linux_old1/arch/x86/kernel/hpet.c

1203 lines
27 KiB
C

#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/sysdev.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hpet.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/pm.h>
#include <linux/io.h>
#include <asm/fixmap.h>
#include <asm/i8253.h>
#include <asm/hpet.h>
#define HPET_MASK CLOCKSOURCE_MASK(32)
#define HPET_SHIFT 22
/* FSEC = 10^-15
NSEC = 10^-9 */
#define FSEC_PER_NSEC 1000000L
#define HPET_DEV_USED_BIT 2
#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
#define HPET_DEV_VALID 0x8
#define HPET_DEV_FSB_CAP 0x1000
#define HPET_DEV_PERI_CAP 0x2000
#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
/*
* HPET address is set in acpi/boot.c, when an ACPI entry exists
*/
unsigned long hpet_address;
#ifdef CONFIG_PCI_MSI
static unsigned long hpet_num_timers;
#endif
static void __iomem *hpet_virt_address;
struct hpet_dev {
struct clock_event_device evt;
unsigned int num;
int cpu;
unsigned int irq;
unsigned int flags;
char name[10];
};
unsigned long hpet_readl(unsigned long a)
{
return readl(hpet_virt_address + a);
}
static inline void hpet_writel(unsigned long d, unsigned long a)
{
writel(d, hpet_virt_address + a);
}
#ifdef CONFIG_X86_64
#include <asm/pgtable.h>
#endif
static inline void hpet_set_mapping(void)
{
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
#ifdef CONFIG_X86_64
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
#endif
}
static inline void hpet_clear_mapping(void)
{
iounmap(hpet_virt_address);
hpet_virt_address = NULL;
}
/*
* HPET command line enable / disable
*/
static int boot_hpet_disable;
int hpet_force_user;
static int hpet_verbose;
static int __init hpet_setup(char *str)
{
if (str) {
if (!strncmp("disable", str, 7))
boot_hpet_disable = 1;
if (!strncmp("force", str, 5))
hpet_force_user = 1;
if (!strncmp("verbose", str, 7))
hpet_verbose = 1;
}
return 1;
}
__setup("hpet=", hpet_setup);
static int __init disable_hpet(char *str)
{
boot_hpet_disable = 1;
return 1;
}
__setup("nohpet", disable_hpet);
static inline int is_hpet_capable(void)
{
return !boot_hpet_disable && hpet_address;
}
/*
* HPET timer interrupt enable / disable
*/
static int hpet_legacy_int_enabled;
/**
* is_hpet_enabled - check whether the hpet timer interrupt is enabled
*/
int is_hpet_enabled(void)
{
return is_hpet_capable() && hpet_legacy_int_enabled;
}
EXPORT_SYMBOL_GPL(is_hpet_enabled);
static void _hpet_print_config(const char *function, int line)
{
u32 i, timers, l, h;
printk(KERN_INFO "hpet: %s(%d):\n", function, line);
l = hpet_readl(HPET_ID);
h = hpet_readl(HPET_PERIOD);
timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
l = hpet_readl(HPET_CFG);
h = hpet_readl(HPET_STATUS);
printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
l = hpet_readl(HPET_COUNTER);
h = hpet_readl(HPET_COUNTER+4);
printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
for (i = 0; i < timers; i++) {
l = hpet_readl(HPET_Tn_CFG(i));
h = hpet_readl(HPET_Tn_CFG(i)+4);
printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
i, l, h);
l = hpet_readl(HPET_Tn_CMP(i));
h = hpet_readl(HPET_Tn_CMP(i)+4);
printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
i, l, h);
l = hpet_readl(HPET_Tn_ROUTE(i));
h = hpet_readl(HPET_Tn_ROUTE(i)+4);
printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
i, l, h);
}
}
#define hpet_print_config() \
do { \
if (hpet_verbose) \
_hpet_print_config(__FUNCTION__, __LINE__); \
} while (0)
/*
* When the hpet driver (/dev/hpet) is enabled, we need to reserve
* timer 0 and timer 1 in case of RTC emulation.
