linux_old1/drivers/dma/amba-pl08x.c

2168 lines
55 KiB
C

/*
* Copyright (c) 2006 ARM Ltd.
* Copyright (c) 2010 ST-Ericsson SA
*
* Author: Peter Pearse <peter.pearse@arm.com>
* Author: Linus Walleij <linus.walleij@stericsson.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The full GNU General Public License is iin this distribution in the
* file called COPYING.
*
* Documentation: ARM DDI 0196G == PL080
* Documentation: ARM DDI 0218E == PL081
*
* PL080 & PL081 both have 16 sets of DMA signals that can be routed to
* any channel.
*
* The PL080 has 8 channels available for simultaneous use, and the PL081
* has only two channels. So on these DMA controllers the number of channels
* and the number of incoming DMA signals are two totally different things.
* It is usually not possible to theoretically handle all physical signals,
* so a multiplexing scheme with possible denial of use is necessary.
*
* The PL080 has a dual bus master, PL081 has a single master.
*
* Memory to peripheral transfer may be visualized as
* Get data from memory to DMAC
* Until no data left
* On burst request from peripheral
* Destination burst from DMAC to peripheral
* Clear burst request
* Raise terminal count interrupt
*
* For peripherals with a FIFO:
* Source burst size == half the depth of the peripheral FIFO
* Destination burst size == the depth of the peripheral FIFO
*
* (Bursts are irrelevant for mem to mem transfers - there are no burst
* signals, the DMA controller will simply facilitate its AHB master.)
*
* ASSUMES default (little) endianness for DMA transfers
*
* Only DMAC flow control is implemented
*
* Global TODO:
* - Break out common code from arch/arm/mach-s3c64xx and share
*/
#include <linux/device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/amba/bus.h>
#include <linux/dmaengine.h>
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <asm/hardware/pl080.h>
#include <asm/dma.h>
#include <asm/mach/dma.h>
#include <asm/atomic.h>
#include <asm/processor.h>
#include <asm/cacheflush.h>
#define DRIVER_NAME "pl08xdmac"
/**
* struct vendor_data - vendor-specific config parameters
* for PL08x derivates
* @name: the name of this specific variant
* @channels: the number of channels available in this variant
* @dualmaster: whether this version supports dual AHB masters
* or not.
*/
struct vendor_data {
char *name;
u8 channels;
bool dualmaster;
};
/*
* PL08X private data structures
* An LLI struct - see pl08x TRM
* Note that next uses bit[0] as a bus bit,
* start & end do not - their bus bit info
* is in cctl
*/
struct lli {
dma_addr_t src;
dma_addr_t dst;
dma_addr_t next;
u32 cctl;
};
/**
* struct pl08x_driver_data - the local state holder for the PL08x
* @slave: slave engine for this instance
* @memcpy: memcpy engine for this instance
* @base: virtual memory base (remapped) for the PL08x
* @adev: the corresponding AMBA (PrimeCell) bus entry
* @vd: vendor data for this PL08x variant
* @pd: platform data passed in from the platform/machine
* @phy_chans: array of data for the physical channels
* @pool: a pool for the LLI descriptors
* @pool_ctr: counter of LLIs in the pool
* @lock: a spinlock for this struct
*/
struct pl08x_driver_data {
struct dma_device slave;
struct dma_device memcpy;
void __iomem *base;
struct amba_device *adev;
struct vendor_data *vd;
struct pl08x_platform_data *pd;
struct pl08x_phy_chan *phy_chans;
struct dma_pool *pool;
int pool_ctr;
spinlock_t lock;
};
/*
* PL08X specific defines
*/
/*
* Memory boundaries: the manual for PL08x says that the controller
* cannot read past a 1KiB boundary, so these defines are used to
* create transfer LLIs that do not cross such boundaries.
*/
#define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
#define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
/* Minimum period between work queue runs */
#define PL08X_WQ_PERIODMIN 20
/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE 0x2000
/* Maximimum times we call dma_pool_alloc on this pool without freeing */
#define PL08X_MAX_ALLOCS 0x40
#define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli))
#define PL08X_ALIGN 8
static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
return container_of(chan, struct pl08x_dma_chan, chan);
}
/*
* Physical channel handling
*/
/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
unsigned int val;
val = readl(ch->base + PL080_CH_CONFIG);
return val & PL080_CONFIG_ACTIVE;
}
/*
* Set the initial DMA register values i.e. those for the first LLI
* The next lli pointer and the configuration interrupt bit have
* been set when the LLIs were constructed
*/
static void pl08x_set_cregs(struct pl08x_driver_data *pl08x,
struct pl08x_phy_chan *ch)
{
/* Wait for channel inactive */
while (pl08x_phy_channel_busy(ch))
;
dev_vdbg(&pl08x->adev->dev,
"WRITE channel %d: csrc=%08x, cdst=%08x, "
"cctl=%08x, clli=%08x, ccfg=%08x\n",
ch->id,
ch->csrc,
ch->cdst,
ch->cctl,
ch->clli,
ch->ccfg);
writel(ch->csrc, ch->base + PL080_CH_SRC_ADDR);
writel(ch->cdst, ch->base + PL080_CH_DST_ADDR);
writel(ch->clli, ch->base + PL080_CH_LLI);
writel(ch->cctl, ch->base + PL080_CH_CONTROL);
writel(ch->ccfg, ch->base + PL080_CH_CONFIG);
}
static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan *plchan)
{
struct pl08x_channel_data *cd = plchan->cd;
struct pl08x_phy_chan *phychan = plchan->phychan;
struct pl08x_txd *txd = plchan->at;
/* Copy the basic control register calculated at transfer config */
phychan->csrc = txd->csrc;
phychan->cdst = txd->cdst;
phychan->clli = txd->clli;
phychan->cctl = txd->cctl;
/* Assign the signal to the proper control registers */
phychan->ccfg = cd->ccfg;
phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK;
phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK;
/* If it wasn't set from AMBA, ignore it */
if (txd->direction == DMA_TO_DEVICE)
/* Select signal as destination */
phychan->ccfg |=
(phychan->signal << PL080_CONFIG_DST_SEL_SHIFT);
else if (txd->direction == DMA_FROM_DEVICE)
/* Select signal as source */
phychan->ccfg |=
(phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT);
/* Always enable error interrupts */
phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK;
/* Always enable terminal interrupts */
phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK;
}
/*
* Enable the DMA channel
* Assumes all other configuration bits have been set
* as desired before this code is called
*/
static void pl08x_enable_phy_chan(struct pl08x_driver_data *pl08x,
struct pl08x_phy_chan *ch)
{
u32 val;
/*
* Do not access config register until channel shows as disabled
*/
while (readl(pl08x->base + PL080_EN_CHAN) & (1 << ch->id))
;
/*
* Do not access config register until channel shows as inactive
*/
val = readl(ch->base + PL080_CH_CONFIG);
while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
val = readl(ch->base + PL080_CH_CONFIG);
writel(val | PL080_CONFIG_ENABLE, ch->base + PL080_CH_CONFIG);
}
/*
* Overall DMAC remains enabled always.
