
|
|
* XXX: if we don't support WME TKIP MIC, then we wouldn't
|
|
* report WMM capable, so it's always safe to turn on
|
|
* TKIP MIC in this case.
|
|
*/
|
|
ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
|
|
0, 1, NULL);
|
|
}
|
|
|
|
/*
|
|
* Check whether the separate key cache entries
|
|
* are required to handle both tx+rx MIC keys.
|
|
* With split mic keys the number of stations is limited
|
|
* to 27 otherwise 59.
|
|
*/
|
|
if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_TKIP, NULL)
|
|
&& ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
|
|
ATH9K_CIPHER_MIC, NULL)
|
|
&& ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
|
|
0, NULL))
|
|
sc->sc_splitmic = 1;
|
|
|
|
/* turn on mcast key search if possible */
|
|
if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
|
|
(void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
|
|
1, NULL);
|
|
|
|
sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
|
|
sc->sc_config.txpowlimit_override = 0;
|
|
|
|
/* 11n Capabilities */
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
|
|
sc->sc_flags |= SC_OP_TXAGGR;
|
|
sc->sc_flags |= SC_OP_RXAGGR;
|
|
}
|
|
|
|
sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
|
|
sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
|
|
|
|
ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
|
|
sc->sc_defant = ath9k_hw_getdefantenna(ah);
|
|
|
|
ath9k_hw_getmac(ah, sc->sc_myaddr);
|
|
if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
|
|
ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
|
|
ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
|
|
ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
|
|
}
|
|
|
|
sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
|
|
|
|
/* initialize beacon slots */
|
|
for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
|
|
sc->sc_bslot[i] = ATH_IF_ID_ANY;
|
|
|
|
/* save MISC configurations */
|
|
sc->sc_config.swBeaconProcess = 1;
|
|
|
|
#ifdef CONFIG_SLOW_ANT_DIV
|
|
/* range is 40 - 255, we use something in the middle */
|
|
ath_slow_ant_div_init(&sc->sc_antdiv, sc, 0x127);
|
|
#endif
|
|
|
|
/* setup channels and rates */
|
|
|
|
sc->sbands[IEEE80211_BAND_2GHZ].channels =
|
|
sc->channels[IEEE80211_BAND_2GHZ];
|
|
sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
|
|
sc->rates[IEEE80211_BAND_2GHZ];
|
|
sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
|
|
|
|
if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
|
|
sc->sbands[IEEE80211_BAND_5GHZ].channels =
|
|
sc->channels[IEEE80211_BAND_5GHZ];
|
|
sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
|
|
sc->rates[IEEE80211_BAND_5GHZ];
|
|
sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
|
|
}
|
|
|
|
return 0;
|
|
bad2:
|
|
/* cleanup tx queues */
|
|
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
|
|
bad:
|
|
if (ah)
|
|
ath9k_hw_detach(ah);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*******************/
|
|
/* Node Management */
|
|
/*******************/
|
|
|
|
void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_node *an;
|
|
|
|
an = (struct ath_node *)sta->drv_priv;
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_tx_node_init(sc, an);
|
|
|
|
an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
|
|
sta->ht_cap.ampdu_factor);
|
|
an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
|
|
|
|
ath_chainmask_sel_init(sc, an);
|
|
ath_chainmask_sel_timerstart(&an->an_chainmask_sel);
|
|
}
|
|
|
|
void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
|
|
{
|
|
struct ath_node *an = (struct ath_node *)sta->drv_priv;
|
|
|
|
ath_chainmask_sel_timerstop(&an->an_chainmask_sel);
|
|
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_tx_node_cleanup(sc, an);
|
|
}
|
|
|
|
/*
|
|
* Set up New Node
|
|
*
|
|
* Setup driver-specific state for a newly associated node. This routine
|
|
* really only applies if compression or XR are enabled, there is no code
|
|
* covering any other cases.