*/
#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd);
static void hpet_reserve_platform_timers(unsigned long id)
{
struct hpet __iomem *hpet = hpet_virt_address;
struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
unsigned int nrtimers, i;
struct hpet_data hd;
nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
memset(&hd, 0, sizeof(hd));
hd.hd_phys_address = hpet_address;
hd.hd_address = hpet;
hd.hd_nirqs = nrtimers;
hpet_reserve_timer(&hd, 0);
#ifdef CONFIG_HPET_EMULATE_RTC
hpet_reserve_timer(&hd, 1);
#endif
/*
* NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
* is wrong for i8259!) not the output IRQ. Many BIOS writers
* don't bother configuring *any* comparator interrupts.
*/
hd.hd_irq[0] = HPET_LEGACY_8254;
hd.hd_irq[1] = HPET_LEGACY_RTC;
for (i = 2; i < nrtimers; timer++, i++) {
hd.hd_irq[i] = (readl(&timer->hpet_config) &
Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
}
hpet_reserve_msi_timers(&hd);
hpet_alloc(&hd);
}
#else
static void hpet_reserve_platform_timers(unsigned long id) { }
#endif
/*
* Common hpet info
*/
static unsigned long hpet_period;
static void hpet_legacy_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt);
static int hpet_legacy_next_event(unsigned long delta,
struct clock_event_device *evt);
/*
* The hpet clock event device
*/
static struct clock_event_device hpet_clockevent = {
.name = "hpet",
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = hpet_legacy_set_mode,
.set_next_event = hpet_legacy_next_event,
.shift = 32,
.irq = 0,
.rating = 50,
};
static void hpet_stop_counter(void)
{
unsigned long cfg = hpet_readl(HPET_CFG);
cfg &= ~HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
}
static void hpet_reset_counter(void)
{
hpet_writel(0, HPET_COUNTER);
hpet_writel(0, HPET_COUNTER + 4);
}
static void hpet_start_counter(void)
{
unsigned long cfg = hpet_readl(HPET_CFG);
cfg |= HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
}
static void hpet_restart_counter(void)
{
hpet_stop_counter();
hpet_reset_counter();
hpet_start_counter();
}
static void hpet_resume_device(void)
{
force_hpet_resume();
}
static void hpet_resume_counter(void)
{
hpet_resume_device();
hpet_restart_counter();
}
static void hpet_enable_legacy_int(void)
{
unsigned long cfg = hpet_readl(HPET_CFG);
cfg |= HPET_CFG_LEGACY;
hpet_writel(cfg, HPET_CFG);
hpet_legacy_int_enabled = 1;
}
static void hpet_legacy_clockevent_register(void)
{
/* Start HPET legacy interrupts */
hpet_enable_legacy_int();
/*
* The mult factor is defined as (include/linux/clockchips.h)
* mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
* hpet_period is in units of femtoseconds (per cycle), so
* mult/2^shift = cyc/ns = 10^6/hpet_period
* mult = (10^6 * 2^shift)/hpet_period
* mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
*/
hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
hpet_period, hpet_clockevent.shift);
/* Calculate the min / max delta */
hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
&hpet_clockevent);
/* 5 usec minimum reprogramming delta. */
hpet_clockevent.min_delta_ns = 5000;
/*
* Start hpet with the boot cpu mask and make it
* global after the IO_APIC has been initialized.
*/
hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
clockevents_register_device(&hpet_clockevent);
global_clock_event = &hpet_clockevent;
printk(KERN_DEBUG "hpet clockevent registered\n");
}
static int hpet_setup_msi_irq(unsigned int irq);
static void hpet_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt, int timer)
{
unsigned long cfg, cmp, now;
uint64_t delta;
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:
hpet_stop_counter();
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
delta >>= evt->shift;
now = hpet_readl(HPET_COUNTER);
cmp = now + (unsigned long) delta;
cfg = hpet_readl(HPET_Tn_CFG(timer));
/* Make sure we use edge triggered interrupts */
cfg &= ~HPET_TN_LEVEL;
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
HPET_TN_SETVAL | HPET_TN_32BIT;
hpet_writel(cfg, HPET_Tn_CFG(timer));
hpet_writel(cmp, HPET_Tn_CMP(timer));
udelay(1);
/*
* HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
* cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
* bit is automatically cleared after the first write.