*
* Disabling individual channels could lose data.
*
* Disable the peripheral DMA after disabling the DMAC
* in order to allow the DMAC FIFO to drain, and
* hence allow the channel to show inactive
*
*/
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
u32 val;
/* Set the HALT bit and wait for the FIFO to drain */
val = readl(ch->base + PL080_CH_CONFIG);
val |= PL080_CONFIG_HALT;
writel(val, ch->base + PL080_CH_CONFIG);
/* Wait for channel inactive */
while (pl08x_phy_channel_busy(ch))
;
}
static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
u32 val;
/* Clear the HALT bit */
val = readl(ch->base + PL080_CH_CONFIG);
val &= ~PL080_CONFIG_HALT;
writel(val, ch->base + PL080_CH_CONFIG);
}
/* Stops the channel */
static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
{
u32 val;
pl08x_pause_phy_chan(ch);
/* Disable channel */
val = readl(ch->base + PL080_CH_CONFIG);
val &= ~PL080_CONFIG_ENABLE;
val &= ~PL080_CONFIG_ERR_IRQ_MASK;
val &= ~PL080_CONFIG_TC_IRQ_MASK;
writel(val, ch->base + PL080_CH_CONFIG);
}
static inline u32 get_bytes_in_cctl(u32 cctl)
{
/* The source width defines the number of bytes */
u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
case PL080_WIDTH_8BIT:
break;
case PL080_WIDTH_16BIT:
bytes *= 2;
break;
case PL080_WIDTH_32BIT:
bytes *= 4;
break;
}
return bytes;
}
/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
struct pl08x_phy_chan *ch;
struct pl08x_txd *txdi = NULL;
struct pl08x_txd *txd;
unsigned long flags;
u32 bytes = 0;
spin_lock_irqsave(&plchan->lock, flags);
ch = plchan->phychan;
txd = plchan->at;
/*
* Next follow the LLIs to get the number of pending bytes in the
* currently active transaction.
*/
if (ch && txd) {
struct lli *llis_va = txd->llis_va;
struct lli *llis_bus = (struct lli *) txd->llis_bus;
u32 clli = readl(ch->base + PL080_CH_LLI);
/* First get the bytes in the current active LLI */
bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
if (clli) {
int i = 0;
/* Forward to the LLI pointed to by clli */
while ((clli != (u32) &(llis_bus[i])) &&
(i < MAX_NUM_TSFR_LLIS))
i++;
while (clli) {
bytes += get_bytes_in_cctl(llis_va[i].cctl);
/*
* A clli of 0x00000000 will terminate the
* LLI list
*/
clli = llis_va[i].next;
i++;
}
}
}
/* Sum up all queued transactions */
if (!list_empty(&plchan->desc_list)) {
list_for_each_entry(txdi, &plchan->desc_list, node) {
bytes += txdi->len;
}
}
spin_unlock_irqrestore(&plchan->lock, flags);
return bytes;
}
/*
* Allocate a physical channel for a virtual channel
*/
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
struct pl08x_dma_chan *virt_chan)
{
struct pl08x_phy_chan *ch = NULL;
unsigned long flags;
int i;
/*
* Try to locate a physical channel to be used for
* this transfer. If all are taken return NULL and
* the requester will have to cope by using some fallback
* PIO mode or retrying later.
*/
for (i = 0; i < pl08x->vd->channels; i++) {
ch = &pl08x->phy_chans[i];
spin_lock_irqsave(&ch->lock, flags);
if (!ch->serving) {
ch->serving = virt_chan;
ch->signal = -1;
spin_unlock_irqrestore(&ch->lock, flags);
break;
}
spin_unlock_irqrestore(&ch->lock, flags);
}
if (i == pl08x->vd->channels) {
/* No physical channel available, cope with it */
return NULL;
}
return ch;
}
static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
struct pl08x_phy_chan *ch)
{
unsigned long flags;
/* Stop the channel and clear its interrupts */
pl08x_stop_phy_chan(ch);
writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
/* Mark it as free */
spin_lock_irqsave(&ch->lock, flags);
ch->serving = NULL;
spin_unlock_irqrestore(&ch->lock, flags);
}
/*
* LLI handling
*/
static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
switch (coded) {
case PL080_WIDTH_8BIT:
return 1;
case PL080_WIDTH_16BIT:
return 2;
case PL080_WIDTH_32BIT:
return 4;
default:
break;
}
BUG();
return 0;
}
static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
u32 tsize)
{
u32 retbits = cctl;
/* Remove all src, dst and transfersize bits */
retbits &= ~PL080_CONTROL_DWIDTH_MASK;
retbits &= ~PL080_CONTROL_SWIDTH_MASK;
retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
/* Then set the bits according to the parameters */
switch (srcwidth) {
case 1:
retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
break;
case 2:
retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
break;
case 4:
retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
break;
default:
BUG();
break;
}
switch (dstwidth) {
case 1:
retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
break;
case 2:
retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
break;
case 4:
retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
break;
default:
BUG();
break;
}
retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
return retbits;
}
/*
* Autoselect a master bus to use for the transfer
* this prefers the destination bus if both available
* if fixed address on one bus the other will be chosen
*/
void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
struct pl08x_bus_data **sbus, u32 cctl)
{
if (!(cctl & PL080_CONTROL_DST_INCR)) {
*mbus = src_bus;
*sbus = dst_bus;
} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
*mbus = dst_bus;
*sbus = src_bus;
} else {
if (dst_bus->buswidth == 4) {
*mbus = dst_bus;
*sbus = src_bus;
} else if (src_bus->buswidth == 4) {
*mbus = src_bus;
*sbus = dst_bus;
} else if (dst_bus->buswidth == 2) {
*mbus = dst_bus;
*sbus = src_bus;
} else if (src_bus->buswidth == 2) {
*mbus = src_bus;
*sbus = dst_bus;
} else {
/* src_bus->buswidth == 1 */
*mbus = dst_bus;
*sbus = src_bus;
}
}
}
/*
* Fills in one LLI for a certain transfer descriptor
* and advance the counter
*/
int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
struct pl08x_txd *txd, int num_llis, int len,
u32 cctl, u32 *remainder)
{
struct lli *llis_va = txd->llis_va;
struct lli *llis_bus = (struct lli *) txd->llis_bus;
BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
llis_va[num_llis].cctl = cctl;
llis_va[num_llis].src = txd->srcbus.addr;
llis_va[num_llis].dst = txd->dstbus.addr;
/*
* On versions with dual masters, you can optionally AND on
* PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
* in new LLIs with that controller, but we always try to
* choose AHB1 to point into memory. The idea is to have AHB2
* fixed on the peripheral and AHB1 messing around in the
* memory. So we don't manipulate this bit currently.