|
|
*/
|
|
|
|
void ath_newassoc(struct ath_softc *sc,
|
|
struct ath_node *an, int isnew, int isuapsd)
|
|
{
|
|
int tidno;
|
|
|
|
/* if station reassociates, tear down the aggregation state. */
|
|
if (!isnew) {
|
|
for (tidno = 0; tidno < WME_NUM_TID; tidno++) {
|
|
if (sc->sc_flags & SC_OP_TXAGGR)
|
|
ath_tx_aggr_teardown(sc, an, tidno);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**************/
|
|
/* Encryption */
|
|
/**************/
|
|
|
|
void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
|
|
{
|
|
ath9k_hw_keyreset(sc->sc_ah, keyix);
|
|
if (freeslot)
|
|
clear_bit(keyix, sc->sc_keymap);
|
|
}
|
|
|
|
int ath_keyset(struct ath_softc *sc,
|
|
u16 keyix,
|
|
struct ath9k_keyval *hk,
|
|
const u8 mac[ETH_ALEN])
|
|
{
|
|
bool status;
|
|
|
|
status = ath9k_hw_set_keycache_entry(sc->sc_ah,
|
|
keyix, hk, mac, false);
|
|
|
|
return status != false;
|
|
}
|
|
|
|
/***********************/
|
|
/* TX Power/Regulatory */
|
|
/***********************/
|
|
|
|
/*
|
|
* Set Transmit power in HAL
|
|
*
|
|
* This routine makes the actual HAL calls to set the new transmit power
|
|
* limit.
|
|
*/
|
|
|
|
void ath_update_txpow(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u32 txpow;
|
|
|
|
if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
|
|
ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
|
|
/* read back in case value is clamped */
|
|
ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
|
|
sc->sc_curtxpow = txpow;
|
|
}
|
|
}
|
|
|
|
/**************************/
|
|
/* Slow Antenna Diversity */
|
|
/**************************/
|
|
|
|
void ath_slow_ant_div_init(struct ath_antdiv *antdiv,
|
|
struct ath_softc *sc,
|
|
int32_t rssitrig)
|
|
{
|
|
int trig;
|
|
|
|
/* antdivf_rssitrig can range from 40 - 0xff */
|
|
trig = (rssitrig > 0xff) ? 0xff : rssitrig;
|
|
trig = (rssitrig < 40) ? 40 : rssitrig;
|
|
|
|
antdiv->antdiv_sc = sc;
|
|
antdiv->antdivf_rssitrig = trig;
|
|
}
|
|
|
|
void ath_slow_ant_div_start(struct ath_antdiv *antdiv,
|
|
u8 num_antcfg,
|
|
const u8 *bssid)
|
|
{
|
|
antdiv->antdiv_num_antcfg =
|
|
num_antcfg < ATH_ANT_DIV_MAX_CFG ?
|
|
num_antcfg : ATH_ANT_DIV_MAX_CFG;
|
|
antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
|
|
antdiv->antdiv_curcfg = 0;
|
|
antdiv->antdiv_bestcfg = 0;
|
|
antdiv->antdiv_laststatetsf = 0;
|
|
|
|
memcpy(antdiv->antdiv_bssid, bssid, sizeof(antdiv->antdiv_bssid));
|
|
|
|
antdiv->antdiv_start = 1;
|
|
}
|
|
|
|
void ath_slow_ant_div_stop(struct ath_antdiv *antdiv)
|
|
{
|
|
antdiv->antdiv_start = 0;
|
|
}
|
|
|
|
static int32_t ath_find_max_val(int32_t *val,
|
|
u8 num_val, u8 *max_index)
|
|
{
|
|
u32 MaxVal = *val++;
|
|
u32 cur_index = 0;
|
|
|
|
*max_index = 0;
|
|
while (++cur_index < num_val) {
|
|
if (*val > MaxVal) {
|
|
MaxVal = *val;
|
|
*max_index = cur_index;
|
|
}
|
|
|
|
val++;
|
|
}
|
|
|
|
return MaxVal;
|
|
}
|
|
|
|
void ath_slow_ant_div(struct ath_antdiv *antdiv,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ath_rx_status *rx_stats)
|
|
{
|
|
struct ath_softc *sc = antdiv->antdiv_sc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u64 curtsf = 0;
|
|
u8 bestcfg, curcfg = antdiv->antdiv_curcfg;
|
|
__le16 fc = hdr->frame_control;
|
|
|
|
if (antdiv->antdiv_start && ieee80211_is_beacon(fc)
|
|
&& !compare_ether_addr(hdr->addr3, antdiv->antdiv_bssid)) {
|
|
antdiv->antdiv_lastbrssi[curcfg] = rx_stats->rs_rssi;
|
|
antdiv->antdiv_lastbtsf[curcfg] = ath9k_hw_gettsf64(sc->sc_ah);
|
|
curtsf = antdiv->antdiv_lastbtsf[curcfg];
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
switch (antdiv->antdiv_state) {
|
|
case ATH_ANT_DIV_IDLE:
|
|
if ((antdiv->antdiv_lastbrssi[curcfg] <
|
|
antdiv->antdivf_rssitrig)
|
|
&& ((curtsf - antdiv->antdiv_laststatetsf) >
|
|
ATH_ANT_DIV_MIN_IDLE_US)) {
|
|
|
|
curcfg++;
|
|
