linux_old1/mm/memcontrol.c

4920 lines
126 KiB
C

/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
* Memory thresholds
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
#include <linux/limits.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/spinlock.h>
#include <linux/eventfd.h>
#include <linux/sort.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/mm_inline.h>
#include <linux/page_cgroup.h>
#include <linux/cpu.h>
#include <linux/oom.h>
#include "internal.h"
#include <asm/uaccess.h>
#include <trace/events/vmscan.h>
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES 5
struct mem_cgroup *root_mem_cgroup __read_mostly;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account (0)
#endif
/*
* Per memcg event counter is incremented at every pagein/pageout. This counter
* is used for trigger some periodic events. This is straightforward and better
* than using jiffies etc. to handle periodic memcg event.
*
* These values will be used as !((event) & ((1 <<(thresh)) - 1))
*/
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
/*
* Statistics for memory cgroup.
*/
enum mem_cgroup_stat_index {
/*
* For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
*/
MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
/* incremented at every pagein/pageout */
MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
MEM_CGROUP_STAT_NSTATS,
};
struct mem_cgroup_stat_cpu {
s64 count[MEM_CGROUP_STAT_NSTATS];
};
/*
* per-zone information in memory controller.
*/
struct mem_cgroup_per_zone {
/*
* spin_lock to protect the per cgroup LRU
*/
struct list_head lists[NR_LRU_LISTS];
unsigned long count[NR_LRU_LISTS];
struct zone_reclaim_stat reclaim_stat;
struct rb_node tree_node; /* RB tree node */
unsigned long long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
struct mem_cgroup *mem; /* Back pointer, we cannot */
/* use container_of */
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
struct mem_cgroup_per_node {
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};
struct mem_cgroup_lru_info {
struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation
*/
struct mem_cgroup_tree_per_zone {
struct rb_root rb_root;
spinlock_t lock;
};
struct mem_cgroup_tree_per_node {
struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};
struct mem_cgroup_tree {
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
u64 threshold;
};
/* For threshold */
struct mem_cgroup_threshold_ary {
/* An array index points to threshold just below usage. */
int current_threshold;
/* Size of entries[] */
unsigned int size;
/* Array of thresholds */
struct mem_cgroup_threshold entries[0];
};
struct mem_cgroup_thresholds {
/* Primary thresholds array */
struct mem_cgroup_threshold_ary *primary;
/*
* Spare threshold array.
* This is needed to make mem_cgroup_unregister_event() "never fail".
* It must be able to store at least primary->size - 1 entries.
*/
struct mem_cgroup_threshold_ary *spare;
};
/* for OOM */
struct mem_cgroup_eventfd_list {
struct list_head list;
struct eventfd_ctx *eventfd;
};
static void mem_cgroup_threshold(struct mem_cgroup *mem);
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*
* TODO: Add a water mark for the memory controller. Reclaim will begin when
* we hit the water mark. May be even add a low water mark, such that
* no reclaim occurs from a cgroup at it's low water mark, this is
* a feature that will be implemented much later in the future.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/*
* the counter to account for memory usage
*/
struct res_counter res;
/*
* the counter to account for mem+swap usage.
*/
struct res_counter memsw;
/*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*/
struct mem_cgroup_lru_info info;
/*
protect against reclaim related member.
*/
spinlock_t reclaim_param_lock;
/*
* While reclaiming in a hierarchy, we cache the last child we
* reclaimed from.
*/
int last_scanned_child;
/*
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
atomic_t oom_lock;
atomic_t refcnt;
unsigned int swappiness;
/* OOM-Killer disable */
int oom_kill_disable;
/* set when res.limit == memsw.limit */
bool memsw_is_minimum;
/* protect arrays of thresholds */
struct mutex thresholds_lock;
/* thresholds for memory usage. RCU-protected */
struct mem_cgroup_thresholds thresholds;
/* thresholds for mem+swap usage. RCU-protected */
struct mem_cgroup_thresholds memsw_thresholds;
/* For oom notifier event fd */
struct list_head oom_notify;
/*
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
unsigned long move_charge_at_immigrate;
/*
* percpu counter.
*/
struct mem_cgroup_stat_cpu *stat;
/*
* used when a cpu is offlined or other synchronizations
* See mem_cgroup_read_stat().
*/
struct mem_cgroup_stat_cpu nocpu_base;
spinlock_t pcp_counter_lock;
};
/* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
* left-shifted bitmap of these types.
*/
enum move_type {
MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
NR_MOVE_TYPE,
};
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
spinlock_t lock; /* for from, to, moving_task */
struct mem_cgroup *from;
struct mem_cgroup *to;
unsigned long precharge;
unsigned long moved_charge;
unsigned long moved_swap;
struct task_struct *moving_task; /* a task moving charges */
wait_queue_head_t waitq; /* a waitq for other context */
} mc = {
.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
static bool move_anon(void)
{
return test_bit(MOVE_CHARGE_TYPE_ANON,
&mc.to->move_charge_at_immigrate);
}
static bool move_file(void)
{
return test_bit(MOVE_CHARGE_TYPE_FILE,
&mc.to->move_charge_at_immigrate);
}
/*
* Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_MAPPED,
MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
NR_CHARGE_TYPE,
};
/* only for here (for easy reading.) */
#define PCGF_CACHE (1UL << PCG_CACHE)
#define PCGF_USED (1UL << PCG_USED)
#define PCGF_LOCK (1UL << PCG_LOCK)
/* Not used, but added here for completeness */
#define PCGF_ACCT (1UL << PCG_ACCT)
/* for encoding cft->private value on file */
#define _MEM (0)
#define _MEMSWAP (1)
#define _OOM_TYPE (2)
#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val) ((val) & 0xffff)
/* Used for OOM nofiier */
#define OOM_CONTROL (0)
/*
* Reclaim flags for mem_cgroup_hierarchical_reclaim
*/
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
static void drain_all_stock_async(void);
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
return &mem->css;
}
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
struct mem_cgroup *mem = pc->mem_cgroup;
int nid = page_cgroup_nid(pc);
int zid = page_cgroup_zid(pc);
if (!mem)
return NULL;
return mem_cgroup_zoneinfo(mem, nid, zid);
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
int nid = page_to_nid(page);
int zid = page_zonenum(page);
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz,
unsigned long long new_usage_in_excess)
{
struct rb_node **p = &mctz->rb_root.rb_node;
struct rb_node *parent = NULL;
struct mem_cgroup_per_zone *mz_node;
if (mz->on_tree)
return;
mz->usage_in_excess = new_usage_in_excess;
if (!mz->usage_in_excess)
return;
while (*p) {
parent = *p;
mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
tree_node);
if (mz->usage_in_excess < mz_node->usage_in_excess)
p = &(*p)->rb_left;
/*
* We can't avoid mem cgroups that are over their soft
* limit by the same amount
*/
else if (mz->usage_in_excess >= mz_node->usage_in_excess)
p = &(*p)->rb_right;
}
rb_link_node(&mz->tree_node, parent, p);
rb_insert_color(&mz->tree_node, &mctz->rb_root);
mz->on_tree = true;
}
static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
if (!mz->on_tree)
return;
rb_erase(&mz->tree_node, &mctz->rb_root);
mz->on_tree = false;
}
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
spin_lock(&mctz->lock);
__mem_cgroup_remove_exceeded(mem, mz, mctz);
spin_unlock(&mctz->lock);
}
static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
unsigned long long excess;
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
int nid = page_to_nid(page);
int zid = page_zonenum(page);
mctz = soft_limit_tree_from_page(page);
/*
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
*/
for (; mem; mem = parent_mem_cgroup(mem)) {
mz = mem_cgroup_zoneinfo(mem, nid, zid);
excess = res_counter_soft_limit_excess(&mem->res);
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
*/
if (excess || mz->on_tree) {
spin_lock(&mctz->lock);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(mem, mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
*/
__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
spin_unlock(&mctz->lock);
}
}
}
static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
int node, zone;
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
for_each_node_state(node, N_POSSIBLE) {
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = mem_cgroup_zoneinfo(mem, node, zone);
mctz = soft_limit_tree_node_zone(node, zone);
mem_cgroup_remove_exceeded(mem, mz, mctz);
}
}
}
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct rb_node *rightmost = NULL;
struct mem_cgroup_per_zone *mz;
retry:
mz = NULL;
rightmost = rb_last(&mctz->rb_root);
if (!rightmost)
goto done; /* Nothing to reclaim from */
mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
/*
* Remove the node now but someone else can add it back,
* we will to add it back at the end of reclaim to its correct
* position in the tree.