*/
llis_va[num_llis].next =
(dma_addr_t)((u32) &(llis_bus[num_llis + 1]));
if (cctl & PL080_CONTROL_SRC_INCR)
txd->srcbus.addr += len;
if (cctl & PL080_CONTROL_DST_INCR)
txd->dstbus.addr += len;
*remainder -= len;
return num_llis + 1;
}
/*
* Return number of bytes to fill to boundary, or len
*/
static inline u32 pl08x_pre_boundary(u32 addr, u32 len)
{
u32 boundary;
boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
<< PL08X_BOUNDARY_SHIFT;
if (boundary < addr + len)
return boundary - addr;
else
return len;
}
/*
* This fills in the table of LLIs for the transfer descriptor
* Note that we assume we never have to change the burst sizes
* Return 0 for error
*/
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
struct pl08x_txd *txd)
{
struct pl08x_channel_data *cd = txd->cd;
struct pl08x_bus_data *mbus, *sbus;
u32 remainder;
int num_llis = 0;
u32 cctl;
int max_bytes_per_lli;
int total_bytes = 0;
struct lli *llis_va;
struct lli *llis_bus;
if (!txd) {
dev_err(&pl08x->adev->dev, "%s no descriptor\n", __func__);
return 0;
}
txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
&txd->llis_bus);
if (!txd->llis_va) {
dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
return 0;
}
pl08x->pool_ctr++;
/*
* Initialize bus values for this transfer
* from the passed optimal values
*/
if (!cd) {
dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__);
return 0;
}
/* Get the default CCTL from the platform data */
cctl = cd->cctl;
/*
* On the PL080 we have two bus masters and we
* should select one for source and one for
* destination. We try to use AHB2 for the
* bus which does not increment (typically the
* peripheral) else we just choose something.
*/
cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
if (pl08x->vd->dualmaster) {
if (cctl & PL080_CONTROL_SRC_INCR)
/* Source increments, use AHB2 for destination */
cctl |= PL080_CONTROL_DST_AHB2;
else if (cctl & PL080_CONTROL_DST_INCR)
/* Destination increments, use AHB2 for source */
cctl |= PL080_CONTROL_SRC_AHB2;
else
/* Just pick something, source AHB1 dest AHB2 */
cctl |= PL080_CONTROL_DST_AHB2;
}
/* Find maximum width of the source bus */
txd->srcbus.maxwidth =
pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
PL080_CONTROL_SWIDTH_SHIFT);
/* Find maximum width of the destination bus */
txd->dstbus.maxwidth =
pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
PL080_CONTROL_DWIDTH_SHIFT);
/* Set up the bus widths to the maximum */
txd->srcbus.buswidth = txd->srcbus.maxwidth;
txd->dstbus.buswidth = txd->dstbus.maxwidth;
dev_vdbg(&pl08x->adev->dev,
"%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
__func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
/*
* Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
*/
max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
PL080_CONTROL_TRANSFER_SIZE_MASK;
dev_vdbg(&pl08x->adev->dev,
"%s max bytes per lli = %d\n",
__func__, max_bytes_per_lli);
/* We need to count this down to zero */
remainder = txd->len;
dev_vdbg(&pl08x->adev->dev,
"%s remainder = %d\n",
__func__, remainder);
/*
* Choose bus to align to
* - prefers destination bus if both available
* - if fixed address on one bus chooses other
* - modifies cctl to choose an apropriate master
*/
pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
&mbus, &sbus, cctl);
/*
* The lowest bit of the LLI register
* is also used to indicate which master to
* use for reading the LLIs.
