linux_old1/arch/x86/mm/numa_64.c

646 lines
16 KiB
C

/*
* Generic VM initialization for x86-64 NUMA setups.
* Copyright 2002,2003 Andi Kleen, SuSE Labs.
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/sched.h>
#include <linux/acpi.h>
#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/acpi.h>
#include <asm/amd_nb.h>
#include "numa_internal.h"
struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);
nodemask_t numa_nodes_parsed __initdata;
struct memnode memnode;
static unsigned long __initdata nodemap_addr;
static unsigned long __initdata nodemap_size;
static struct numa_meminfo numa_meminfo __initdata;
static int numa_distance_cnt;
static u8 *numa_distance;
/*
* Given a shift value, try to populate memnodemap[]
* Returns :
* 1 if OK
* 0 if memnodmap[] too small (of shift too small)
* -1 if node overlap or lost ram (shift too big)
*/
static int __init populate_memnodemap(const struct numa_meminfo *mi, int shift)
{
unsigned long addr, end;
int i, res = -1;
memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
for (i = 0; i < mi->nr_blks; i++) {
addr = mi->blk[i].start;
end = mi->blk[i].end;
if (addr >= end)
continue;
if ((end >> shift) >= memnodemapsize)
return 0;
do {
if (memnodemap[addr >> shift] != NUMA_NO_NODE)
return -1;
memnodemap[addr >> shift] = mi->blk[i].nid;
addr += (1UL << shift);
} while (addr < end);
res = 1;
}
return res;
}
static int __init allocate_cachealigned_memnodemap(void)
{
unsigned long addr;
memnodemap = memnode.embedded_map;
if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
return 0;
addr = 0x8000;
nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
nodemap_addr = memblock_find_in_range(addr, get_max_mapped(),
nodemap_size, L1_CACHE_BYTES);
if (nodemap_addr == MEMBLOCK_ERROR) {
printk(KERN_ERR
"NUMA: Unable to allocate Memory to Node hash map\n");
nodemap_addr = nodemap_size = 0;
return -1;
}
memnodemap = phys_to_virt(nodemap_addr);
memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
nodemap_addr, nodemap_addr + nodemap_size);
return 0;
}
/*
* The LSB of all start and end addresses in the node map is the value of the
* maximum possible shift.
*/
static int __init extract_lsb_from_nodes(const struct numa_meminfo *mi)
{
int i, nodes_used = 0;
unsigned long start, end;
unsigned long bitfield = 0, memtop = 0;
for (i = 0; i < mi->nr_blks; i++) {
start = mi->blk[i].start;
end = mi->blk[i].end;
if (start >= end)
continue;
bitfield |= start;
nodes_used++;
if (end > memtop)
memtop = end;
}
if (nodes_used <= 1)
i = 63;
else
i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
memnodemapsize = (memtop >> i)+1;
return i;
}
static int __init compute_hash_shift(const struct numa_meminfo *mi)
{
int shift;
shift = extract_lsb_from_nodes(mi);
if (allocate_cachealigned_memnodemap())
return -1;
printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
shift);
if (populate_memnodemap(mi, shift) != 1) {
printk(KERN_INFO "Your memory is not aligned you need to "
"rebuild your kernel with a bigger NODEMAPSIZE "
"shift=%d\n", shift);
return -1;
}
return shift;
}
int __meminit __early_pfn_to_nid(unsigned long pfn)
{
return phys_to_nid(pfn << PAGE_SHIFT);
}
static void * __init early_node_mem(int nodeid, unsigned long start,
unsigned long end, unsigned long size,
unsigned long align)
{
unsigned long mem;
/*
* put it on high as possible
* something will go with NODE_DATA
*/
if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
start = MAX_DMA_PFN<<PAGE_SHIFT;
if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
end > (MAX_DMA32_PFN<<PAGE_SHIFT))
start = MAX_DMA32_PFN<<PAGE_SHIFT;
mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
if (mem != MEMBLOCK_ERROR)
return __va(mem);
/* extend the search scope */
end = max_pfn_mapped << PAGE_SHIFT;
start = MAX_DMA_PFN << PAGE_SHIFT;
mem = memblock_find_in_range(start, end, size, align);
if (mem != MEMBLOCK_ERROR)
return __va(mem);
printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
size, nodeid);
return NULL;
}
static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
struct numa_meminfo *mi)
{
/* ignore zero length blks */
if (start == end)
return 0;
/* whine about and ignore invalid blks */
if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n",
nid, start, end);
return 0;
}
if (mi->nr_blks >= NR_NODE_MEMBLKS) {
pr_err("NUMA: too many memblk ranges\n");
return -EINVAL;
}
mi->blk[mi->nr_blks].start = start;
mi->blk[mi->nr_blks].end = end;
mi->blk[mi->nr_blks].nid = nid;
mi->nr_blks++;
return 0;
}
/**
* numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
* @idx: Index of memblk to remove
* @mi: numa_meminfo to remove memblk from
*
* Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
* decrementing @mi->nr_blks.