*/
__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
if (!res_counter_soft_limit_excess(&mz->mem->res) ||
!css_tryget(&mz->mem->css))
goto retry;
done:
return mz;
}
static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct mem_cgroup_per_zone *mz;
spin_lock(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock(&mctz->lock);
return mz;
}
/*
* Implementation Note: reading percpu statistics for memcg.
*
* Both of vmstat[] and percpu_counter has threshold and do periodic
* synchronization to implement "quick" read. There are trade-off between
* reading cost and precision of value. Then, we may have a chance to implement
* a periodic synchronizion of counter in memcg's counter.
*
* But this _read() function is used for user interface now. The user accounts
* memory usage by memory cgroup and he _always_ requires exact value because
* he accounts memory. Even if we provide quick-and-fuzzy read, we always
* have to visit all online cpus and make sum. So, for now, unnecessary
* synchronization is not implemented. (just implemented for cpu hotplug)
*
* If there are kernel internal actions which can make use of some not-exact
* value, and reading all cpu value can be performance bottleneck in some
* common workload, threashold and synchonization as vmstat[] should be
* implemented.
*/
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
enum mem_cgroup_stat_index idx)
{
int cpu;
s64 val = 0;
get_online_cpus();
for_each_online_cpu(cpu)
val += per_cpu(mem->stat->count[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
spin_lock(&mem->pcp_counter_lock);
val += mem->nocpu_base.count[idx];
spin_unlock(&mem->pcp_counter_lock);
#endif
put_online_cpus();
return val;
}
static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
s64 ret;
ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
return ret;
}
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
bool charge)
{
int val = (charge) ? 1 : -1;
this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
}
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
struct page_cgroup *pc,
bool charge)
{
int val = (charge) ? 1 : -1;
preempt_disable();
if (PageCgroupCache(pc))
__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
else
__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
if (charge)
__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
else
__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
preempt_enable();
}
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
enum lru_list idx)
{
int nid, zid;
struct mem_cgroup_per_zone *mz;
u64 total = 0;
for_each_online_node(nid)
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
mz = mem_cgroup_zoneinfo(mem, nid, zid);
total += MEM_CGROUP_ZSTAT(mz, idx);
}
return total;
}
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
s64 val;
val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
return !(val & ((1 << event_mask_shift) - 1));
}
/*
* Check events in order.
*
*/
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
/* threshold event is triggered in finer grain than soft limit */
if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
mem_cgroup_threshold(mem);
if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
mem_cgroup_update_tree(mem, page);
}
}
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
mem_cgroup_subsys_id), struct mem_cgroup,
css);
}
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
/*
* mm_update_next_owner() may clear mm->owner to NULL
* if it races with swapoff, page migration, etc.
* So this can be called with p == NULL.
*/
if (unlikely(!p))
return NULL;
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
struct mem_cgroup, css);
}
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
struct mem_cgroup *mem = NULL;
if (!mm)
return NULL;
/*
* Because we have no locks, mm->owner's may be being moved to other
* cgroup. We use css_tryget() here even if this looks
* pessimistic (rather than adding locks here).
*/
rcu_read_lock();
do {
mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!mem))
break;
} while (!css_tryget(&mem->css));
rcu_read_unlock();
return mem;
}
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
{
struct cgroup_subsys_state *css;
int found;
if (!mem) /* ROOT cgroup has the smallest ID */
return root_mem_cgroup; /*css_put/get against root is ignored*/
if (!mem->use_hierarchy) {
if (css_tryget(&mem->css))
return mem;
return NULL;
}
rcu_read_lock();
/*
* searching a memory cgroup which has the smallest ID under given
* ROOT cgroup. (ID >= 1)
*/
css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
if (css && css_tryget(css))
mem = container_of(css, struct mem_cgroup, css);
else
mem = NULL;
rcu_read_unlock();
return mem;
}
static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
struct mem_cgroup *root,
bool cond)
{
int nextid = css_id(&iter->css) + 1;
int found;
int hierarchy_used;
struct cgroup_subsys_state *css;
hierarchy_used = iter->use_hierarchy;
css_put(&iter->css);
/* If no ROOT, walk all, ignore hierarchy */
if (!cond || (root && !hierarchy_used))
return NULL;
if (!root)
root = root_mem_cgroup;
do {
iter = NULL;
rcu_read_lock();
css = css_get_next(&mem_cgroup_subsys, nextid,
&root->css, &found);
if (css && css_tryget(css))
iter = container_of(css, struct mem_cgroup, css);
rcu_read_unlock();
/* If css is NULL, no more cgroups will be found */
nextid = found + 1;
} while (css && !iter);
return iter;
}
/*
* for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
* be careful that "break" loop is not allowed. We have reference count.
* Instead of that modify "cond" to be false and "continue" to exit the loop.
*/
#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
for (iter = mem_cgroup_start_loop(root);\
iter != NULL;\
iter = mem_cgroup_get_next(iter, root, cond))
#define for_each_mem_cgroup_tree(iter, root) \
for_each_mem_cgroup_tree_cond(iter, root, true)
#define for_each_mem_cgroup_all(iter) \
for_each_mem_cgroup_tree_cond(iter, NULL, true)
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
return (mem == root_mem_cgroup);
}
/*
* Following LRU functions are allowed to be used without PCG_LOCK.
* Operations are called by routine of global LRU independently from memcg.
* What we have to take care of here is validness of pc->mem_cgroup.
*
* Changes to pc->mem_cgroup happens when
* 1. charge
* 2. moving account
* In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
* It is added to LRU before charge.
* If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
* When moving account, the page is not on LRU. It's isolated.
*/
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
/* can happen while we handle swapcache. */
if (!TestClearPageCgroupAcctLRU(pc))
return;
VM_BUG_ON(!pc->mem_cgroup);
/*
* We don't check PCG_USED bit. It's cleared when the "page" is finally
* removed from global LRU.
*/
mz = page_cgroup_zoneinfo(pc);
MEM_CGROUP_ZSTAT(mz, lru) -= 1;
if (mem_cgroup_is_root(pc->mem_cgroup))
return;
VM_BUG_ON(list_empty(&pc->lru));
list_del_init(&pc->lru);
return;
}
void mem_cgroup_del_lru(struct page *page)
{
mem_cgroup_del_lru_list(page, page_lru(page));
}
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
struct page_cgroup *pc;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
/*
* Used bit is set without atomic ops but after smp_wmb().
* For making pc->mem_cgroup visible, insert smp_rmb() here.
*/
smp_rmb();
/* unused or root page is not rotated. */
if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
return;
mz = page_cgroup_zoneinfo(pc);
list_move(&pc->lru, &mz->lists[lru]);
}
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
VM_BUG_ON(PageCgroupAcctLRU(pc));
/*
* Used bit is set without atomic ops but after smp_wmb().
* For making pc->mem_cgroup visible, insert smp_rmb() here.
*/
smp_rmb();
if (!PageCgroupUsed(pc))
return;
mz = page_cgroup_zoneinfo(pc);
MEM_CGROUP_ZSTAT(mz, lru) += 1;
SetPageCgroupAcctLRU(pc);
if (mem_cgroup_is_root(pc->mem_cgroup))
return;
list_add(&pc->lru, &mz->lists[lru]);
}
/*
* At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
* lru because the page may.be reused after it's fully uncharged (because of
* SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
* it again. This function is only used to charge SwapCache. It's done under
* lock_page and expected that zone->lru_lock is never held.
*/
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
{
unsigned long flags;
struct zone *zone = page_zone(page);
struct page_cgroup *pc = lookup_page_cgroup(page);
spin_lock_irqsave(&zone->lru_lock, flags);
/*
* Forget old LRU when this page_cgroup is *not* used. This Used bit
* is guarded by lock_page() because the page is SwapCache.
*/
if (!PageCgroupUsed(pc))
mem_cgroup_del_lru_list(page, page_lru(page));
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
unsigned long flags;
struct zone *zone = page_zone(page);
struct page_cgroup *pc = lookup_page_cgroup(page);
spin_lock_irqsave(&zone->lru_lock, flags);
/* link when the page is linked to LRU but page_cgroup isn't */
if (PageLRU(page) && !PageCgroupAcctLRU(pc))
mem_cgroup_add_lru_list(page, page_lru(page));
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
void mem_cgroup_move_lists(struct page *page,
enum lru_list from, enum lru_list to)
{
if (mem_cgroup_disabled())
return;
mem_cgroup_del_lru_list(page, from);
mem_cgroup_add_lru_list(page, to);
}
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
int ret;
struct mem_cgroup *curr = NULL;
struct task_struct *p;
p = find_lock_task_mm(task);
if (!p)
return 0;
curr = try_get_mem_cgroup_from_mm(p->mm);
task_unlock(p);
if (!curr)
return 0;
/*
* We should check use_hierarchy of "mem" not "curr". Because checking
* use_hierarchy of "curr" here make this function true if hierarchy is
* enabled in "curr" and "curr" is a child of "mem" in *cgroup*
* hierarchy(even if use_hierarchy is disabled in "mem").