*/
if (txd->len < mbus->buswidth) {
/*
* Less than a bus width available
* - send as single bytes
*/
while (remainder) {
dev_vdbg(&pl08x->adev->dev,
"%s single byte LLIs for a transfer of "
"less than a bus width (remain %08x)\n",
__func__, remainder);
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
num_llis =
pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
cctl, &remainder);
total_bytes++;
}
} else {
/*
* Make one byte LLIs until master bus is aligned
* - slave will then be aligned also
*/
while ((mbus->addr) % (mbus->buswidth)) {
dev_vdbg(&pl08x->adev->dev,
"%s adjustment lli for less than bus width "
"(remain %08x)\n",
__func__, remainder);
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
num_llis = pl08x_fill_lli_for_desc
(pl08x, txd, num_llis, 1, cctl, &remainder);
total_bytes++;
}
/*
* Master now aligned
* - if slave is not then we must set its width down
*/
if (sbus->addr % sbus->buswidth) {
dev_dbg(&pl08x->adev->dev,
"%s set down bus width to one byte\n",
__func__);
sbus->buswidth = 1;
}
/*
* Make largest possible LLIs until less than one bus
* width left
*/
while (remainder > (mbus->buswidth - 1)) {
int lli_len, target_len;
int tsize;
int odd_bytes;
/*
* If enough left try to send max possible,
* otherwise try to send the remainder
*/
target_len = remainder;
if (remainder > max_bytes_per_lli)
target_len = max_bytes_per_lli;
/*
* Set bus lengths for incrementing busses
* to number of bytes which fill to next memory
* boundary
*/
if (cctl & PL080_CONTROL_SRC_INCR)
txd->srcbus.fill_bytes =
pl08x_pre_boundary(
txd->srcbus.addr,
remainder);
else
txd->srcbus.fill_bytes =
max_bytes_per_lli;
if (cctl & PL080_CONTROL_DST_INCR)
txd->dstbus.fill_bytes =
pl08x_pre_boundary(
txd->dstbus.addr,
remainder);
else
txd->dstbus.fill_bytes =
max_bytes_per_lli;
/*
* Find the nearest
*/
lli_len = min(txd->srcbus.fill_bytes,
txd->dstbus.fill_bytes);
BUG_ON(lli_len > remainder);
if (lli_len <= 0) {
dev_err(&pl08x->adev->dev,
"%s lli_len is %d, <= 0\n",
__func__, lli_len);
return 0;
}
if (lli_len == target_len) {
/*
* Can send what we wanted
*/
/*
* Maintain alignment
*/
lli_len = (lli_len/mbus->buswidth) *
mbus->buswidth;
odd_bytes = 0;
} else {
/*
* So now we know how many bytes to transfer
* to get to the nearest boundary
* The next lli will past the boundary
* - however we may be working to a boundary
* on the slave bus
* We need to ensure the master stays aligned
*/
odd_bytes = lli_len % mbus->buswidth;
/*
* - and that we are working in multiples
* of the bus widths
*/
lli_len -= odd_bytes;
}
if (lli_len) {
/*
* Check against minimum bus alignment:
* Calculate actual transfer size in relation
* to bus width an get a maximum remainder of
* the smallest bus width - 1
*/
/* FIXME: use round_down()? */
tsize = lli_len / min(mbus->buswidth,
sbus->buswidth);
lli_len = tsize * min(mbus->buswidth,
sbus->buswidth);
if (target_len != lli_len) {
dev_vdbg(&pl08x->adev->dev,
"%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n",
__func__, target_len, lli_len, txd->len);
}
cctl = pl08x_cctl_bits(cctl,
txd->srcbus.buswidth,
txd->dstbus.buswidth,
tsize);
dev_vdbg(&pl08x->adev->dev,
"%s fill lli with single lli chunk of size %08x (remainder %08x)\n",
__func__, lli_len, remainder);
num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
num_llis, lli_len, cctl,
&remainder);
total_bytes += lli_len;
}
if (odd_bytes) {
/*
* Creep past the boundary,
* maintaining master alignment
*/
int j;
for (j = 0; (j < mbus->buswidth)
&& (remainder); j++) {
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
dev_vdbg(&pl08x->adev->dev,
"%s align with boundardy, single byte (remain %08x)\n",
__func__, remainder);
num_llis =
pl08x_fill_lli_for_desc(pl08x,
txd, num_llis, 1,
cctl, &remainder);
total_bytes++;
}
}
}
/*
* Send any odd bytes
*/
if (remainder < 0) {
dev_err(&pl08x->adev->dev, "%s remainder not fitted 0x%08x bytes\n",
__func__, remainder);
return 0;
}
while (remainder) {
cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
dev_vdbg(&pl08x->adev->dev,
"%s align with boundardy, single odd byte (remain %d)\n",
__func__, remainder);
num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
1, cctl, &remainder);
total_bytes++;
}
}
if (total_bytes != txd->len) {
dev_err(&pl08x->adev->dev,
"%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n",
__func__, total_bytes, txd->len);
return 0;
}
if (num_llis >= MAX_NUM_TSFR_LLIS) {
dev_err(&pl08x->adev->dev,
"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
__func__, (u32) MAX_NUM_TSFR_LLIS);
return 0;
}
/*
* Decide whether this is a loop or a terminated transfer
*/
llis_va = txd->llis_va;
llis_bus = (struct lli *) txd->llis_bus;
if (cd->circular_buffer) {
/*
* Loop the circular buffer so that the next element
* points back to the beginning of the LLI.
*/
llis_va[num_llis - 1].next =
(dma_addr_t)((unsigned int)&(llis_bus[0]));
} else {
/*
* On non-circular buffers, the final LLI terminates
* the LLI.
*/
llis_va[num_llis - 1].next = 0;
/*
* The final LLI element shall also fire an interrupt
*/
llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
}
/* Now store the channel register values */
txd->csrc = llis_va[0].src;
txd->cdst = llis_va[0].dst;
if (num_llis > 1)
txd->clli = llis_va[0].next;
else
txd->clli = 0;
txd->cctl = llis_va[0].cctl;
/* ccfg will be set at physical channel allocation time */
#ifdef VERBOSE_DEBUG
{
int i;
for (i = 0; i < num_llis; i++) {
dev_vdbg(&pl08x->adev->dev,
"lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n",
i,
&llis_va[i],
llis_va[i].src,
llis_va[i].dst,
llis_va[i].cctl,
llis_va[i].next
);
}
}
#endif
return num_llis;
}
/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
struct pl08x_txd *txd)
{
if (!txd)
dev_err(&pl08x->adev->dev,
"%s no descriptor to free\n",
__func__);
/* Free the LLI */
dma_pool_free(pl08x->pool, txd->llis_va,
txd->llis_bus);
pl08x->pool_ctr--;
kfree(txd);
}
static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
struct pl08x_dma_chan *plchan)
{
struct pl08x_txd *txdi = NULL;
struct pl08x_txd *next;
if (!list_empty(&plchan->desc_list)) {
list_for_each_entry_safe(txdi,
next, &plchan->desc_list, node) {
list_del(&txdi->node);
pl08x_free_txd(pl08x, txdi);
}
}
}
/*
* The DMA ENGINE API
*/
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
return 0;
}
static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}
/*
* This should be called with the channel plchan->lock held
*/
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
struct pl08x_txd *txd)
{
struct pl08x_driver_data *pl08x = plchan->host;
struct pl08x_phy_chan *ch;
int ret;
/* Check if we already have a channel */
if (plchan->phychan)
return 0;
ch = pl08x_get_phy_channel(pl08x, plchan);
if (!ch) {
/* No physical channel available, cope with it */
dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
return -EBUSY;
}
/*
* OK we have a physical channel: for memcpy() this is all we
* need, but for slaves the physical signals may be muxed!
* Can the platform allow us to use this channel?