*/
void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
{
mi->nr_blks--;
memmove(&mi->blk[idx], &mi->blk[idx + 1],
(mi->nr_blks - idx) * sizeof(mi->blk[0]));
}
/**
* numa_add_memblk - Add one numa_memblk to numa_meminfo
* @nid: NUMA node ID of the new memblk
* @start: Start address of the new memblk
* @end: End address of the new memblk
*
* Add a new memblk to the default numa_meminfo.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int __init numa_add_memblk(int nid, u64 start, u64 end)
{
return numa_add_memblk_to(nid, start, end, &numa_meminfo);
}
/* Initialize bootmem allocator for a node */
void __init
setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
{
unsigned long start_pfn, last_pfn, nodedata_phys;
const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
int nid;
if (!end)
return;
/*
* Don't confuse VM with a node that doesn't have the
* minimum amount of memory:
*/
if (end && (end - start) < NODE_MIN_SIZE)
return;
start = roundup(start, ZONE_ALIGN);
printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
start, end);
start_pfn = start >> PAGE_SHIFT;
last_pfn = end >> PAGE_SHIFT;
node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
SMP_CACHE_BYTES);
if (node_data[nodeid] == NULL)
return;
nodedata_phys = __pa(node_data[nodeid]);
memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
nodedata_phys + pgdat_size - 1);
nid = phys_to_nid(nodedata_phys);
if (nid != nodeid)
printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
NODE_DATA(nodeid)->node_id = nodeid;
NODE_DATA(nodeid)->node_start_pfn = start_pfn;
NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
node_set_online(nodeid);
}
/**
* numa_cleanup_meminfo - Cleanup a numa_meminfo
* @mi: numa_meminfo to clean up
*
* Sanitize @mi by merging and removing unncessary memblks. Also check for
* conflicts and clear unused memblks.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
{
const u64 low = 0;
const u64 high = (u64)max_pfn << PAGE_SHIFT;
int i, j, k;
for (i = 0; i < mi->nr_blks; i++) {
struct numa_memblk *bi = &mi->blk[i];
/* make sure all blocks are inside the limits */
bi->start = max(bi->start, low);
bi->end = min(bi->end, high);
/* and there's no empty block */
if (bi->start == bi->end) {
numa_remove_memblk_from(i--, mi);
continue;
}
for (j = i + 1; j < mi->nr_blks; j++) {
struct numa_memblk *bj = &mi->blk[j];
unsigned long start, end;
/*
* See whether there are overlapping blocks. Whine
* about but allow overlaps of the same nid. They
* will be merged below.
*/
if (bi->end > bj->start && bi->start < bj->end) {
if (bi->nid != bj->nid) {
pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n",
bi->nid, bi->start, bi->end,
bj->nid, bj->start, bj->end);
return -EINVAL;
}
pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n",
bi->nid, bi->start, bi->end,
bj->start, bj->end);
}
/*
* Join together blocks on the same node, holes
* between which don't overlap with memory on other
* nodes.