if (curcfg == antdiv->antdiv_num_antcfg)
|
|
curcfg = 0;
|
|
|
|
if (!ath9k_hw_select_antconfig(ah, curcfg)) {
|
|
antdiv->antdiv_bestcfg = antdiv->antdiv_curcfg;
|
|
antdiv->antdiv_curcfg = curcfg;
|
|
antdiv->antdiv_laststatetsf = curtsf;
|
|
antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ATH_ANT_DIV_SCAN:
|
|
if ((curtsf - antdiv->antdiv_laststatetsf) <
|
|
ATH_ANT_DIV_MIN_SCAN_US)
|
|
break;
|
|
|
|
curcfg++;
|
|
if (curcfg == antdiv->antdiv_num_antcfg)
|
|
curcfg = 0;
|
|
|
|
if (curcfg == antdiv->antdiv_bestcfg) {
|
|
ath_find_max_val(antdiv->antdiv_lastbrssi,
|
|
antdiv->antdiv_num_antcfg, &bestcfg);
|
|
if (!ath9k_hw_select_antconfig(ah, bestcfg)) {
|
|
antdiv->antdiv_bestcfg = bestcfg;
|
|
antdiv->antdiv_curcfg = bestcfg;
|
|
antdiv->antdiv_laststatetsf = curtsf;
|
|
antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
|
|
}
|
|
} else {
|
|
if (!ath9k_hw_select_antconfig(ah, curcfg)) {
|
|
antdiv->antdiv_curcfg = curcfg;
|
|
antdiv->antdiv_laststatetsf = curtsf;
|
|
antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/***********************/
|
|
/* Descriptor Handling */
|
|
/***********************/
|
|
|
|
/*
|
|
* Set up DMA descriptors
|
|
*
|
|
* This function will allocate both the DMA descriptor structure, and the
|
|
* buffers it contains. These are used to contain the descriptors used
|
|
* by the system.
|
|
*/
|
|
|
|
int ath_descdma_setup(struct ath_softc *sc,
|
|
struct ath_descdma *dd,
|
|
struct list_head *head,
|
|
const char *name,
|
|
int nbuf,
|
|
int ndesc)
|
|
{
|
|
#define DS2PHYS(_dd, _ds) \
|
|
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
|
|
#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
|
|
#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
|
|
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
int i, bsize, error;
|
|
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA: %u buffers %u desc/buf\n",
|
|
__func__, name, nbuf, ndesc);
|
|
|
|
/* ath_desc must be a multiple of DWORDs */
|
|
if ((sizeof(struct ath_desc) % 4) != 0) {
|
|
DPRINTF(sc, ATH_DBG_FATAL, "%s: ath_desc not DWORD aligned\n",
|
|
__func__);
|
|
ASSERT((sizeof(struct ath_desc) % 4) == 0);
|
|
error = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
dd->dd_name = name;
|
|
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
|
|
|
|
/*
|
|
* Need additional DMA memory because we can't use
|
|
* descriptors that cross the 4K page boundary. Assume
|
|
* one skipped descriptor per 4K page.
|
|
*/
|
|
if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
|
|
u32 ndesc_skipped =
|
|
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
|
|
u32 dma_len;
|
|
|
|
while (ndesc_skipped) {
|
|
dma_len = ndesc_skipped * sizeof(struct ath_desc);
|
|
dd->dd_desc_len += dma_len;
|
|
|
|
ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
|
|
};
|
|
}
|
|
|
|
/* allocate descriptors */
|
|
dd->dd_desc = pci_alloc_consistent(sc->pdev,
|
|
dd->dd_desc_len,
|
|
&dd->dd_desc_paddr);
|
|
if (dd->dd_desc == NULL) {
|
|
error = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
ds = dd->dd_desc;
|
|
DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n",
|
|
__func__, dd->dd_name, ds, (u32) dd->dd_desc_len,
|
|
ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
|
|
|
|
/* allocate buffers */
|
|
bsize = sizeof(struct ath_buf) * nbuf;
|
|
bf = kmalloc(bsize, GFP_KERNEL);
|
|
if (bf == NULL) {
|
|
error = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
memset(bf, 0, bsize);
|
|
dd->dd_bufptr = bf;
|
|
|
|
INIT_LIST_HEAD(head);
|
|
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
|
|
if (!(sc->sc_ah->ah_caps.hw_caps &
|
|
ATH9K_HW_CAP_4KB_SPLITTRANS)) {
|
|
/*
|
|
* Skip descriptor addresses which can cause 4KB
|
|
* boundary crossing (addr + length) with a 32 dword
|
|
* descriptor fetch.