*/
if (plchan->slave &&
ch->signal < 0 &&
pl08x->pd->get_signal) {
ret = pl08x->pd->get_signal(plchan);
if (ret < 0) {
dev_dbg(&pl08x->adev->dev,
"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
ch->id, plchan->name);
/* Release physical channel & return */
pl08x_put_phy_channel(pl08x, ch);
return -EBUSY;
}
ch->signal = ret;
}
dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
ch->id,
ch->signal,
plchan->name);
plchan->phychan = ch;
return 0;
}
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
atomic_inc(&plchan->last_issued);
tx->cookie = atomic_read(&plchan->last_issued);
/* This unlock follows the lock in the prep() function */
spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
return tx->cookie;
}
static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
struct dma_chan *chan, unsigned long flags)
{
struct dma_async_tx_descriptor *retval = NULL;
return retval;
}
/*
* Code accessing dma_async_is_complete() in a tight loop
* may give problems - could schedule where indicated.
* If slaves are relying on interrupts to signal completion this
* function must not be called with interrupts disabled
*/
static enum dma_status
pl08x_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
enum dma_status ret;
u32 bytesleft = 0;
last_used = atomic_read(&plchan->last_issued);
last_complete = plchan->lc;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS) {
dma_set_tx_state(txstate, last_complete, last_used, 0);
return ret;
}
/*
* schedule(); could be inserted here
*/
/*
* This cookie not complete yet
*/
last_used = atomic_read(&plchan->last_issued);
last_complete = plchan->lc;
/* Get number of bytes left in the active transactions and queue */
bytesleft = pl08x_getbytes_chan(plchan);
dma_set_tx_state(txstate, last_complete, last_used,
bytesleft);
if (plchan->state == PL08X_CHAN_PAUSED)
return DMA_PAUSED;
/* Whether waiting or running, we're in progress */
return DMA_IN_PROGRESS;
}
/* PrimeCell DMA extension */
struct burst_table {
int burstwords;
u32 reg;
};
static const struct burst_table burst_sizes[] = {
{
.burstwords = 256,
.reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
},
{
.burstwords = 128,
.reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
},
{
.burstwords = 64,
.reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
},
{
.burstwords = 32,
.reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
},
{
.burstwords = 16,
.reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
},
{
.burstwords = 8,
.reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
},
{
.burstwords = 4,
.reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
},
{
.burstwords = 1,
.reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
},
};
static void dma_set_runtime_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
struct pl08x_driver_data *pl08x = plchan->host;
struct pl08x_channel_data *cd = plchan->cd;
enum dma_slave_buswidth addr_width;
u32 maxburst;
u32 cctl = 0;
/* Mask out all except src and dst channel */
u32 ccfg = cd->ccfg & 0x000003DEU;
int i = 0;
/* Transfer direction */
plchan->runtime_direction = config->direction;
if (config->direction == DMA_TO_DEVICE) {
plchan->runtime_addr = config->dst_addr;
cctl |= PL080_CONTROL_SRC_INCR;
ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
addr_width = config->dst_addr_width;
maxburst = config->dst_maxburst;
} else if (config->direction == DMA_FROM_DEVICE) {
plchan->runtime_addr = config->src_addr;
cctl |= PL080_CONTROL_DST_INCR;
ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
addr_width = config->src_addr_width;
maxburst = config->src_maxburst;
} else {
dev_err(&pl08x->adev->dev,
"bad runtime_config: alien transfer direction\n");
return;
}
switch (addr_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
(PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
(PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
(PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
break;
default:
dev_err(&pl08x->adev->dev,
"bad runtime_config: alien address width\n");
return;
}
/*
* Now decide on a maxburst:
* If this channel will only request single transfers, set
* this down to ONE element.
*/
if (plchan->cd->single) {
cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
} else {
while (i < ARRAY_SIZE(burst_sizes)) {
if (burst_sizes[i].burstwords <= maxburst)
break;
i++;
}
cctl |= burst_sizes[i].reg;
}
/* Access the cell in privileged mode, non-bufferable, non-cacheable */
cctl &= ~PL080_CONTROL_PROT_MASK;
cctl |= PL080_CONTROL_PROT_SYS;
/* Modify the default channel data to fit PrimeCell request */
cd->cctl = cctl;
cd->ccfg = ccfg;
dev_dbg(&pl08x->adev->dev,
"configured channel %s (%s) for %s, data width %d, "
"maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n",
dma_chan_name(chan), plchan->name,
(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
addr_width,
maxburst,
cctl, ccfg);
}
/*
* Slave transactions callback to the slave device to allow
* synchronization of slave DMA signals with the DMAC enable
*/
static void pl08x_issue_pending(struct dma_chan *chan)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
struct pl08x_driver_data *pl08x = plchan->host;
unsigned long flags;
spin_lock_irqsave(&plchan->lock, flags);
/* Something is already active */
if (plchan->at) {
spin_unlock_irqrestore(&plchan->lock, flags);
return;
}
/* Didn't get a physical channel so waiting for it ... */
if (plchan->state == PL08X_CHAN_WAITING)
return;
/* Take the first element in the queue and execute it */
if (!list_empty(&plchan->desc_list)) {
struct pl08x_txd *next;
next = list_first_entry(&plchan->desc_list,
struct pl08x_txd,
node);
list_del(&next->node);
plchan->at = next;
plchan->state = PL08X_CHAN_RUNNING;
/* Configure the physical channel for the active txd */
pl08x_config_phychan_for_txd(plchan);
pl08x_set_cregs(pl08x, plchan->phychan);
pl08x_enable_phy_chan(pl08x, plchan->phychan);
}
spin_unlock_irqrestore(&plchan->lock, flags);
}
static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
struct pl08x_txd *txd)
{
int num_llis;
struct pl08x_driver_data *pl08x = plchan->host;
int ret;
num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
if (!num_llis)
return -EINVAL;
spin_lock_irqsave(&plchan->lock, plchan->lockflags);
/*
* If this device is not using a circular buffer then
* queue this new descriptor for transfer.
* The descriptor for a circular buffer continues
* to be used until the channel is freed.
*/
if (txd->cd->circular_buffer)
dev_err(&pl08x->adev->dev,
"%s attempting to queue a circular buffer\n",
__func__);
else
list_add_tail(&txd->node,
&plchan->desc_list);
/*
* See if we already have a physical channel allocated,
* else this is the time to try to get one.
*/
ret = prep_phy_channel(plchan, txd);
if (ret) {
/*
* No physical channel available, we will
* stack up the memcpy channels until there is a channel
* available to handle it whereas slave transfers may
* have been denied due to platform channel muxing restrictions
* and since there is no guarantee that this will ever be
* resolved, and since the signal must be aquired AFTER
* aquiring the physical channel, we will let them be NACK:ed
* with -EBUSY here. The drivers can alway retry the prep()
* call if they are eager on doing this using DMA.