*/
if (bi->nid != bj->nid)
continue;
start = max(min(bi->start, bj->start), low);
end = min(max(bi->end, bj->end), high);
for (k = 0; k < mi->nr_blks; k++) {
struct numa_memblk *bk = &mi->blk[k];
if (bi->nid == bk->nid)
continue;
if (start < bk->end && end > bk->start)
break;
}
if (k < mi->nr_blks)
continue;
printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n",
bi->nid, bi->start, bi->end, bj->start, bj->end,
start, end);
bi->start = start;
bi->end = end;
numa_remove_memblk_from(j--, mi);
}
}
for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
mi->blk[i].start = mi->blk[i].end = 0;
mi->blk[i].nid = NUMA_NO_NODE;
}
return 0;
}
/*
* Set nodes, which have memory in @mi, in *@nodemask.
*/
static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
const struct numa_meminfo *mi)
{
int i;
for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
if (mi->blk[i].start != mi->blk[i].end &&
mi->blk[i].nid != NUMA_NO_NODE)
node_set(mi->blk[i].nid, *nodemask);
}
/**
* numa_reset_distance - Reset NUMA distance table
*
* The current table is freed. The next numa_set_distance() call will
* create a new one.
*/
void __init numa_reset_distance(void)
{
size_t size;
if (numa_distance_cnt) {
size = numa_distance_cnt * sizeof(numa_distance[0]);
memblock_x86_free_range(__pa(numa_distance),
__pa(numa_distance) + size);
numa_distance_cnt = 0;
}
numa_distance = NULL;
}
static int __init numa_alloc_distance(void)
{
nodemask_t nodes_parsed;
size_t size;
int i, j, cnt = 0;
u64 phys;
/* size the new table and allocate it */
nodes_parsed = numa_nodes_parsed;
numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
for_each_node_mask(i, nodes_parsed)
cnt = i;
size = ++cnt * sizeof(numa_distance[0]);
phys = memblock_find_in_range(0, (u64)max_pfn_mapped << PAGE_SHIFT,
size, PAGE_SIZE);
if (phys == MEMBLOCK_ERROR) {
pr_warning("NUMA: Warning: can't allocate distance table!\n");
/* don't retry until explicitly reset */
numa_distance = (void *)1LU;
return -ENOMEM;
}
memblock_x86_reserve_range(phys, phys + size, "NUMA DIST");
numa_distance = __va(phys);
numa_distance_cnt = cnt;
/* fill with the default distances */
for (i = 0; i < cnt; i++)
for (j = 0; j < cnt; j++)
numa_distance[i * cnt + j] = i == j ?
LOCAL_DISTANCE : REMOTE_DISTANCE;
printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
return 0;
}
/**
* numa_set_distance - Set NUMA distance from one NUMA to another
* @from: the 'from' node to set distance
* @to: the 'to' node to set distance
* @distance: NUMA distance
*
* Set the distance from node @from to @to to @distance. If distance table
* doesn't exist, one which is large enough to accomodate all the currently
* known nodes will be created.
*/
void __init numa_set_distance(int from, int to, int distance)
{
if (!numa_distance && numa_alloc_distance() < 0)
return;
if (from >= numa_distance_cnt || to >= numa_distance_cnt) {
printk_once(KERN_DEBUG "NUMA: Debug: distance out of bound, from=%d to=%d distance=%d\n",
from, to, distance);
return;
}
if ((u8)distance != distance ||
(from == to && distance != LOCAL_DISTANCE)) {
pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
from, to, distance);
return;
}
numa_distance[from * numa_distance_cnt + to] = distance;
}
int __node_distance(int from, int to)
{
if (from >= numa_distance_cnt || to >= numa_distance_cnt)
return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
return numa_distance[from * numa_distance_cnt + to];
}
EXPORT_SYMBOL(__node_distance);
/*
* Sanity check to catch more bad NUMA configurations (they are amazingly
* common). Make sure the nodes cover all memory.