* (See AMD-8111 HyperTransport I/O Hub Data Sheet,
* Publication # 24674)
*/
hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
hpet_start_counter();
hpet_print_config();
break;
case CLOCK_EVT_MODE_ONESHOT:
cfg = hpet_readl(HPET_Tn_CFG(timer));
cfg &= ~HPET_TN_PERIODIC;
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
hpet_writel(cfg, HPET_Tn_CFG(timer));
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
cfg = hpet_readl(HPET_Tn_CFG(timer));
cfg &= ~HPET_TN_ENABLE;
hpet_writel(cfg, HPET_Tn_CFG(timer));
break;
case CLOCK_EVT_MODE_RESUME:
if (timer == 0) {
hpet_enable_legacy_int();
} else {
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
hpet_setup_msi_irq(hdev->irq);
disable_irq(hdev->irq);
irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
enable_irq(hdev->irq);
}
hpet_print_config();
break;
}
}
static int hpet_next_event(unsigned long delta,
struct clock_event_device *evt, int timer)
{
u32 cnt;
cnt = hpet_readl(HPET_COUNTER);
cnt += (u32) delta;
hpet_writel(cnt, HPET_Tn_CMP(timer));
/*
* We need to read back the CMP register to make sure that
* what we wrote hit the chip before we compare it to the
* counter.
*/
WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
}
static void hpet_legacy_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
hpet_set_mode(mode, evt, 0);
}
static int hpet_legacy_next_event(unsigned long delta,
struct clock_event_device *evt)
{
return hpet_next_event(delta, evt, 0);
}
/*
* HPET MSI Support
*/
#ifdef CONFIG_PCI_MSI
static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
static struct hpet_dev *hpet_devs;
void hpet_msi_unmask(unsigned int irq)
{
struct hpet_dev *hdev = get_irq_data(irq);
unsigned long cfg;
/* unmask it */
cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
cfg |= HPET_TN_FSB;
hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}
void hpet_msi_mask(unsigned int irq)
{
unsigned long cfg;
struct hpet_dev *hdev = get_irq_data(irq);
/* mask it */
cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
cfg &= ~HPET_TN_FSB;
hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
}
void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
{
struct hpet_dev *hdev = get_irq_data(irq);
hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
}
void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
{
struct hpet_dev *hdev = get_irq_data(irq);
msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
msg->address_hi = 0;
}
static void hpet_msi_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
hpet_set_mode(mode, evt, hdev->num);
}
static int hpet_msi_next_event(unsigned long delta,
struct clock_event_device *evt)
{
struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
return hpet_next_event(delta, evt, hdev->num);
}
static int hpet_setup_msi_irq(unsigned int irq)
{
if (arch_setup_hpet_msi(irq)) {
destroy_irq(irq);
return -EINVAL;
}
return 0;
}
static int hpet_assign_irq(struct hpet_dev *dev)
{
unsigned int irq;
irq = create_irq();
if (!irq)
return -EINVAL;
set_irq_data(irq, dev);
if (hpet_setup_msi_irq(irq))
return -EINVAL;
dev->irq = irq;
return 0;
}
static irqreturn_t hpet_interrupt_handler(int irq, void *data)
{
struct hpet_dev *dev = (struct hpet_dev *)data;
struct clock_event_device *hevt = &dev->evt;
if (!hevt->event_handler) {
printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
dev->num);
return IRQ_HANDLED;
}
hevt->event_handler(hevt);
return IRQ_HANDLED;
}
static int hpet_setup_irq(struct hpet_dev *dev)
{
if (request_irq(dev->irq, hpet_interrupt_handler,
IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
dev->name, dev))
return -1;
disable_irq(dev->irq);
irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
enable_irq(dev->irq);
printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
dev->name, dev->irq);
return 0;
}
/* This should be called in specific @cpu */
static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
{
struct clock_event_device *evt = &hdev->evt;
uint64_t hpet_freq;
WARN_ON(cpu != smp_processor_id());
if (!(hdev->flags & HPET_DEV_VALID))
return;
if (hpet_setup_msi_irq(hdev->irq))
return;
hdev->cpu = cpu;
per_cpu(cpu_hpet_dev, cpu) = hdev;
evt->name = hdev->name;
hpet_setup_irq(hdev);
evt->irq = hdev->irq;
evt->rating = 110;
evt->features = CLOCK_EVT_FEAT_ONESHOT;
if (hdev->flags & HPET_DEV_PERI_CAP)
evt->features |= CLOCK_EVT_FEAT_PERIODIC;
evt->set_mode = hpet_msi_set_mode;
evt->set_next_event = hpet_msi_next_event;
evt->shift = 32;
/*
* The period is a femto seconds value. We need to calculate the
* scaled math multiplication factor for nanosecond to hpet tick
* conversion.
*/
hpet_freq = 1000000000000000ULL;
do_div(hpet_freq, hpet_period);
evt->mult = div_sc((unsigned long) hpet_freq,
NSEC_PER_SEC, evt->shift);
/* Calculate the max delta */
evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
/* 5 usec minimum reprogramming delta. */
evt->min_delta_ns = 5000;
evt->cpumask = cpumask_of(hdev->cpu);
clockevents_register_device(evt);
}
#ifdef CONFIG_HPET
/* Reserve at least one timer for userspace (/dev/hpet) */
#define RESERVE_TIMERS 1
#else
#define RESERVE_TIMERS 0
#endif
static void hpet_msi_capability_lookup(unsigned int start_timer)
{
unsigned int id;
unsigned int num_timers;
unsigned int num_timers_used = 0;
int i;
id = hpet_readl(HPET_ID);
num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
num_timers++; /* Value read out starts from 0 */
hpet_print_config();
hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
if (!hpet_devs)
return;
hpet_num_timers = num_timers;
for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
struct hpet_dev *hdev = &hpet_devs[num_timers_used];
unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
/* Only consider HPET timer with MSI support */
if (!(cfg & HPET_TN_FSB_CAP))
continue;
hdev->flags = 0;
if (cfg & HPET_TN_PERIODIC_CAP)
hdev->flags |= HPET_DEV_PERI_CAP;
hdev->num = i;
sprintf(hdev->name, "hpet%d", i);
if (hpet_assign_irq(hdev))
continue;
hdev->flags |= HPET_DEV_FSB_CAP;
hdev->flags |= HPET_DEV_VALID;
num_timers_used++;
if (num_timers_used == num_possible_cpus())
break;
}
printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
num_timers, num_timers_used);
}
#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
{
int i;
if (!hpet_devs)
return;
for (i = 0; i < hpet_num_timers; i++) {
struct hpet_dev *hdev = &hpet_devs[i];
if (!(hdev->flags & HPET_DEV_VALID))
continue;
hd->hd_irq[hdev->num] = hdev->irq;
hpet_reserve_timer(hd, hdev->num);
}
}
#endif
static struct hpet_dev *hpet_get_unused_timer(void)
{
int i;
if (!hpet_devs)
return NULL;
for (i = 0; i < hpet_num_timers; i++) {
struct hpet_dev *hdev = &hpet_devs[i];
if (!(hdev->flags & HPET_DEV_VALID))
continue;
if (test_and_set_bit(HPET_DEV_USED_BIT,
(unsigned long *)&hdev->flags))
continue;
return hdev;
}
return NULL;
}
struct hpet_work_struct {
struct delayed_work work;
struct completion complete;
};
static void hpet_work(struct work_struct *w)
{
struct hpet_dev *hdev;
int cpu = smp_processor_id();
struct hpet_work_struct *hpet_work;