*/
if (mem->use_hierarchy)
ret = css_is_ancestor(&curr->css, &mem->css);
else
ret = (curr == mem);
css_put(&curr->css);
return ret;
}
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
{
unsigned long active;
unsigned long inactive;
unsigned long gb;
unsigned long inactive_ratio;
inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
gb = (inactive + active) >> (30 - PAGE_SHIFT);
if (gb)
inactive_ratio = int_sqrt(10 * gb);
else
inactive_ratio = 1;
if (present_pages) {
present_pages[0] = inactive;
present_pages[1] = active;
}
return inactive_ratio;
}
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
unsigned long active;
unsigned long inactive;
unsigned long present_pages[2];
unsigned long inactive_ratio;
inactive_ratio = calc_inactive_ratio(memcg, present_pages);
inactive = present_pages[0];
active = present_pages[1];
if (inactive * inactive_ratio < active)
return 1;
return 0;
}
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
unsigned long active;
unsigned long inactive;
inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
return (active > inactive);
}
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
struct zone *zone,
enum lru_list lru)
{
int nid = zone_to_nid(zone);
int zid = zone_idx(zone);
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
return MEM_CGROUP_ZSTAT(mz, lru);
}
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
struct zone *zone)
{
int nid = zone_to_nid(zone);
int zid = zone_idx(zone);
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
return &mz->reclaim_stat;
}
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
if (mem_cgroup_disabled())
return NULL;
pc = lookup_page_cgroup(page);
/*
* Used bit is set without atomic ops but after smp_wmb().
* For making pc->mem_cgroup visible, insert smp_rmb() here.
*/
smp_rmb();
if (!PageCgroupUsed(pc))
return NULL;
mz = page_cgroup_zoneinfo(pc);
if (!mz)
return NULL;
return &mz->reclaim_stat;
}
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
struct list_head *dst,
unsigned long *scanned, int order,
int mode, struct zone *z,
struct mem_cgroup *mem_cont,
int active, int file)
{
unsigned long nr_taken = 0;
struct page *page;
unsigned long scan;
LIST_HEAD(pc_list);
struct list_head *src;
struct page_cgroup *pc, *tmp;
int nid = zone_to_nid(z);
int zid = zone_idx(z);
struct mem_cgroup_per_zone *mz;
int lru = LRU_FILE * file + active;
int ret;
BUG_ON(!mem_cont);
mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
src = &mz->lists[lru];
scan = 0;
list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
if (scan >= nr_to_scan)
break;
page = pc->page;
if (unlikely(!PageCgroupUsed(pc)))
continue;
if (unlikely(!PageLRU(page)))
continue;
scan++;
ret = __isolate_lru_page(page, mode, file);
switch (ret) {
case 0:
list_move(&page->lru, dst);
mem_cgroup_del_lru(page);
nr_taken++;
break;
case -EBUSY:
/* we don't affect global LRU but rotate in our LRU */
mem_cgroup_rotate_lru_list(page, page_lru(page));
break;
default:
break;
}
}
*scanned = scan;
trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
0, 0, 0, mode);
return nr_taken;
}
#define mem_cgroup_from_res_counter(counter, member) \
container_of(counter, struct mem_cgroup, member)
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
if (do_swap_account) {
if (res_counter_check_under_limit(&mem->res) &&
res_counter_check_under_limit(&mem->memsw))
return true;
} else
if (res_counter_check_under_limit(&mem->res))
return true;
return false;
}
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
struct cgroup *cgrp = memcg->css.cgroup;
unsigned int swappiness;
/* root ? */
if (cgrp->parent == NULL)
return vm_swappiness;
spin_lock(&memcg->reclaim_param_lock);
swappiness = memcg->swappiness;
spin_unlock(&memcg->reclaim_param_lock);
return swappiness;
}
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
int cpu;
get_online_cpus();
spin_lock(&mem->pcp_counter_lock);
for_each_online_cpu(cpu)
per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
spin_unlock(&mem->pcp_counter_lock);
put_online_cpus();
synchronize_rcu();
}
static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
int cpu;
if (!mem)
return;
get_online_cpus();
spin_lock(&mem->pcp_counter_lock);
for_each_online_cpu(cpu)
per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
spin_unlock(&mem->pcp_counter_lock);
put_online_cpus();
}
/*
* 2 routines for checking "mem" is under move_account() or not.
*
* mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
* for avoiding race in accounting. If true,
* pc->mem_cgroup may be overwritten.
*
* mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
* under hierarchy of moving cgroups. This is for
* waiting at hith-memory prressure caused by "move".
*/
static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
VM_BUG_ON(!rcu_read_lock_held());
return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
struct mem_cgroup *from;
struct mem_cgroup *to;
bool ret = false;
/*
* Unlike task_move routines, we access mc.to, mc.from not under
* mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
*/
spin_lock(&mc.lock);
from = mc.from;
to = mc.to;
if (!from)
goto unlock;
if (from == mem || to == mem
|| (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
|| (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
ret = true;
unlock:
spin_unlock(&mc.lock);
return ret;
}
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
if (mc.moving_task && current != mc.moving_task) {
if (mem_cgroup_under_move(mem)) {
DEFINE_WAIT(wait);
prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
/* moving charge context might have finished. */
if (mc.moving_task)
schedule();
finish_wait(&mc.waitq, &wait);
return true;
}
}
return false;
}
/**
* mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
* @memcg: The memory cgroup that went over limit
* @p: Task that is going to be killed
*
* NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
* enabled
*/
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
struct cgroup *task_cgrp;
struct cgroup *mem_cgrp;
/*
* Need a buffer in BSS, can't rely on allocations. The code relies
* on the assumption that OOM is serialized for memory controller.
* If this assumption is broken, revisit this code.
*/
static char memcg_name[PATH_MAX];
int ret;
if (!memcg || !p)
return;
rcu_read_lock();
mem_cgrp = memcg->css.cgroup;
task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
if (ret < 0) {
/*
* Unfortunately, we are unable to convert to a useful name
* But we'll still print out the usage information
*/
rcu_read_unlock();
goto done;
}
rcu_read_unlock();
printk(KERN_INFO "Task in %s killed", memcg_name);
rcu_read_lock();
ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
if (ret < 0) {
rcu_read_unlock();
goto done;
}
rcu_read_unlock();
/*
* Continues from above, so we don't need an KERN_ level
*/
printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:
printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->res, RES_FAILCNT));
printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
"failcnt %llu\n",
res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}
/*
* This function returns the number of memcg under hierarchy tree. Returns
* 1(self count) if no children.
*/
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
int num = 0;
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
num++;
return num;
}
/*
* Return the memory (and swap, if configured) limit for a memcg.
*/
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
u64 limit;
u64 memsw;
limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
total_swap_pages;
memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
/*
* If memsw is finite and limits the amount of swap space available
* to this memcg, return that limit.
*/
return min(limit, memsw);
}
/*
* Visit the first child (need not be the first child as per the ordering
* of the cgroup list, since we track last_scanned_child) of @mem and use
* that to reclaim free pages from.
*/
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
struct mem_cgroup *ret = NULL;
struct cgroup_subsys_state *css;
int nextid, found;
if (!root_mem->use_hierarchy) {
css_get(&root_mem->css);
ret = root_mem;
}
while (!ret) {
rcu_read_lock();
nextid = root_mem->last_scanned_child + 1;
css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
&found);
if (css && css_tryget(css))
ret = container_of(css, struct mem_cgroup, css);
rcu_read_unlock();
/* Updates scanning parameter */
spin_lock(&root_mem->reclaim_param_lock);
if (!css) {
/* this means start scan from ID:1 */
root_mem->last_scanned_child = 0;
} else
root_mem->last_scanned_child = found;
spin_unlock(&root_mem->reclaim_param_lock);
}
return ret;
}
/*
* Scan the hierarchy if needed to reclaim memory. We remember the last child
* we reclaimed from, so that we don't end up penalizing one child extensively
* based on its position in the children list.
*
* root_mem is the original ancestor that we've been reclaim from.
*
* We give up and return to the caller when we visit root_mem twice.
* (other groups can be removed while we're walking....)
*
* If shrink==true, for avoiding to free too much, this returns immedieately.