*/
static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
{
unsigned long numaram, e820ram;
int i;
numaram = 0;
for (i = 0; i < mi->nr_blks; i++) {
unsigned long s = mi->blk[i].start >> PAGE_SHIFT;
unsigned long e = mi->blk[i].end >> PAGE_SHIFT;
numaram += e - s;
numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
if ((long)numaram < 0)
numaram = 0;
}
e820ram = max_pfn - (memblock_x86_hole_size(0,
max_pfn << PAGE_SHIFT) >> PAGE_SHIFT);
/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
if ((long)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n",
(numaram << PAGE_SHIFT) >> 20,
(e820ram << PAGE_SHIFT) >> 20);
return false;
}
return true;
}
static int __init numa_register_memblks(struct numa_meminfo *mi)
{
int i, nid;
/* Account for nodes with cpus and no memory */
node_possible_map = numa_nodes_parsed;
numa_nodemask_from_meminfo(&node_possible_map, mi);
if (WARN_ON(nodes_empty(node_possible_map)))
return -EINVAL;
memnode_shift = compute_hash_shift(mi);
if (memnode_shift < 0) {
printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n");
return -EINVAL;
}
for (i = 0; i < mi->nr_blks; i++)
memblock_x86_register_active_regions(mi->blk[i].nid,
mi->blk[i].start >> PAGE_SHIFT,
mi->blk[i].end >> PAGE_SHIFT);
/* for out of order entries */
sort_node_map();
if (!numa_meminfo_cover_memory(mi))
return -EINVAL;
init_memory_mapping_high();
/* Finally register nodes. */
for_each_node_mask(nid, node_possible_map) {
u64 start = (u64)max_pfn << PAGE_SHIFT;
u64 end = 0;
for (i = 0; i < mi->nr_blks; i++) {
if (nid != mi->blk[i].nid)
continue;
start = min(mi->blk[i].start, start);
end = max(mi->blk[i].end, end);
}
if (start < end)
setup_node_bootmem(nid, start, end);
}
return 0;
}
static int __init dummy_numa_init(void)
{
printk(KERN_INFO "%s\n",
numa_off ? "NUMA turned off" : "No NUMA configuration found");
printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
0LU, max_pfn << PAGE_SHIFT);
node_set(0, numa_nodes_parsed);
numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT);
return 0;
}
void __init initmem_init(void)
{
int (*numa_init[])(void) = { [2] = dummy_numa_init };
int i, j;
if (!numa_off) {
#ifdef CONFIG_ACPI_NUMA
numa_init[0] = x86_acpi_numa_init;
#endif
#ifdef CONFIG_AMD_NUMA
numa_init[1] = amd_numa_init;
#endif
}
for (i = 0; i < ARRAY_SIZE(numa_init); i++) {
if (!numa_init[i])
continue;
for (j = 0; j < MAX_LOCAL_APIC; j++)
set_apicid_to_node(j, NUMA_NO_NODE);
nodes_clear(numa_nodes_parsed);
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
memset(&numa_meminfo, 0, sizeof(numa_meminfo));
remove_all_active_ranges();
numa_reset_distance();
if (numa_init[i]() < 0)
continue;
if (numa_cleanup_meminfo(&numa_meminfo) < 0)
continue;
numa_emulation(&numa_meminfo, numa_distance_cnt);
if (numa_register_memblks(&numa_meminfo) < 0)
continue;
for (j = 0; j < nr_cpu_ids; j++) {
int nid = early_cpu_to_node(j);
if (nid == NUMA_NO_NODE)
continue;
if (!node_online(nid))
numa_clear_node(j);
}
numa_init_array();
return;
}
BUG();
}
unsigned long __init numa_free_all_bootmem(void)
{
unsigned long pages = 0;
int i;
for_each_online_node(i)
pages += free_all_bootmem_node(NODE_DATA(i));
pages += free_all_memory_core_early(MAX_NUMNODES);
return pages;
}
int __cpuinit numa_cpu_node(int cpu)
{
int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
if (apicid != BAD_APICID)
return __apicid_to_node[apicid];
return NUMA_NO_NODE;
}