hpet_work = container_of(w, struct hpet_work_struct, work.work);
hdev = hpet_get_unused_timer();
if (hdev)
init_one_hpet_msi_clockevent(hdev, cpu);
complete(&hpet_work->complete);
}
static int hpet_cpuhp_notify(struct notifier_block *n,
unsigned long action, void *hcpu)
{
unsigned long cpu = (unsigned long)hcpu;
struct hpet_work_struct work;
struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
switch (action & 0xf) {
case CPU_ONLINE:
INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
init_completion(&work.complete);
/* FIXME: add schedule_work_on() */
schedule_delayed_work_on(cpu, &work.work, 0);
wait_for_completion(&work.complete);
destroy_timer_on_stack(&work.work.timer);
break;
case CPU_DEAD:
if (hdev) {
free_irq(hdev->irq, hdev);
hdev->flags &= ~HPET_DEV_USED;
per_cpu(cpu_hpet_dev, cpu) = NULL;
}
break;
}
return NOTIFY_OK;
}
#else
static int hpet_setup_msi_irq(unsigned int irq)
{
return 0;
}
static void hpet_msi_capability_lookup(unsigned int start_timer)
{
return;
}
#ifdef CONFIG_HPET
static void hpet_reserve_msi_timers(struct hpet_data *hd)
{
return;
}
#endif
static int hpet_cpuhp_notify(struct notifier_block *n,
unsigned long action, void *hcpu)
{
return NOTIFY_OK;
}
#endif
/*
* Clock source related code
*/
static cycle_t read_hpet(struct clocksource *cs)
{
return (cycle_t)hpet_readl(HPET_COUNTER);
}
#ifdef CONFIG_X86_64
static cycle_t __vsyscall_fn vread_hpet(void)
{
return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
#endif
static struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
.read = read_hpet,
.mask = HPET_MASK,
.shift = HPET_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.resume = hpet_resume_counter,
#ifdef CONFIG_X86_64
.vread = vread_hpet,
#endif
};
static int hpet_clocksource_register(void)
{
u64 start, now;
cycle_t t1;
/* Start the counter */
hpet_restart_counter();
/* Verify whether hpet counter works */
t1 = hpet_readl(HPET_COUNTER);
rdtscll(start);
/*
* We don't know the TSC frequency yet, but waiting for
* 200000 TSC cycles is safe:
* 4 GHz == 50us
* 1 GHz == 200us
*/
do {
rep_nop();
rdtscll(now);
} while ((now - start) < 200000UL);
if (t1 == hpet_readl(HPET_COUNTER)) {
printk(KERN_WARNING
"HPET counter not counting. HPET disabled\n");
return -ENODEV;
}
/*
* The definition of mult is (include/linux/clocksource.h)
* mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
* so we first need to convert hpet_period to ns/cyc units:
* mult/2^shift = ns/cyc = hpet_period/10^6
* mult = (hpet_period * 2^shift)/10^6
* mult = (hpet_period << shift)/FSEC_PER_NSEC
*/
clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
clocksource_register(&clocksource_hpet);
return 0;
}
/**
* hpet_enable - Try to setup the HPET timer. Returns 1 on success.
*/
int __init hpet_enable(void)
{
unsigned long id;
int i;
if (!is_hpet_capable())
return 0;
hpet_set_mapping();
/*
* Read the period and check for a sane value:
*/
hpet_period = hpet_readl(HPET_PERIOD);
/*
* AMD SB700 based systems with spread spectrum enabled use a
* SMM based HPET emulation to provide proper frequency
* setting. The SMM code is initialized with the first HPET
* register access and takes some time to complete. During
* this time the config register reads 0xffffffff. We check
* for max. 1000 loops whether the config register reads a non
* 0xffffffff value to make sure that HPET is up and running
* before we go further. A counting loop is safe, as the HPET
* access takes thousands of CPU cycles. On non SB700 based
* machines this check is only done once and has no side
* effects.
