linux_old1/sound/soc/soc-cache.c

598 lines
12 KiB
C

/*
* soc-cache.c -- ASoC register cache helpers
*
* Copyright 2009 Wolfson Microelectronics PLC.
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/i2c.h>
#include <linux/spi/spi.h>
#include <sound/soc.h>
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
unsigned int reg)
{
u16 *cache = codec->reg_cache;
if (reg >= codec->reg_cache_size)
return -1;
return cache[reg];
}
static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u16 *cache = codec->reg_cache;
u8 data[2];
int ret;
BUG_ON(codec->volatile_register);
data[0] = (reg << 4) | ((value >> 8) & 0x000f);
data[1] = value & 0x00ff;
if (reg < codec->reg_cache_size)
cache[reg] = value;
if (codec->cache_only) {
codec->cache_sync = 1;
return 0;
}
dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
ret = codec->hw_write(codec->control_data, data, 2);
if (ret == 2)
return 0;
if (ret < 0)
return ret;
else
return -EIO;
}
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_4_12_spi_write(void *control_data, const char *data,
int len)
{
struct spi_device *spi = control_data;
struct spi_transfer t;
struct spi_message m;
u8 msg[2];
if (len <= 0)
return 0;
msg[0] = data[1];
msg[1] = data[0];
spi_message_init(&m);
memset(&t, 0, (sizeof t));
t.tx_buf = &msg[0];
t.len = len;
spi_message_add_tail(&t, &m);
spi_sync(spi, &m);
return len;
}
#else
#define snd_soc_4_12_spi_write NULL
#endif
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
unsigned int reg)
{
u16 *cache = codec->reg_cache;
if (reg >= codec->reg_cache_size)
return -1;
return cache[reg];
}
static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u16 *cache = codec->reg_cache;
u8 data[2];
int ret;
BUG_ON(codec->volatile_register);
data[0] = (reg << 1) | ((value >> 8) & 0x0001);
data[1] = value & 0x00ff;
if (reg < codec->reg_cache_size)
cache[reg] = value;
if (codec->cache_only) {
codec->cache_sync = 1;
return 0;
}
dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
ret = codec->hw_write(codec->control_data, data, 2);
if (ret == 2)
return 0;
if (ret < 0)
return ret;
else
return -EIO;
}
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_7_9_spi_write(void *control_data, const char *data,
int len)
{
struct spi_device *spi = control_data;
struct spi_transfer t;
struct spi_message m;
u8 msg[2];
if (len <= 0)
return 0;
msg[0] = data[0];
msg[1] = data[1];
spi_message_init(&m);
memset(&t, 0, (sizeof t));
t.tx_buf = &msg[0];
t.len = len;
spi_message_add_tail(&t, &m);
spi_sync(spi, &m);
return len;
}
#else
#define snd_soc_7_9_spi_write NULL
#endif
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u8 *cache = codec->reg_cache;
u8 data[2];
BUG_ON(codec->volatile_register);
reg &= 0xff;
data[0] = reg;
data[1] = value & 0xff;
if (reg < codec->reg_cache_size)
cache[reg] = value;
if (codec->cache_only) {
codec->cache_sync = 1;
return 0;
}
dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
if (codec->hw_write(codec->control_data, data, 2) == 2)
return 0;
else
return -EIO;
}
static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
unsigned int reg)
{
u8 *cache = codec->reg_cache;
reg &= 0xff;
if (reg >= codec->reg_cache_size)
return -1;
return cache[reg];
}
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u16 *reg_cache = codec->reg_cache;
u8 data[3];
data[0] = reg;
data[1] = (value >> 8) & 0xff;
data[2] = value & 0xff;
if (!snd_soc_codec_volatile_register(codec, reg))
reg_cache[reg] = value;
if (codec->cache_only) {
codec->cache_sync = 1;
return 0;
}
dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
if (codec->hw_write(codec->control_data, data, 3) == 3)
return 0;
else
return -EIO;
}
static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
unsigned int reg)
{
u16 *cache = codec->reg_cache;
if (reg >= codec->reg_cache_size ||
snd_soc_codec_volatile_register(codec, reg)) {
if (codec->cache_only)
return -EINVAL;
return codec->hw_read(codec, reg);
} else {
return cache[reg];
}
}
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
unsigned int r)
{
struct i2c_msg xfer[2];
u8 reg = r;
u8 data;
int ret;
struct i2c_client *client = codec->control_data;
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = 0;
xfer[0].len = 1;
xfer[0].buf = &reg;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = 1;
xfer[1].buf = &data;
ret = i2c_transfer(client->adapter, xfer, 2);
if (ret != 2) {
dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
return 0;
}
return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
unsigned int r)
{
struct i2c_msg xfer[2];
u8 reg = r;
u16 data;
int ret;
struct i2c_client *client = codec->control_data;
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = 0;
xfer[0].len = 1;
xfer[0].buf = &reg;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = 2;
xfer[1].buf = (u8 *)&data;
ret = i2c_transfer(client->adapter, xfer, 2);
if (ret != 2) {
dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
return 0;
}
return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
unsigned int r)
{
struct i2c_msg xfer[2];
u16 reg = r;
u8 data;
int ret;
struct i2c_client *client = codec->control_data;
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = 0;
xfer[0].len = 2;
xfer[0].buf = (u8 *)&reg;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = 1;
xfer[1].buf = &data;
ret = i2c_transfer(client->adapter, xfer, 2);
if (ret != 2) {
dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
return 0;
}
return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif
static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
unsigned int reg)
{
u8 *cache = codec->reg_cache;
reg &= 0xff;
if (reg >= codec->reg_cache_size)
return -1;
return cache[reg];
}
static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u8 *cache = codec->reg_cache;
u8 data[3];
int ret;
BUG_ON(codec->volatile_register);
data[0] = (reg >> 8) & 0xff;
data[1] = reg & 0xff;
data[2] = value;
reg &= 0xff;
if (reg < codec->reg_cache_size)
cache[reg] = value;
if (codec->cache_only) {
codec->cache_sync = 1;
return 0;
}
dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
ret = codec->hw_write(codec->control_data, data, 3);
if (ret == 3)
return 0;
if (ret < 0)
return ret;
else
return -EIO;
}
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_8_spi_write(void *control_data, const char *data,
int len)
{
struct spi_device *spi = control_data;
struct spi_transfer t;
struct spi_message m;
u8 msg[3];
if (len <= 0)
return 0;
msg[0] = data[0];
msg[1] = data[1];
msg[2] = data[2];
spi_message_init(&m);
memset(&t, 0, (sizeof t));
t.tx_buf = &msg[0];
t.len = len;
spi_message_add_tail(&t, &m);
spi_sync(spi, &m);
return len;
}
#else
#define snd_soc_16_8_spi_write NULL
#endif
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
unsigned int r)
{
struct i2c_msg xfer[2];
u16 reg = cpu_to_be16(r);
u16 data;
int ret;
struct i2c_client *client = codec->control_data;
/* Write register */
xfer[0].addr = client->addr;
xfer[0].flags = 0;
xfer[0].len = 2;
xfer[0].buf = (u8 *)&reg;
/* Read data */
xfer[1].addr = client->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = 2;
xfer[1].buf = (u8 *)&data;
ret = i2c_transfer(client->adapter, xfer, 2);
if (ret != 2) {
dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
return 0;
}
return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif
static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
unsigned int reg)
{
u16 *cache = codec->reg_cache;
if (reg >= codec->reg_cache_size ||
snd_soc_codec_volatile_register(codec, reg)) {
if (codec->cache_only)
return -EINVAL;
return codec->hw_read(codec, reg);
}
return cache[reg];
}
static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
u16 *cache = codec->reg_cache;
u8 data[4];
int ret;
data[0] = (reg >> 8) & 0xff;
data[1] = reg & 0xff;
data[2] = (value >> 8) & 0xff;
data[3] = value & 0xff;
if (reg < codec->reg_cache_size)
cache[reg] = value;
if (codec->cache_only) {
codec->cache_sync = 1;
return 0;
}
dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
ret = codec->hw_write(codec->control_data, data, 4);
if (ret == 4)
return 0;
if (ret < 0)
return ret;
else
return -EIO;
}
static struct {
int addr_bits;
int data_bits;
int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
int (*spi_write)(void *, const char *, int);
unsigned int (*read)(struct snd_soc_codec *, unsigned int);
unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
} io_types[] = {
{
.addr_bits = 4, .data_bits = 12,
.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
.spi_write = snd_soc_4_12_spi_write,
},
{
.addr_bits = 7, .data_bits = 9,
.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
.spi_write = snd_soc_7_9_spi_write,
},
{
.addr_bits = 8, .data_bits = 8,
.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
.i2c_read = snd_soc_8_8_read_i2c,
},
{
.addr_bits = 8, .data_bits = 16,
.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
.i2c_read = snd_soc_8_16_read_i2c,
},
{
.addr_bits = 16, .data_bits = 8,
.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
.i2c_read = snd_soc_16_8_read_i2c,
.spi_write = snd_soc_16_8_spi_write,
},
{
.addr_bits = 16, .data_bits = 16,
.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
.i2c_read = snd_soc_16_16_read_i2c,
},
};
/**
* snd_soc_codec_set_cache_io: Set up standard I/O functions.
*
* @codec: CODEC to configure.
* @type: Type of cache.
* @addr_bits: Number of bits of register address data.
* @data_bits: Number of bits of data per register.
* @control: Control bus used.
*
* Register formats are frequently shared between many I2C and SPI
* devices. In order to promote code reuse the ASoC core provides
* some standard implementations of CODEC read and write operations
* which can be set up using this function.
*
* The caller is responsible for allocating and initialising the
* actual cache.
*
* Note that at present this code cannot be used by CODECs with
* volatile registers.
*/
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
int addr_bits, int data_bits,
enum snd_soc_control_type control)
{
int i;
for (i = 0; i < ARRAY_SIZE(io_types); i++)
if (io_types[i].addr_bits == addr_bits &&
io_types[i].data_bits == data_bits)
break;
if (i == ARRAY_SIZE(io_types)) {
printk(KERN_ERR
"No I/O functions for %d bit address %d bit data\n",
addr_bits, data_bits);
return -EINVAL;
}
codec->write = io_types[i].write;
codec->read = io_types[i].read;
switch (control) {
case SND_SOC_CUSTOM:
break;
case SND_SOC_I2C:
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
codec->hw_write = (hw_write_t)i2c_master_send;
#endif
if (io_types[i].i2c_read)
codec->hw_read = io_types[i].i2c_read;
break;
case SND_SOC_SPI:
if (io_types[i].spi_write)
codec->hw_write = io_types[i].spi_write;
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);