*/
if (plchan->slave) {
pl08x_free_txd_list(pl08x, plchan);
spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
return -EBUSY;
}
/* Do this memcpy whenever there is a channel ready */
plchan->state = PL08X_CHAN_WAITING;
plchan->waiting = txd;
} else
/*
* Else we're all set, paused and ready to roll,
* status will switch to PL08X_CHAN_RUNNING when
* we call issue_pending(). If there is something
* running on the channel already we don't change
* its state.
*/
if (plchan->state == PL08X_CHAN_IDLE)
plchan->state = PL08X_CHAN_PAUSED;
/*
* Notice that we leave plchan->lock locked on purpose:
* it will be unlocked in the subsequent tx_submit()
* call. This is a consequence of the current API.
*/
return 0;
}
/*
* Initialize a descriptor to be used by memcpy submit
*/
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
struct pl08x_driver_data *pl08x = plchan->host;
struct pl08x_txd *txd;
int ret;
txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
if (!txd) {
dev_err(&pl08x->adev->dev,
"%s no memory for descriptor\n", __func__);
return NULL;
}
dma_async_tx_descriptor_init(&txd->tx, chan);
txd->direction = DMA_NONE;
txd->srcbus.addr = src;
txd->dstbus.addr = dest;
/* Set platform data for m2m */
txd->cd = &pl08x->pd->memcpy_channel;
/* Both to be incremented or the code will break */
txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
txd->tx.tx_submit = pl08x_tx_submit;
txd->tx.callback = NULL;
txd->tx.callback_param = NULL;
txd->len = len;
INIT_LIST_HEAD(&txd->node);
ret = pl08x_prep_channel_resources(plchan, txd);
if (ret)
return NULL;
/*
* NB: the channel lock is held at this point so tx_submit()
* must be called in direct succession.
*/
return &txd->tx;
}
struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_data_direction direction,
unsigned long flags)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
struct pl08x_driver_data *pl08x = plchan->host;
struct pl08x_txd *txd;
int ret;
/*
* Current implementation ASSUMES only one sg
*/
if (sg_len != 1) {
dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
__func__);
BUG();
}
dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
__func__, sgl->length, plchan->name);
txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
if (!txd) {
dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
return NULL;
}
dma_async_tx_descriptor_init(&txd->tx, chan);
if (direction != plchan->runtime_direction)
dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
"the direction configured for the PrimeCell\n",
__func__);
/*
* Set up addresses, the PrimeCell configured address
* will take precedence since this may configure the
* channel target address dynamically at runtime.
*/
txd->direction = direction;
if (direction == DMA_TO_DEVICE) {
txd->srcbus.addr = sgl->dma_address;
if (plchan->runtime_addr)
txd->dstbus.addr = plchan->runtime_addr;
else
txd->dstbus.addr = plchan->cd->addr;
} else if (direction == DMA_FROM_DEVICE) {
if (plchan->runtime_addr)
txd->srcbus.addr = plchan->runtime_addr;
else
txd->srcbus.addr = plchan->cd->addr;
txd->dstbus.addr = sgl->dma_address;
} else {
dev_err(&pl08x->adev->dev,
"%s direction unsupported\n", __func__);
return NULL;
}
txd->cd = plchan->cd;
txd->tx.tx_submit = pl08x_tx_submit;
txd->tx.callback = NULL;
txd->tx.callback_param = NULL;
txd->len = sgl->length;
INIT_LIST_HEAD(&txd->node);
ret = pl08x_prep_channel_resources(plchan, txd);
if (ret)
return NULL;
/*
* NB: the channel lock is held at this point so tx_submit()
* must be called in direct succession.
*/
return &txd->tx;
}
static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
unsigned long arg)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
struct pl08x_driver_data *pl08x = plchan->host;
unsigned long flags;
int ret = 0;
/* Controls applicable to inactive channels */
if (cmd == DMA_SLAVE_CONFIG) {
dma_set_runtime_config(chan,
(struct dma_slave_config *)
arg);
return 0;
}
/*
* Anything succeeds on channels with no physical allocation and
* no queued transfers.
*/
spin_lock_irqsave(&plchan->lock, flags);
if (!plchan->phychan && !plchan->at) {
spin_unlock_irqrestore(&plchan->lock, flags);
return 0;
}
switch (cmd) {
case DMA_TERMINATE_ALL:
plchan->state = PL08X_CHAN_IDLE;
if (plchan->phychan) {
pl08x_stop_phy_chan(plchan->phychan);
/*
* Mark physical channel as free and free any slave
* signal
*/
if ((plchan->phychan->signal >= 0) &&
pl08x->pd->put_signal) {
pl08x->pd->put_signal(plchan);
plchan->phychan->signal = -1;
}
pl08x_put_phy_channel(pl08x, plchan->phychan);
plchan->phychan = NULL;
}
/* Stop any pending tasklet */
tasklet_disable(&plchan->tasklet);
/* Dequeue jobs and free LLIs */
if (plchan->at) {
pl08x_free_txd(pl08x, plchan->at);
plchan->at = NULL;
}
/* Dequeue jobs not yet fired as well */
pl08x_free_txd_list(pl08x, plchan);
break;
case DMA_PAUSE:
pl08x_pause_phy_chan(plchan->phychan);
plchan->state = PL08X_CHAN_PAUSED;
break;
case DMA_RESUME:
pl08x_resume_phy_chan(plchan->phychan);
plchan->state = PL08X_CHAN_RUNNING;
break;
default:
/* Unknown command */
ret = -ENXIO;
break;
}
spin_unlock_irqrestore(&plchan->lock, flags);
return ret;
}
bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
char *name = chan_id;
/* Check that the channel is not taken! */
if (!strcmp(plchan->name, name))
return true;
return false;
}
/*
* Just check that the device is there and active
* TODO: turn this bit on/off depending on the number of
* physical channels actually used, if it is zero... well
* shut it off. That will save some power. Cut the clock
* at the same time.