|
|
*/
|
|
while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
|
|
ASSERT((caddr_t) bf->bf_desc <
|
|
((caddr_t) dd->dd_desc +
|
|
dd->dd_desc_len));
|
|
|
|
ds += ndesc;
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
}
|
|
}
|
|
list_add_tail(&bf->list, head);
|
|
}
|
|
return 0;
|
|
fail2:
|
|
pci_free_consistent(sc->pdev,
|
|
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
|
|
fail:
|
|
memset(dd, 0, sizeof(*dd));
|
|
return error;
|
|
#undef ATH_DESC_4KB_BOUND_CHECK
|
|
#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
|
|
#undef DS2PHYS
|
|
}
|
|
|
|
/*
|
|
* Cleanup DMA descriptors
|
|
*
|
|
* This function will free the DMA block that was allocated for the descriptor
|
|
* pool. Since this was allocated as one "chunk", it is freed in the same
|
|
* manner.
|
|
*/
|
|
|
|
void ath_descdma_cleanup(struct ath_softc *sc,
|
|
struct ath_descdma *dd,
|
|
struct list_head *head)
|
|
{
|
|
/* Free memory associated with descriptors */
|
|
pci_free_consistent(sc->pdev,
|
|
dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
|
|
|
|
INIT_LIST_HEAD(head);
|
|
kfree(dd->dd_bufptr);
|
|
memset(dd, 0, sizeof(*dd));
|
|
}
|
|
|
|
/*************/
|
|
/* Utilities */
|
|
/*************/
|
|
|
|
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
|
|
{
|
|
int qnum;
|
|
|
|
switch (queue) {
|
|
case 0:
|
|
qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
|
|
break;
|
|
case 1:
|
|
qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
|
|
break;
|
|
case 2:
|
|
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
|
|
break;
|
|
case 3:
|
|
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
|
|
break;
|
|
default:
|
|
qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
|
|
break;
|
|
}
|
|
|
|
return qnum;
|
|
}
|
|
|
|
int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
|
|
{
|
|
int qnum;
|
|
|
|
switch (queue) {
|
|
case ATH9K_WME_AC_VO:
|
|
qnum = 0;
|
|
break;
|
|
case ATH9K_WME_AC_VI:
|
|
qnum = 1;
|
|
break;
|
|
case ATH9K_WME_AC_BE:
|
|
qnum = 2;
|
|
break;
|
|
case ATH9K_WME_AC_BK:
|
|
qnum = 3;
|
|
break;
|
|
default:
|
|
qnum = -1;
|
|
break;
|
|
}
|
|
|
|
return qnum;
|
|
}
|
|
|
|
|
|
/*
|
|
* Expand time stamp to TSF
|
|
*
|
|
* Extend 15-bit time stamp from rx descriptor to
|
|
* a full 64-bit TSF using the current h/w TSF.
|
|
*/
|
|
|
|
u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
|
|
{
|
|
u64 tsf;
|
|
|
|
tsf = ath9k_hw_gettsf64(sc->sc_ah);
|
|
if ((tsf & 0x7fff) < rstamp)
|
|
tsf -= 0x8000;
|
|
return (tsf & ~0x7fff) | rstamp;
|
|
}
|
|
|
|
/*
|
|
* Set Default Antenna
|
|
*
|
|
* Call into the HAL to set the default antenna to use. Not really valid for
|
|
* MIMO technology.
|
|
*/
|
|
|
|
void ath_setdefantenna(void *context, u32 antenna)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)context;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
/* XXX block beacon interrupts */
|
|
ath9k_hw_setantenna(ah, antenna);
|
|
sc->sc_defant = antenna;
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
|
|
/*
|
|
* Set Slot Time
|
|
*
|
|
* This will wake up the chip if required, and set the slot time for the
|
|
* frame (maximum transmit time). Slot time is assumed to be already set
|
|
* in the ATH object member sc_slottime
|
|
*/
|
|
|
|
void ath_setslottime(struct ath_softc *sc)
|
|
{
|
|
ath9k_hw_setslottime(sc->sc_ah, sc->sc_slottime);
|
|
sc->sc_updateslot = OK;
|
|
}
|