*/
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
struct zone *zone,
gfp_t gfp_mask,
unsigned long reclaim_options)
{
struct mem_cgroup *victim;
int ret, total = 0;
int loop = 0;
bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
unsigned long excess = mem_cgroup_get_excess(root_mem);
/* If memsw_is_minimum==1, swap-out is of-no-use. */
if (root_mem->memsw_is_minimum)
noswap = true;
while (1) {
victim = mem_cgroup_select_victim(root_mem);
if (victim == root_mem) {
loop++;
if (loop >= 1)
drain_all_stock_async();
if (loop >= 2) {
/*
* If we have not been able to reclaim
* anything, it might because there are
* no reclaimable pages under this hierarchy
*/
if (!check_soft || !total) {
css_put(&victim->css);
break;
}
/*
* We want to do more targetted reclaim.
* excess >> 2 is not to excessive so as to
* reclaim too much, nor too less that we keep
* coming back to reclaim from this cgroup
*/
if (total >= (excess >> 2) ||
(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
css_put(&victim->css);
break;
}
}
}
if (!mem_cgroup_local_usage(victim)) {
/* this cgroup's local usage == 0 */
css_put(&victim->css);
continue;
}
/* we use swappiness of local cgroup */
if (check_soft)
ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
noswap, get_swappiness(victim), zone);
else
ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
noswap, get_swappiness(victim));
css_put(&victim->css);
/*
* At shrinking usage, we can't check we should stop here or
* reclaim more. It's depends on callers. last_scanned_child
* will work enough for keeping fairness under tree.
*/
if (shrink)
return ret;
total += ret;
if (check_soft) {
if (res_counter_check_under_soft_limit(&root_mem->res))
return total;
} else if (mem_cgroup_check_under_limit(root_mem))
return 1 + total;
}
return total;
}
/*
* Check OOM-Killer is already running under our hierarchy.
* If someone is running, return false.
*/
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
int x, lock_count = 0;
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem) {
x = atomic_inc_return(&iter->oom_lock);
lock_count = max(x, lock_count);
}
if (lock_count == 1)
return true;
return false;
}
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
struct mem_cgroup *iter;
/*
* When a new child is created while the hierarchy is under oom,
* mem_cgroup_oom_lock() may not be called. We have to use
* atomic_add_unless() here.
*/
for_each_mem_cgroup_tree(iter, mem)
atomic_add_unless(&iter->oom_lock, -1, 0);
return 0;
}
static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
struct oom_wait_info {
struct mem_cgroup *mem;
wait_queue_t wait;
};
static int memcg_oom_wake_function(wait_queue_t *wait,
unsigned mode, int sync, void *arg)
{
struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
struct oom_wait_info *oom_wait_info;
oom_wait_info = container_of(wait, struct oom_wait_info, wait);
if (oom_wait_info->mem == wake_mem)
goto wakeup;
/* if no hierarchy, no match */
if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
return 0;
/*
* Both of oom_wait_info->mem and wake_mem are stable under us.
* Then we can use css_is_ancestor without taking care of RCU.
*/
if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
!css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
return 0;
wakeup:
return autoremove_wake_function(wait, mode, sync, arg);
}
static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
/* for filtering, pass "mem" as argument. */
__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}
static void memcg_oom_recover(struct mem_cgroup *mem)
{
if (mem && atomic_read(&mem->oom_lock))
memcg_wakeup_oom(mem);
}
/*
* try to call OOM killer. returns false if we should exit memory-reclaim loop.
*/
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
{
struct oom_wait_info owait;
bool locked, need_to_kill;
owait.mem = mem;
owait.wait.flags = 0;
owait.wait.func = memcg_oom_wake_function;
owait.wait.private = current;
INIT_LIST_HEAD(&owait.wait.task_list);
need_to_kill = true;
/* At first, try to OOM lock hierarchy under mem.*/
mutex_lock(&memcg_oom_mutex);
locked = mem_cgroup_oom_lock(mem);
/*
* Even if signal_pending(), we can't quit charge() loop without
* accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
* under OOM is always welcomed, use TASK_KILLABLE here.
*/
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
if (!locked || mem->oom_kill_disable)
need_to_kill = false;
if (locked)
mem_cgroup_oom_notify(mem);
mutex_unlock(&memcg_oom_mutex);
if (need_to_kill) {
finish_wait(&memcg_oom_waitq, &owait.wait);
mem_cgroup_out_of_memory(mem, mask);
} else {
schedule();
finish_wait(&memcg_oom_waitq, &owait.wait);
}
mutex_lock(&memcg_oom_mutex);
mem_cgroup_oom_unlock(mem);
memcg_wakeup_oom(mem);
mutex_unlock(&memcg_oom_mutex);
if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
return false;
/* Give chance to dying process */
schedule_timeout(1);
return true;
}
/*
* Currently used to update mapped file statistics, but the routine can be
* generalized to update other statistics as well.
*
* Notes: Race condition
*
* We usually use page_cgroup_lock() for accessing page_cgroup member but
* it tends to be costly. But considering some conditions, we doesn't need
* to do so _always_.
*
* Considering "charge", lock_page_cgroup() is not required because all
* file-stat operations happen after a page is attached to radix-tree. There
* are no race with "charge".
*
* Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
* at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
* if there are race with "uncharge". Statistics itself is properly handled
* by flags.
*
* Considering "move", this is an only case we see a race. To make the race
* small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
* possibility of race condition. If there is, we take a lock.
*/
static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
{
struct mem_cgroup *mem;
struct page_cgroup *pc = lookup_page_cgroup(page);
bool need_unlock = false;
if (unlikely(!pc))
return;
rcu_read_lock();
mem = pc->mem_cgroup;
if (unlikely(!mem || !PageCgroupUsed(pc)))
goto out;
/* pc->mem_cgroup is unstable ? */
if (unlikely(mem_cgroup_stealed(mem))) {
/* take a lock against to access pc->mem_cgroup */
lock_page_cgroup(pc);
need_unlock = true;
mem = pc->mem_cgroup;
if (!mem || !PageCgroupUsed(pc))
goto out;
}
this_cpu_add(mem->stat->count[idx], val);
switch (idx) {
case MEM_CGROUP_STAT_FILE_MAPPED:
if (val > 0)
SetPageCgroupFileMapped(pc);
else if (!page_mapped(page))
ClearPageCgroupFileMapped(pc);
break;
default:
BUG();
}
out:
if (unlikely(need_unlock))
unlock_page_cgroup(pc);
rcu_read_unlock();
return;
}
void mem_cgroup_update_file_mapped(struct page *page, int val)
{
mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
}
/*
* size of first charge trial. "32" comes from vmscan.c's magic value.
* TODO: maybe necessary to use big numbers in big irons.
*/
#define CHARGE_SIZE (32 * PAGE_SIZE)
struct memcg_stock_pcp {
struct mem_cgroup *cached; /* this never be root cgroup */
int charge;
struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;
/*
* Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
* from local stock and true is returned. If the stock is 0 or charges from a
* cgroup which is not current target, returns false. This stock will be
* refilled.
*/
static bool consume_stock(struct mem_cgroup *mem)
{
struct memcg_stock_pcp *stock;
bool ret = true;
stock = &get_cpu_var(memcg_stock);
if (mem == stock->cached && stock->charge)
stock->charge -= PAGE_SIZE;
else /* need to call res_counter_charge */
ret = false;
put_cpu_var(memcg_stock);
return ret;
}
/*
* Returns stocks cached in percpu to res_counter and reset cached information.
*/
static void drain_stock(struct memcg_stock_pcp *stock)
{
struct mem_cgroup *old = stock->cached;
if (stock->charge) {
res_counter_uncharge(&old->res, stock->charge);
if (do_swap_account)
res_counter_uncharge(&old->memsw, stock->charge);
}
stock->cached = NULL;
stock->charge = 0;
}
/*
* This must be called under preempt disabled or must be called by
* a thread which is pinned to local cpu.
*/
static void drain_local_stock(struct work_struct *dummy)
{
struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
drain_stock(stock);
}
/*
* Cache charges(val) which is from res_counter, to local per_cpu area.
* This will be consumed by consume_stock() function, later.
*/
static void refill_stock(struct mem_cgroup *mem, int val)
{
struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
if (stock->cached != mem) { /* reset if necessary */
drain_stock(stock);
stock->cached = mem;
}
stock->charge += val;
put_cpu_var(memcg_stock);
}
/*
* Tries to drain stocked charges in other cpus. This function is asynchronous
* and just put a work per cpu for draining localy on each cpu. Caller can
* expects some charges will be back to res_counter later but cannot wait for
* it.
*/
static void drain_all_stock_async(void)
{
int cpu;
/* This function is for scheduling "drain" in asynchronous way.
* The result of "drain" is not directly handled by callers. Then,
* if someone is calling drain, we don't have to call drain more.
* Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
* there is a race. We just do loose check here.
*/
if (atomic_read(&memcg_drain_count))
return;
/* Notify other cpus that system-wide "drain" is running */
atomic_inc(&memcg_drain_count);
get_online_cpus();
for_each_online_cpu(cpu) {
struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
schedule_work_on(cpu, &stock->work);
}
put_online_cpus();
atomic_dec(&memcg_drain_count);
/* We don't wait for flush_work */
}
/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
/* called when force_empty is called */
atomic_inc(&memcg_drain_count);
schedule_on_each_cpu(drain_local_stock);
atomic_dec(&memcg_drain_count);
}
/*
* This function drains percpu counter value from DEAD cpu and
* move it to local cpu. Note that this function can be preempted.
*/
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
int i;
spin_lock(&mem->pcp_counter_lock);
for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
s64 x = per_cpu(mem->stat->count[i], cpu);
per_cpu(mem->stat->count[i], cpu) = 0;
mem->nocpu_base.count[i] += x;
}
/* need to clear ON_MOVE value, works as a kind of lock. */
per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
spin_unlock(&mem->pcp_counter_lock);
}
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
int idx = MEM_CGROUP_ON_MOVE;
spin_lock(&mem->pcp_counter_lock);
per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
spin_unlock(&mem->pcp_counter_lock);
}
static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
unsigned long action,
void *hcpu)
{
int cpu = (unsigned long)hcpu;
struct memcg_stock_pcp *stock;
struct mem_cgroup *iter;
if ((action == CPU_ONLINE)) {
for_each_mem_cgroup_all(iter)
synchronize_mem_cgroup_on_move(iter, cpu);
return NOTIFY_OK;
}
if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
return NOTIFY_OK;
for_each_mem_cgroup_all(iter)
mem_cgroup_drain_pcp_counter(iter, cpu);
stock = &per_cpu(memcg_stock, cpu);
drain_stock(stock);
return NOTIFY_OK;
}
/* See __mem_cgroup_try_charge() for details */
enum {
CHARGE_OK, /* success */
CHARGE_RETRY, /* need to retry but retry is not bad */
CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
CHARGE_OOM_DIE, /* the current is killed because of OOM */
};
static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
int csize, bool oom_check)
{
struct mem_cgroup *mem_over_limit;
struct res_counter *fail_res;
unsigned long flags = 0;
int ret;
ret = res_counter_charge(&mem->res, csize, &fail_res);
if (likely(!ret)) {
if (!do_swap_account)
return CHARGE_OK;
ret = res_counter_charge(&mem->memsw, csize, &fail_res);
if (likely(!ret))
return CHARGE_OK;
mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
flags |= MEM_CGROUP_RECLAIM_NOSWAP;
} else
mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
if (csize > PAGE_SIZE) /* change csize and retry */
return CHARGE_RETRY;
if (!(gfp_mask & __GFP_WAIT))
return CHARGE_WOULDBLOCK;
ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
gfp_mask, flags);
/*
* try_to_free_mem_cgroup_pages() might not give us a full
* picture of reclaim. Some pages are reclaimed and might be
* moved to swap cache or just unmapped from the cgroup.
* Check the limit again to see if the reclaim reduced the
* current usage of the cgroup before giving up
*/
if (ret || mem_cgroup_check_under_limit(mem_over_limit))
return CHARGE_RETRY;
/*
* At task move, charge accounts can be doubly counted. So, it's
* better to wait until the end of task_move if something is going on.
*/
if (mem_cgroup_wait_acct_move(mem_over_limit))
return CHARGE_RETRY;
/* If we don't need to call oom-killer at el, return immediately */
if (!oom_check)
return CHARGE_NOMEM;
/* check OOM */
if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
return CHARGE_OOM_DIE;
return CHARGE_RETRY;
}
/*
* Unlike exported interface, "oom" parameter is added. if oom==true,
* oom-killer can be invoked.
*/
static int __mem_cgroup_try_charge(struct mm_struct *mm,
gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
{
int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct mem_cgroup *mem = NULL;
int ret;
int csize = CHARGE_SIZE;
/*
* Unlike gloval-vm's OOM-kill, we're not in memory shortage
* in system level. So, allow to go ahead dying process in addition to
* MEMDIE process.
*/
if (unlikely(test_thread_flag(TIF_MEMDIE)
|| fatal_signal_pending(current)))
goto bypass;
/*
* We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the
* thread group leader migrates. It's possible that mm is not
* set, if so charge the init_mm (happens for pagecache usage).
*/
if (!*memcg && !mm)
goto bypass;
again:
if (*memcg) { /* css should be a valid one */
mem = *memcg;
VM_BUG_ON(css_is_removed(&mem->css));
if (mem_cgroup_is_root(mem))
goto done;
if (consume_stock(mem))
goto done;
css_get(&mem->css);
} else {
struct task_struct *p;
rcu_read_lock();
p = rcu_dereference(mm->owner);
VM_BUG_ON(!p);
/*
* because we don't have task_lock(), "p" can exit while
* we're here. In that case, "mem" can point to root
* cgroup but never be NULL. (and task_struct itself is freed
* by RCU, cgroup itself is RCU safe.) Then, we have small
* risk here to get wrong cgroup. But such kind of mis-account
* by race always happens because we don't have cgroup_mutex().
* It's overkill and we allow that small race, here.
*/
mem = mem_cgroup_from_task(p);
VM_BUG_ON(!mem);
if (mem_cgroup_is_root(mem)) {
rcu_read_unlock();
goto done;
}
if (consume_stock(mem)) {
/*
* It seems dagerous to access memcg without css_get().
* But considering how consume_stok works, it's not
* necessary. If consume_stock success, some charges
* from this memcg are cached on this cpu. So, we
* don't need to call css_get()/css_tryget() before
* calling consume_stock().
*/
rcu_read_unlock();
goto done;
}
/* after here, we may be blocked. we need to get refcnt */
if (!css_tryget(&mem->css)) {
rcu_read_unlock();
goto again;
}
rcu_read_unlock();
}
do {
bool oom_check;
/* If killed, bypass charge */
if (fatal_signal_pending(current)) {
css_put(&mem->css);
goto bypass;
}
oom_check = false;
if (oom && !nr_oom_retries) {
oom_check = true;
nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
}
ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
switch (ret) {
case CHARGE_OK:
break;
case CHARGE_RETRY: /* not in OOM situation but retry */
csize = PAGE_SIZE;
css_put(&mem->css);
mem = NULL;
goto again;
case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
css_put(&mem->css);
goto nomem;
case CHARGE_NOMEM: /* OOM routine works */
if (!oom) {
css_put(&mem->css);
goto nomem;
}
/* If oom, we never return -ENOMEM */
nr_oom_retries--;
break;
case CHARGE_OOM_DIE: /* Killed by OOM Killer */
css_put(&mem->css);
goto bypass;
}
} while (ret != CHARGE_OK);
if (csize > PAGE_SIZE)
refill_stock(mem, csize - PAGE_SIZE);
css_put(&mem->css);
done:
*memcg = mem;
return 0;
nomem:
*memcg = NULL;
return -ENOMEM;
bypass:
*memcg = NULL;
return 0;
}
/*
* Somemtimes we have to undo a charge we got by try_charge().
* This function is for that and do uncharge, put css's refcnt.
* gotten by try_charge().
*/
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
unsigned long count)
{
if (!mem_cgroup_is_root(mem)) {
res_counter_uncharge(&mem->res, PAGE_SIZE * count);
if (do_swap_account)
res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
}
}
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
__mem_cgroup_cancel_charge(mem, 1);
}
/*
* A helper function to get mem_cgroup from ID. must be called under
* rcu_read_lock(). The caller must check css_is_removed() or some if
* it's concern. (dropping refcnt from swap can be called against removed
* memcg.)
*/
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
struct cgroup_subsys_state *css;
/* ID 0 is unused ID */
if (!id)
return NULL;
css = css_lookup(&mem_cgroup_subsys, id);
if (!css)
return NULL;
return container_of(css, struct mem_cgroup, css);
}
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{
struct mem_cgroup *mem = NULL;
struct page_cgroup *pc;
unsigned short id;
swp_entry_t ent;
VM_BUG_ON(!PageLocked(page));
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
if (mem && !css_tryget(&mem->css))
mem = NULL;
} else if (PageSwapCache(page)) {
ent.val = page_private(page);
id = lookup_swap_cgroup(ent);
rcu_read_lock();
mem = mem_cgroup_lookup(id);
if (mem && !css_tryget(&mem->css))
mem = NULL;
rcu_read_unlock();
}
unlock_page_cgroup(pc);
return mem;
}
/*
* commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
* USED state. If already USED, uncharge and return.