*/
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
u32 val;
val = readl(pl08x->base + PL080_CONFIG);
val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
/* We implictly clear bit 1 and that means little-endian mode */
val |= PL080_CONFIG_ENABLE;
writel(val, pl08x->base + PL080_CONFIG);
}
static void pl08x_tasklet(unsigned long data)
{
struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
struct pl08x_phy_chan *phychan = plchan->phychan;
struct pl08x_driver_data *pl08x = plchan->host;
if (!plchan)
BUG();
spin_lock(&plchan->lock);
if (plchan->at) {
dma_async_tx_callback callback =
plchan->at->tx.callback;
void *callback_param =
plchan->at->tx.callback_param;
/*
* Update last completed
*/
plchan->lc =
(plchan->at->tx.cookie);
/*
* Callback to signal completion
*/
if (callback)
callback(callback_param);
/*
* Device callbacks should NOT clear
* the current transaction on the channel
* Linus: sometimes they should?
*/
if (!plchan->at)
BUG();
/*
* Free the descriptor if it's not for a device
* using a circular buffer
*/
if (!plchan->at->cd->circular_buffer) {
pl08x_free_txd(pl08x, plchan->at);
plchan->at = NULL;
}
/*
* else descriptor for circular
* buffers only freed when
* client has disabled dma
*/
}
/*
* If a new descriptor is queued, set it up
* plchan->at is NULL here
*/
if (!list_empty(&plchan->desc_list)) {
struct pl08x_txd *next;
next = list_first_entry(&plchan->desc_list,
struct pl08x_txd,
node);
list_del(&next->node);
plchan->at = next;
/* Configure the physical channel for the next txd */
pl08x_config_phychan_for_txd(plchan);
pl08x_set_cregs(pl08x, plchan->phychan);
pl08x_enable_phy_chan(pl08x, plchan->phychan);
} else {
struct pl08x_dma_chan *waiting = NULL;
/*
* No more jobs, so free up the physical channel
* Free any allocated signal on slave transfers too
*/
if ((phychan->signal >= 0) && pl08x->pd->put_signal) {
pl08x->pd->put_signal(plchan);
phychan->signal = -1;
}
pl08x_put_phy_channel(pl08x, phychan);
plchan->phychan = NULL;
plchan->state = PL08X_CHAN_IDLE;
/*
* And NOW before anyone else can grab that free:d
* up physical channel, see if there is some memcpy
* pending that seriously needs to start because of
* being stacked up while we were choking the
* physical channels with data.
*/
list_for_each_entry(waiting, &pl08x->memcpy.channels,
chan.device_node) {
if (waiting->state == PL08X_CHAN_WAITING &&
waiting->waiting != NULL) {
int ret;
/* This should REALLY not fail now */
ret = prep_phy_channel(waiting,
waiting->waiting);
BUG_ON(ret);
waiting->state = PL08X_CHAN_RUNNING;
waiting->waiting = NULL;
pl08x_issue_pending(&waiting->chan);
break;
}
}
}
spin_unlock(&plchan->lock);
}
static irqreturn_t pl08x_irq(int irq, void *dev)
{
struct pl08x_driver_data *pl08x = dev;
u32 mask = 0;
u32 val;
int i;
val = readl(pl08x->base + PL080_ERR_STATUS);
if (val) {
/*
* An error interrupt (on one or more channels)
*/
dev_err(&pl08x->adev->dev,
"%s error interrupt, register value 0x%08x\n",
__func__, val);
/*
* Simply clear ALL PL08X error interrupts,
* regardless of channel and cause
* FIXME: should be 0x00000003 on PL081 really.
*/
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
}
val = readl(pl08x->base + PL080_INT_STATUS);
for (i = 0; i < pl08x->vd->channels; i++) {
if ((1 << i) & val) {
/* Locate physical channel */
struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
struct pl08x_dma_chan *plchan = phychan->serving;
/* Schedule tasklet on this channel */
tasklet_schedule(&plchan->tasklet);
mask |= (1 << i);
}
}
/*
* Clear only the terminal interrupts on channels we processed
*/
writel(mask, pl08x->base + PL080_TC_CLEAR);
return mask ? IRQ_HANDLED : IRQ_NONE;
}
/*
* Initialise the DMAC memcpy/slave channels.
* Make a local wrapper to hold required data
*/
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
struct dma_device *dmadev,
unsigned int channels,
bool slave)
{
struct pl08x_dma_chan *chan;
int i;
INIT_LIST_HEAD(&dmadev->channels);
/*
* Register as many many memcpy as we have physical channels,
* we won't always be able to use all but the code will have
* to cope with that situation.
*/
for (i = 0; i < channels; i++) {
chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
if (!chan) {
dev_err(&pl08x->adev->dev,
"%s no memory for channel\n", __func__);
return -ENOMEM;
}
chan->host = pl08x;
chan->state = PL08X_CHAN_IDLE;
if (slave) {
chan->slave = true;
chan->name = pl08x->pd->slave_channels[i].bus_id;
chan->cd = &pl08x->pd->slave_channels[i];
} else {
chan->cd = &pl08x->pd->memcpy_channel;
chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
if (!chan->name) {
kfree(chan);
return -ENOMEM;
}
}
dev_info(&pl08x->adev->dev,
"initialize virtual channel \"%s\"\n",
chan->name);
chan->chan.device = dmadev;
atomic_set(&chan->last_issued, 0);
chan->lc = atomic_read(&chan->last_issued);
spin_lock_init(&chan->lock);
INIT_LIST_HEAD(&chan->desc_list);
tasklet_init(&chan->tasklet, pl08x_tasklet,
(unsigned long) chan);
list_add_tail(&chan->chan.device_node, &dmadev->channels);
}
dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
i, slave ? "slave" : "memcpy");
return i;
}
static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
struct pl08x_dma_chan *chan = NULL;
struct pl08x_dma_chan *next;
list_for_each_entry_safe(chan,
next, &dmadev->channels, chan.device_node) {
list_del(&chan->chan.device_node);
kfree(chan);
}
}
#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
switch (state) {
case PL08X_CHAN_IDLE:
return "idle";
case PL08X_CHAN_RUNNING:
return "running";
case PL08X_CHAN_PAUSED:
return "paused";
case PL08X_CHAN_WAITING:
return "waiting";
default:
break;
}
return "UNKNOWN STATE";
}
static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
struct pl08x_driver_data *pl08x = s->private;
struct pl08x_dma_chan *chan;
struct pl08x_phy_chan *ch;
unsigned long flags;
int i;
seq_printf(s, "PL08x physical channels:\n");
seq_printf(s, "CHANNEL:\tUSER:\n");
seq_printf(s, "--------\t-----\n");