*/
for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
if (i == 1000) {
printk(KERN_WARNING
"HPET config register value = 0xFFFFFFFF. "
"Disabling HPET\n");
goto out_nohpet;
}
}
if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
goto out_nohpet;
/*
* Read the HPET ID register to retrieve the IRQ routing
* information and the number of channels
*/
id = hpet_readl(HPET_ID);
hpet_print_config();
#ifdef CONFIG_HPET_EMULATE_RTC
/*
* The legacy routing mode needs at least two channels, tick timer
* and the rtc emulation channel.
*/
if (!(id & HPET_ID_NUMBER))
goto out_nohpet;
#endif
if (hpet_clocksource_register())
goto out_nohpet;
if (id & HPET_ID_LEGSUP) {
hpet_legacy_clockevent_register();
hpet_msi_capability_lookup(2);
return 1;
}
hpet_msi_capability_lookup(0);
return 0;
out_nohpet:
hpet_clear_mapping();
hpet_address = 0;
return 0;
}
/*
* Needs to be late, as the reserve_timer code calls kalloc !
*
* Not a problem on i386 as hpet_enable is called from late_time_init,
* but on x86_64 it is necessary !
*/
static __init int hpet_late_init(void)
{
int cpu;
if (boot_hpet_disable)
return -ENODEV;
if (!hpet_address) {
if (!force_hpet_address)
return -ENODEV;
hpet_address = force_hpet_address;
hpet_enable();
}
if (!hpet_virt_address)
return -ENODEV;
hpet_reserve_platform_timers(hpet_readl(HPET_ID));
hpet_print_config();
for_each_online_cpu(cpu) {
hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
}
/* This notifier should be called after workqueue is ready */
hotcpu_notifier(hpet_cpuhp_notify, -20);
return 0;
}
fs_initcall(hpet_late_init);
void hpet_disable(void)
{
if (is_hpet_capable()) {
unsigned long cfg = hpet_readl(HPET_CFG);
if (hpet_legacy_int_enabled) {
cfg &= ~HPET_CFG_LEGACY;
hpet_legacy_int_enabled = 0;
}
cfg &= ~HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
}
}
#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
* is enabled, we support RTC interrupt functionality in software.
* RTC has 3 kinds of interrupts:
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
* is updated
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
* (1) and (2) above are implemented using polling at a frequency of
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
* overhead. (DEFAULT_RTC_INT_FREQ)
* For (3), we use interrupts at 64Hz or user specified periodic
* frequency, whichever is higher.
*/
#include <linux/mc146818rtc.h>
#include <linux/rtc.h>
#include <asm/rtc.h>
#define DEFAULT_RTC_INT_FREQ 64
#define DEFAULT_RTC_SHIFT 6
#define RTC_NUM_INTS 1
static unsigned long hpet_rtc_flags;
static int hpet_prev_update_sec;
static struct rtc_time hpet_alarm_time;
static unsigned long hpet_pie_count;
static u32 hpet_t1_cmp;
static unsigned long hpet_default_delta;
static unsigned long hpet_pie_delta;
static unsigned long hpet_pie_limit;
static rtc_irq_handler irq_handler;
/*
* Check that the hpet counter c1 is ahead of the c2
*/
static inline int hpet_cnt_ahead(u32 c1, u32 c2)
{
return (s32)(c2 - c1) < 0;
}
/*
* Registers a IRQ handler.
*/
int hpet_register_irq_handler(rtc_irq_handler handler)
{
if (!is_hpet_enabled())
return -ENODEV;
if (irq_handler)
return -EBUSY;
irq_handler = handler;
return 0;
}
EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
/*
* Deregisters the IRQ handler registered with hpet_register_irq_handler()
* and does cleanup.