*/
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
struct page_cgroup *pc,
enum charge_type ctype)
{
/* try_charge() can return NULL to *memcg, taking care of it. */
if (!mem)
return;
lock_page_cgroup(pc);
if (unlikely(PageCgroupUsed(pc))) {
unlock_page_cgroup(pc);
mem_cgroup_cancel_charge(mem);
return;
}
pc->mem_cgroup = mem;
/*
* We access a page_cgroup asynchronously without lock_page_cgroup().
* Especially when a page_cgroup is taken from a page, pc->mem_cgroup
* is accessed after testing USED bit. To make pc->mem_cgroup visible
* before USED bit, we need memory barrier here.
* See mem_cgroup_add_lru_list(), etc.
*/
smp_wmb();
switch (ctype) {
case MEM_CGROUP_CHARGE_TYPE_CACHE:
case MEM_CGROUP_CHARGE_TYPE_SHMEM:
SetPageCgroupCache(pc);
SetPageCgroupUsed(pc);
break;
case MEM_CGROUP_CHARGE_TYPE_MAPPED:
ClearPageCgroupCache(pc);
SetPageCgroupUsed(pc);
break;
default:
break;
}
mem_cgroup_charge_statistics(mem, pc, true);
unlock_page_cgroup(pc);
/*
* "charge_statistics" updated event counter. Then, check it.
* Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
* if they exceeds softlimit.
*/
memcg_check_events(mem, pc->page);
}
/**
* __mem_cgroup_move_account - move account of the page
* @pc: page_cgroup of the page.
* @from: mem_cgroup which the page is moved from.
* @to: mem_cgroup which the page is moved to. @from != @to.
* @uncharge: whether we should call uncharge and css_put against @from.
*
* The caller must confirm following.
* - page is not on LRU (isolate_page() is useful.)
* - the pc is locked, used, and ->mem_cgroup points to @from.
*
* This function doesn't do "charge" nor css_get to new cgroup. It should be
* done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
* true, this function does "uncharge" from old cgroup, but it doesn't if
* @uncharge is false, so a caller should do "uncharge".
*/
static void __mem_cgroup_move_account(struct page_cgroup *pc,
struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
{
VM_BUG_ON(from == to);
VM_BUG_ON(PageLRU(pc->page));
VM_BUG_ON(!PageCgroupLocked(pc));
VM_BUG_ON(!PageCgroupUsed(pc));
VM_BUG_ON(pc->mem_cgroup != from);
if (PageCgroupFileMapped(pc)) {
/* Update mapped_file data for mem_cgroup */
preempt_disable();
__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
preempt_enable();
}
mem_cgroup_charge_statistics(from, pc, false);
if (uncharge)
/* This is not "cancel", but cancel_charge does all we need. */
mem_cgroup_cancel_charge(from);
/* caller should have done css_get */
pc->mem_cgroup = to;
mem_cgroup_charge_statistics(to, pc, true);
/*
* We charges against "to" which may not have any tasks. Then, "to"
* can be under rmdir(). But in current implementation, caller of
* this function is just force_empty() and move charge, so it's
* garanteed that "to" is never removed. So, we don't check rmdir
* status here.
*/
}
/*
* check whether the @pc is valid for moving account and call
* __mem_cgroup_move_account()
*/
static int mem_cgroup_move_account(struct page_cgroup *pc,
struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
{
int ret = -EINVAL;
lock_page_cgroup(pc);
if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
__mem_cgroup_move_account(pc, from, to, uncharge);
ret = 0;
}
unlock_page_cgroup(pc);
/*
* check events
*/
memcg_check_events(to, pc->page);
memcg_check_events(from, pc->page);
return ret;
}
/*
* move charges to its parent.
*/
static int mem_cgroup_move_parent(struct page_cgroup *pc,
struct mem_cgroup *child,
gfp_t gfp_mask)
{
struct page *page = pc->page;
struct cgroup *cg = child->css.cgroup;
struct cgroup *pcg = cg->parent;
struct mem_cgroup *parent;
int ret;
/* Is ROOT ? */
if (!pcg)
return -EINVAL;
ret = -EBUSY;
if (!get_page_unless_zero(page))
goto out;
if (isolate_lru_page(page))
goto put;
parent = mem_cgroup_from_cont(pcg);
ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
if (ret || !parent)
goto put_back;
ret = mem_cgroup_move_account(pc, child, parent, true);
if (ret)
mem_cgroup_cancel_charge(parent);
put_back:
putback_lru_page(page);
put:
put_page(page);
out:
return ret;
}
/*
* Charge the memory controller for page usage.
* Return
* 0 if the charge was successful
* < 0 if the cgroup is over its limit
*/
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask, enum charge_type ctype)
{
struct mem_cgroup *mem = NULL;
struct page_cgroup *pc;
int ret;
pc = lookup_page_cgroup(page);
/* can happen at boot */
if (unlikely(!pc))
return 0;
prefetchw(pc);
ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
if (ret || !mem)
return ret;
__mem_cgroup_commit_charge(mem, pc, ctype);
return 0;
}
int mem_cgroup_newpage_charge(struct page *page,
struct mm_struct *mm, gfp_t gfp_mask)
{
if (mem_cgroup_disabled())
return 0;
if (PageCompound(page))
return 0;
/*
* If already mapped, we don't have to account.
* If page cache, page->mapping has address_space.
* But page->mapping may have out-of-use anon_vma pointer,
* detecit it by PageAnon() check. newly-mapped-anon's page->mapping
* is NULL.
*/
if (page_mapped(page) || (page->mapping && !PageAnon(page)))
return 0;
if (unlikely(!mm))
mm = &init_mm;
return mem_cgroup_charge_common(page, mm, gfp_mask,
MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
enum charge_type ctype);
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
int ret;
if (mem_cgroup_disabled())
return 0;
if (PageCompound(page))
return 0;
/*
* Corner case handling. This is called from add_to_page_cache()
* in usual. But some FS (shmem) precharges this page before calling it
* and call add_to_page_cache() with GFP_NOWAIT.
*
* For GFP_NOWAIT case, the page may be pre-charged before calling
* add_to_page_cache(). (See shmem.c) check it here and avoid to call
* charge twice. (It works but has to pay a bit larger cost.)
* And when the page is SwapCache, it should take swap information
* into account. This is under lock_page() now.
*/
if (!(gfp_mask & __GFP_WAIT)) {
struct page_cgroup *pc;
pc = lookup_page_cgroup(page);
if (!pc)
return 0;
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
unlock_page_cgroup(pc);
return 0;
}
unlock_page_cgroup(pc);
}
if (unlikely(!mm))
mm = &init_mm;
if (page_is_file_cache(page))
return mem_cgroup_charge_common(page, mm, gfp_mask,
MEM_CGROUP_CHARGE_TYPE_CACHE);
/* shmem */
if (PageSwapCache(page)) {
struct mem_cgroup *mem = NULL;
ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
if (!ret)
__mem_cgroup_commit_charge_swapin(page, mem,
MEM_CGROUP_CHARGE_TYPE_SHMEM);
} else
ret = mem_cgroup_charge_common(page, mm, gfp_mask,
MEM_CGROUP_CHARGE_TYPE_SHMEM);
return ret;
}
/*
* While swap-in, try_charge -> commit or cancel, the page is locked.
* And when try_charge() successfully returns, one refcnt to memcg without
* struct page_cgroup is acquired. This refcnt will be consumed by
* "commit()" or removed by "cancel()"
*/
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
struct page *page,
gfp_t mask, struct mem_cgroup **ptr)
{
struct mem_cgroup *mem;
int ret;
if (mem_cgroup_disabled())
return 0;
if (!do_swap_account)
goto charge_cur_mm;
/*
* A racing thread's fault, or swapoff, may have already updated
* the pte, and even removed page from swap cache: in those cases
* do_swap_page()'s pte_same() test will fail; but there's also a
* KSM case which does need to charge the page.
*/
if (!PageSwapCache(page))
goto charge_cur_mm;
mem = try_get_mem_cgroup_from_page(page);
if (!mem)
goto charge_cur_mm;
*ptr = mem;
ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
css_put(&mem->css);
return ret;
charge_cur_mm:
if (unlikely(!mm))
mm = &init_mm;
return __mem_cgroup_try_charge(mm, mask, ptr, true);
}
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
enum charge_type ctype)
{
struct page_cgroup *pc;
if (mem_cgroup_disabled())
return;
if (!ptr)
return;
cgroup_exclude_rmdir(&ptr->css);
pc = lookup_page_cgroup(page);
mem_cgroup_lru_del_before_commit_swapcache(page);
__mem_cgroup_commit_charge(ptr, pc, ctype);
mem_cgroup_lru_add_after_commit_swapcache(page);
/*
* Now swap is on-memory. This means this page may be
* counted both as mem and swap....double count.