for (i = 0; i < pl08x->vd->channels; i++) {
struct pl08x_dma_chan *virt_chan;
ch = &pl08x->phy_chans[i];
spin_lock_irqsave(&ch->lock, flags);
virt_chan = ch->serving;
seq_printf(s, "%d\t\t%s\n",
ch->id, virt_chan ? virt_chan->name : "(none)");
spin_unlock_irqrestore(&ch->lock, flags);
}
seq_printf(s, "\nPL08x virtual memcpy channels:\n");
seq_printf(s, "CHANNEL:\tSTATE:\n");
seq_printf(s, "--------\t------\n");
list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
seq_printf(s, "%s\t\t\%s\n", chan->name,
pl08x_state_str(chan->state));
}
seq_printf(s, "\nPL08x virtual slave channels:\n");
seq_printf(s, "CHANNEL:\tSTATE:\n");
seq_printf(s, "--------\t------\n");
list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
seq_printf(s, "%s\t\t\%s\n", chan->name,
pl08x_state_str(chan->state));
}
return 0;
}
static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, pl08x_debugfs_show, inode->i_private);
}
static const struct file_operations pl08x_debugfs_operations = {
.open = pl08x_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
/* Expose a simple debugfs interface to view all clocks */
(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
NULL, pl08x,
&pl08x_debugfs_operations);
}
#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif
static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
{
struct pl08x_driver_data *pl08x;
struct vendor_data *vd = id->data;
int ret = 0;
int i;
ret = amba_request_regions(adev, NULL);
if (ret)
return ret;
/* Create the driver state holder */
pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
if (!pl08x) {
ret = -ENOMEM;
goto out_no_pl08x;
}
/* Initialize memcpy engine */
dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
pl08x->memcpy.dev = &adev->dev;
pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
pl08x->memcpy.device_control = pl08x_control;
/* Initialize slave engine */
dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
pl08x->slave.dev = &adev->dev;
pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
pl08x->slave.device_tx_status = pl08x_dma_tx_status;
pl08x->slave.device_issue_pending = pl08x_issue_pending;
pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
pl08x->slave.device_control = pl08x_control;
/* Get the platform data */
pl08x->pd = dev_get_platdata(&adev->dev);
if (!pl08x->pd) {
dev_err(&adev->dev, "no platform data supplied\n");
goto out_no_platdata;
}
/* Assign useful pointers to the driver state */
pl08x->adev = adev;
pl08x->vd = vd;
/* A DMA memory pool for LLIs, align on 1-byte boundary */
pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
if (!pl08x->pool) {
ret = -ENOMEM;
goto out_no_lli_pool;
}
spin_lock_init(&pl08x->lock);
pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
if (!pl08x->base) {
ret = -ENOMEM;
goto out_no_ioremap;
}
/* Turn on the PL08x */
pl08x_ensure_on(pl08x);
/*
* Attach the interrupt handler
*/
writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
vd->name, pl08x);
if (ret) {
dev_err(&adev->dev, "%s failed to request interrupt %d\n",
__func__, adev->irq[0]);
goto out_no_irq;
}
/* Initialize physical channels */
pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
GFP_KERNEL);
if (!pl08x->phy_chans) {
dev_err(&adev->dev, "%s failed to allocate "
"physical channel holders\n",
__func__);
goto out_no_phychans;
}
for (i = 0; i < vd->channels; i++) {
struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
ch->id = i;
ch->base = pl08x->base + PL080_Cx_BASE(i);
spin_lock_init(&ch->lock);
ch->serving = NULL;
ch->signal = -1;
dev_info(&adev->dev,
"physical channel %d is %s\n", i,
pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
}
/* Register as many memcpy channels as there are physical channels */
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
pl08x->vd->channels, false);
if (ret <= 0) {
dev_warn(&pl08x->adev->dev,
"%s failed to enumerate memcpy channels - %d\n",
__func__, ret);
goto out_no_memcpy;
}
pl08x->memcpy.chancnt = ret;
/* Register slave channels */
ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
pl08x->pd->num_slave_channels,
true);
if (ret <= 0) {
dev_warn(&pl08x->adev->dev,
"%s failed to enumerate slave channels - %d\n",
__func__, ret);
goto out_no_slave;
}
pl08x->slave.chancnt = ret;
ret = dma_async_device_register(&pl08x->memcpy);
if (ret) {
dev_warn(&pl08x->adev->dev,
"%s failed to register memcpy as an async device - %d\n",
__func__, ret);
goto out_no_memcpy_reg;
}
ret = dma_async_device_register(&pl08x->slave);
if (ret) {
dev_warn(&pl08x->adev->dev,
"%s failed to register slave as an async device - %d\n",
__func__, ret);
goto out_no_slave_reg;
}
amba_set_drvdata(adev, pl08x);
init_pl08x_debugfs(pl08x);
dev_info(&pl08x->adev->dev, "ARM(R) %s DMA block initialized @%08x\n",
vd->name, adev->res.start);
return 0;
out_no_slave_reg:
dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
kfree(pl08x->phy_chans);
out_no_phychans:
free_irq(adev->irq[0], pl08x);
out_no_irq:
iounmap(pl08x->base);
out_no_ioremap:
dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
kfree(pl08x);
out_no_pl08x:
amba_release_regions(adev);
return ret;
}
/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
.name = "PL080",
.channels = 8,
.dualmaster = true,
};
static struct vendor_data vendor_pl081 = {
.name = "PL081",
.channels = 2,
.dualmaster = false,
};
static struct amba_id pl08x_ids[] = {
/* PL080 */
{
.id = 0x00041080,
.mask = 0x000fffff,
.data = &vendor_pl080,
},
/* PL081 */
{
.id = 0x00041081,
.mask = 0x000fffff,
.data = &vendor_pl081,
},
/* Nomadik 8815 PL080 variant */
{
.id = 0x00280880,
.mask = 0x00ffffff,
.data = &vendor_pl080,
},
{ 0, 0 },
};
static struct amba_driver pl08x_amba_driver = {
.drv.name = DRIVER_NAME,
.id_table = pl08x_ids,
.probe = pl08x_probe,
};
static int __init pl08x_init(void)
{
int retval;
retval = amba_driver_register(&pl08x_amba_driver);
if (retval)
printk(KERN_WARNING DRIVER_NAME
"failed to register as an amba device (%d)\n",
retval);
return retval;
}
subsys_initcall(pl08x_init);