*/
void hpet_unregister_irq_handler(rtc_irq_handler handler)
{
if (!is_hpet_enabled())
return;
irq_handler = NULL;
hpet_rtc_flags = 0;
}
EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
/*
* Timer 1 for RTC emulation. We use one shot mode, as periodic mode
* is not supported by all HPET implementations for timer 1.
*
* hpet_rtc_timer_init() is called when the rtc is initialized.
*/
int hpet_rtc_timer_init(void)
{
unsigned long cfg, cnt, delta, flags;
if (!is_hpet_enabled())
return 0;
if (!hpet_default_delta) {
uint64_t clc;
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
hpet_default_delta = (unsigned long) clc;
}
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
delta = hpet_default_delta;
else
delta = hpet_pie_delta;
local_irq_save(flags);
cnt = delta + hpet_readl(HPET_COUNTER);
hpet_writel(cnt, HPET_T1_CMP);
hpet_t1_cmp = cnt;
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_PERIODIC;
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T1_CFG);
local_irq_restore(flags);
return 1;
}
EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
/*
* The functions below are called from rtc driver.
* Return 0 if HPET is not being used.
* Otherwise do the necessary changes and return 1.
*/
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
if (!is_hpet_enabled())
return 0;
hpet_rtc_flags &= ~bit_mask;
return 1;
}
EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
unsigned long oldbits = hpet_rtc_flags;
if (!is_hpet_enabled())
return 0;
hpet_rtc_flags |= bit_mask;
if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
hpet_prev_update_sec = -1;
if (!oldbits)
hpet_rtc_timer_init();
return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
unsigned char sec)
{
if (!is_hpet_enabled())
return 0;
hpet_alarm_time.tm_hour = hrs;
hpet_alarm_time.tm_min = min;
hpet_alarm_time.tm_sec = sec;
return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
int hpet_set_periodic_freq(unsigned long freq)
{
uint64_t clc;
if (!is_hpet_enabled())
return 0;
if (freq <= DEFAULT_RTC_INT_FREQ)
hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
else {
clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
do_div(clc, freq);
clc >>= hpet_clockevent.shift;
hpet_pie_delta = (unsigned long) clc;
}
return 1;
}
EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
int hpet_rtc_dropped_irq(void)
{
return is_hpet_enabled();
}
EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
static void hpet_rtc_timer_reinit(void)
{
unsigned long cfg, delta;
int lost_ints = -1;
if (unlikely(!hpet_rtc_flags)) {
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_ENABLE;
hpet_writel(cfg, HPET_T1_CFG);
return;
}
if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
delta = hpet_default_delta;
else
delta = hpet_pie_delta;
/*
* Increment the comparator value until we are ahead of the
* current count.
*/
do {
hpet_t1_cmp += delta;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
lost_ints++;
} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
if (lost_ints) {
if (hpet_rtc_flags & RTC_PIE)
hpet_pie_count += lost_ints;
if (printk_ratelimit())
printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
lost_ints);
}
}
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
struct rtc_time curr_time;
unsigned long rtc_int_flag = 0;
hpet_rtc_timer_reinit();
memset(&curr_time, 0, sizeof(struct rtc_time));
if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
get_rtc_time(&curr_time);
if (hpet_rtc_flags & RTC_UIE &&
curr_time.tm_sec != hpet_prev_update_sec) {
if (hpet_prev_update_sec >= 0)
rtc_int_flag = RTC_UF;
hpet_prev_update_sec = curr_time.tm_sec;
}
if (hpet_rtc_flags & RTC_PIE &&
++hpet_pie_count >= hpet_pie_limit) {
rtc_int_flag |= RTC_PF;
hpet_pie_count = 0;
}
if (hpet_rtc_flags & RTC_AIE &&
(curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
(curr_time.tm_min == hpet_alarm_time.tm_min) &&
(curr_time.tm_hour == hpet_alarm_time.tm_hour))
rtc_int_flag |= RTC_AF;
if (rtc_int_flag) {
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
if (irq_handler)
irq_handler(rtc_int_flag, dev_id);
}
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
#endif