* Fix it by uncharging from memsw. Basically, this SwapCache is stable
* under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
* may call delete_from_swap_cache() before reach here.
*/
if (do_swap_account && PageSwapCache(page)) {
swp_entry_t ent = {.val = page_private(page)};
unsigned short id;
struct mem_cgroup *memcg;
id = swap_cgroup_record(ent, 0);
rcu_read_lock();
memcg = mem_cgroup_lookup(id);
if (memcg) {
/*
* This recorded memcg can be obsolete one. So, avoid
* calling css_tryget
*/
if (!mem_cgroup_is_root(memcg))
res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
mem_cgroup_swap_statistics(memcg, false);
mem_cgroup_put(memcg);
}
rcu_read_unlock();
}
/*
* At swapin, we may charge account against cgroup which has no tasks.
* So, rmdir()->pre_destroy() can be called while we do this charge.
* In that case, we need to call pre_destroy() again. check it here.
*/
cgroup_release_and_wakeup_rmdir(&ptr->css);
}
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
__mem_cgroup_commit_charge_swapin(page, ptr,
MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
if (mem_cgroup_disabled())
return;
if (!mem)
return;
mem_cgroup_cancel_charge(mem);
}
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
struct memcg_batch_info *batch = NULL;
bool uncharge_memsw = true;
/* If swapout, usage of swap doesn't decrease */
if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
uncharge_memsw = false;
batch = &current->memcg_batch;
/*
* In usual, we do css_get() when we remember memcg pointer.
* But in this case, we keep res->usage until end of a series of
* uncharges. Then, it's ok to ignore memcg's refcnt.
*/
if (!batch->memcg)
batch->memcg = mem;
/*
* do_batch > 0 when unmapping pages or inode invalidate/truncate.
* In those cases, all pages freed continously can be expected to be in
* the same cgroup and we have chance to coalesce uncharges.
* But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
* because we want to do uncharge as soon as possible.
*/
if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
goto direct_uncharge;
/*
* In typical case, batch->memcg == mem. This means we can
* merge a series of uncharges to an uncharge of res_counter.
* If not, we uncharge res_counter ony by one.
*/
if (batch->memcg != mem)
goto direct_uncharge;
/* remember freed charge and uncharge it later */
batch->bytes += PAGE_SIZE;
if (uncharge_memsw)
batch->memsw_bytes += PAGE_SIZE;
return;
direct_uncharge:
res_counter_uncharge(&mem->res, PAGE_SIZE);
if (uncharge_memsw)
res_counter_uncharge(&mem->memsw, PAGE_SIZE);
if (unlikely(batch->memcg != mem))
memcg_oom_recover(mem);
return;
}
/*
* uncharge if !page_mapped(page)
*/
static struct mem_cgroup *
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
{
struct page_cgroup *pc;
struct mem_cgroup *mem = NULL;
if (mem_cgroup_disabled())
return NULL;
if (PageSwapCache(page))
return NULL;
/*
* Check if our page_cgroup is valid
*/
pc = lookup_page_cgroup(page);
if (unlikely(!pc || !PageCgroupUsed(pc)))
return NULL;
lock_page_cgroup(pc);
mem = pc->mem_cgroup;
if (!PageCgroupUsed(pc))
goto unlock_out;
switch (ctype) {
case MEM_CGROUP_CHARGE_TYPE_MAPPED:
case MEM_CGROUP_CHARGE_TYPE_DROP:
/* See mem_cgroup_prepare_migration() */
if (page_mapped(page) || PageCgroupMigration(pc))
goto unlock_out;
break;
case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
if (!PageAnon(page)) { /* Shared memory */
if (page->mapping && !page_is_file_cache(page))
goto unlock_out;
} else if (page_mapped(page)) /* Anon */
goto unlock_out;
break;
default:
break;
}
mem_cgroup_charge_statistics(mem, pc, false);
ClearPageCgroupUsed(pc);
/*
* pc->mem_cgroup is not cleared here. It will be accessed when it's
* freed from LRU. This is safe because uncharged page is expected not
* to be reused (freed soon). Exception is SwapCache, it's handled by
* special functions.
*/
unlock_page_cgroup(pc);
/*
* even after unlock, we have mem->res.usage here and this memcg
* will never be freed.
*/
memcg_check_events(mem, page);
if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
mem_cgroup_swap_statistics(mem, true);
mem_cgroup_get(mem);
}
if (!mem_cgroup_is_root(mem))
__do_uncharge(mem, ctype);
return mem;
unlock_out:
unlock_page_cgroup(pc);
return NULL;
}
void mem_cgroup_uncharge_page(struct page *page)
{
/* early check. */
if (page_mapped(page))
return;
if (page->mapping && !PageAnon(page))
return;
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
void mem_cgroup_uncharge_cache_page(struct page *page)
{
VM_BUG_ON(page_mapped(page));
VM_BUG_ON(page->mapping);
__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}
/*
* Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
* In that cases, pages are freed continuously and we can expect pages
* are in the same memcg. All these calls itself limits the number of
* pages freed at once, then uncharge_start/end() is called properly.
* This may be called prural(2) times in a context,
*/
void mem_cgroup_uncharge_start(void)
{
current->memcg_batch.do_batch++;
/* We can do nest. */
if (current->memcg_batch.do_batch == 1) {
current->memcg_batch.memcg = NULL;
current->memcg_batch.bytes = 0;
current->memcg_batch.memsw_bytes = 0;
}
}
void mem_cgroup_uncharge_end(void)
{
struct memcg_batch_info *batch = &current->memcg_batch;
if (!batch->do_batch)
return;
batch->do_batch--;
if (batch->do_batch) /* If stacked, do nothing. */
return;
if (!batch->memcg)
return;
/*
* This "batch->memcg" is valid without any css_get/put etc...
* bacause we hide charges behind us.
*/
if (batch->bytes)
res_counter_uncharge(&batch->memcg->res, batch->bytes);
if (batch->memsw_bytes)
res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
memcg_oom_recover(batch->memcg);
/* forget this pointer (for sanity check) */
batch->memcg = NULL;
}
#ifdef CONFIG_SWAP
/*
* called after __delete_from_swap_cache() and drop "page" account.
* memcg information is recorded to swap_cgroup of "ent"
*/
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
{
struct mem_cgroup *memcg;
int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
if (!swapout) /* this was a swap cache but the swap is unused ! */
ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
memcg = __mem_cgroup_uncharge_common(page, ctype);
/*
* record memcg information, if swapout && memcg != NULL,
* mem_cgroup_get() was called in uncharge().
*/
if (do_swap_account && swapout && memcg)
swap_cgroup_record(ent, css_id(&memcg->css));
}
#endif
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
* called from swap_entry_free(). remove record in swap_cgroup and
* uncharge "memsw" account.
*/
void mem_cgroup_uncharge_swap(swp_entry_t ent)
{
struct mem_cgroup *memcg;
unsigned short id;
if (!do_swap_account)
return;
id = swap_cgroup_record(ent, 0);
rcu_read_lock();
memcg = mem_cgroup_lookup(id);
if (memcg) {
/*
* We uncharge this because swap is freed.
* This memcg can be obsolete one. We avoid calling css_tryget
*/
if (!mem_cgroup_is_root(memcg))
res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
mem_cgroup_swap_statistics(memcg, false);
mem_cgroup_put(memcg);
}
rcu_read_unlock();
}
/**
* mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
* @entry: swap entry to be moved
* @from: mem_cgroup which the entry is moved from
* @to: mem_cgroup which the entry is moved to
* @need_fixup: whether we should fixup res_counters and refcounts.
*
* It succeeds only when the swap_cgroup's record for this entry is the same
* as the mem_cgroup's id of @from.
*
* Returns 0 on success, -EINVAL on failure.
*
* The caller must have charged to @to, IOW, called res_counter_charge() about
* both res and memsw, and called css_get().
*/
static int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
{
unsigned short old_id, new_id;
old_id = css_id(&from->css);
new_id = css_id(&to->css);
if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
mem_cgroup_swap_statistics(from, false);
mem_cgroup_swap_statistics(to, true);
/*
* This function is only called from task migration context now.
* It postpones res_counter and refcount handling till the end
* of task migration(mem_cgroup_clear_mc()) for performance
* improvement. But we cannot postpone mem_cgroup_get(to)
* because if the process that has been moved to @to does
* swap-in, the refcount of @to might be decreased to 0.
*/
mem_cgroup_get(to);
if (need_fixup) {
if (!mem_cgroup_is_root(from))
res_counter_uncharge(&from->memsw, PAGE_SIZE);
mem_cgroup_put(from);
/*
* we charged both to->res and to->memsw, so we should
* uncharge to->res.
*/
if (!mem_cgroup_is_root(to))
res_counter_uncharge(&to->res, PAGE_SIZE);
}
return 0;
}
return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
{
return -EINVAL;
}
#endif
/*
* Before starting migration, account PAGE_SIZE to mem_cgroup that the old
* page belongs to.
*/
int mem_cgroup_prepare_migration(struct page *page,
struct page *newpage, struct mem_cgroup **ptr)
{
struct page_cgroup *pc;
struct mem_cgroup *mem = NULL;
enum charge_type ctype;
int ret = 0;
if (mem_cgroup_disabled())
return 0;
pc = lookup_page_cgroup(page);
lock_page_cgroup(pc);
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
css_get(&mem->css);
/*
* At migrating an anonymous page, its mapcount goes down
* to 0 and uncharge() will be called. But, even if it's fully
* unmapped, migration may fail and this page has to be
* charged again. We set MIGRATION flag here and delay uncharge
* until end_migration() is called
*
* Corner Case Thinking
* A)
* When the old page was mapped as Anon and it's unmap-and-freed
* while migration was ongoing.
* If unmap finds the old page, uncharge() of it will be delayed
* until end_migration(). If unmap finds a new page, it's
* uncharged when it make mapcount to be 1->0. If unmap code
* finds swap_migration_entry, the new page will not be mapped
* and end_migration() will find it(mapcount==0).
*
* B)
* When the old page was mapped but migraion fails, the kernel
* remaps it. A charge for it is kept by MIGRATION flag even
* if mapcount goes down to 0. We can do remap successfully
* without charging it again.
*
* C)
* The "old" page is under lock_page() until the end of
* migration, so, the old page itself will not be swapped-out.
* If the new page is swapped out before end_migraton, our
* hook to usual swap-out path will catch the event.
*/
if (PageAnon(page))
SetPageCgroupMigration(pc);
}
unlock_page_cgroup(pc);
/*
* If the page is not charged at this point,
* we return here.
*/
if (!mem)
return 0;
*ptr = mem;
ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
css_put(&mem->css);/* drop extra refcnt */
if (ret || *ptr == NULL) {
if (PageAnon(page)) {
lock_page_cgroup(pc);
ClearPageCgroupMigration(pc);
unlock_page_cgroup(pc);
/*
* The old page may be fully unmapped while we kept it.
*/
mem_cgroup_uncharge_page(page);
}
return -ENOMEM;
}
/*
* We charge new page before it's used/mapped. So, even if unlock_page()
* is called before end_migration, we can catch all events on this new
* page. In the case new page is migrated but not remapped, new page's
* mapcount will be finally 0 and we call uncharge in end_migration().
*/
pc = lookup_page_cgroup(newpage);
if (PageAnon(page))
ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
else if (page_is_file_cache(page))
ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
else
ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
__mem_cgroup_commit_charge(mem, pc, ctype);
return ret;
}
/* remove redundant charge if migration failed*/
void mem_cgroup_end_migration(struct mem_cgroup *mem,
struct page *oldpage, struct page *newpage)
{
struct page *used, *unused;
struct page_cgroup *pc;
if (!mem)
return;
/* blocks rmdir() */
cgroup_exclude_rmdir(&mem->css);
/* at migration success, oldpage->mapping is NULL. */
if (oldpage->mapping) {
used = oldpage;
unused = newpage;
} else {
used = newpage;
unused = oldpage;
}
/*
* We disallowed uncharge of pages under migration because mapcount
* of the page goes down to zero, temporarly.
* Clear the flag and check the page should be charged.
*/
pc = lookup_page_cgroup(oldpage);
lock_page_cgroup(pc);
ClearPageCgroupMigration(pc);
unlock_page_cgroup(pc);
__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
/*
* If a page is a file cache, radix-tree replacement is very atomic
* and we can skip this check. When it was an Anon page, its mapcount
* goes down to 0. But because we added MIGRATION flage, it's not
* uncharged yet. There are several case but page->mapcount check
* and USED bit check in mem_cgroup_uncharge_page() will do enough
* check. (see prepare_charge() also)
*/
if (PageAnon(used))
mem_cgroup_uncharge_page(used);
/*
* At migration, we may charge account against cgroup which has no
* tasks.
* So, rmdir()->pre_destroy() can be called while we do this charge.
* In that case, we need to call pre_destroy() again. check it here.
*/
cgroup_release_and_wakeup_rmdir(&mem->css);
}
/*
* A call to try to shrink memory usage on charge failure at shmem's swapin.
* Calling hierarchical_reclaim is not enough because we should update
* last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
* Moreover considering hierarchy, we should reclaim from the mem_over_limit,
* not from the memcg which this page would be charged to.
* try_charge_swapin does all of these works properly.
*/
int mem_cgroup_shmem_charge_fallback(struct page *page,
struct mm_struct *mm,
gfp_t gfp_mask)
{
struct mem_cgroup *mem = NULL;
int ret;
if (mem_cgroup_disabled())
return 0;
ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
if (!ret)
mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
return ret;
}
static DEFINE_MUTEX(set_limit_mutex);
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
unsigned long long val)
{
int retry_count;
u64 memswlimit, memlimit;
int ret = 0;
int children = mem_cgroup_count_children(memcg);
u64 curusage, oldusage;
int enlarge;
/*
* For keeping hierarchical_reclaim simple, how long we should retry
* is depends on callers. We set our retry-count to be function
* of # of children which we should visit in this loop.
*/
retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
enlarge = 0;
while (retry_count) {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
/*
* Rather than hide all in some function, I do this in
* open coded manner. You see what this really does.
* We have to guarantee mem->res.limit < mem->memsw.limit.
*/
mutex_lock(&set_limit_mutex);
memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
if (memswlimit < val) {
ret = -EINVAL;
mutex_unlock(&set_limit_mutex);
break;
}
memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
if (memlimit < val)
enlarge = 1;
ret = res_counter_set_limit(&memcg->res, val);
if (!ret) {
if (memswlimit == val)
memcg->memsw_is_minimum = true;
else
memcg->memsw_is_minimum = false;
}
mutex_unlock(&set_limit_mutex);
if (!ret)
break;
mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
MEM_CGROUP_RECLAIM_SHRINK);
curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
/* Usage is reduced ? */
if (curusage >= oldusage)
retry_count--;
else
oldusage = curusage;
}
if (!ret && enlarge)
memcg_oom_recover(memcg);
return ret;
}
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
unsigned long long val)
{
int retry_count;
u64 memlimit, memswlimit, oldusage, curusage;
int children = mem_cgroup_count_children(memcg);
int ret = -EBUSY;
int enlarge = 0;
/* see mem_cgroup_resize_res_limit */
retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
while (retry_count) {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
/*
* Rather than hide all in some function, I do this in
* open coded manner. You see what this really does.
* We have to guarantee mem->res.limit < mem->memsw.limit.
*/
mutex_lock(&set_limit_mutex);
memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
if (memlimit > val) {
ret = -EINVAL;
mutex_unlock(&set_limit_mutex);
break;
}
memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
if (memswlimit < val)
enlarge = 1;
ret = res_counter_set_limit(&memcg->memsw, val);
if (!ret) {
if (memlimit == val)
memcg->memsw_is_minimum = true;
else
memcg->memsw_is_minimum = false;
}
mutex_unlock(&set_limit_mutex);
if (!ret)
break;
mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
MEM_CGROUP_RECLAIM_NOSWAP |
MEM_CGROUP_RECLAIM_SHRINK);
curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
/* Usage is reduced ? */
if (curusage >= oldusage)
retry_count--;
else
oldusage = curusage;
}
if (!ret && enlarge)
memcg_oom_recover(memcg);
return ret;
}
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
gfp_t gfp_mask)
{
unsigned long nr_reclaimed = 0;
struct mem_cgroup_per_zone *mz, *next_mz = NULL;
unsigned long reclaimed;
int loop = 0;
struct mem_cgroup_tree_per_zone *mctz;
unsigned long long excess;
if (order > 0)
return 0;
mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
/*
* This loop can run a while, specially if mem_cgroup's continuously
* keep exceeding their soft limit and putting the system under
* pressure
*/
do {
if (next_mz)
mz = next_mz;
else
mz = mem_cgroup_largest_soft_limit_node(mctz);
if (!mz)
break;
reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
gfp_mask,
MEM_CGROUP_RECLAIM_SOFT);
nr_reclaimed += reclaimed;
spin_lock(&mctz->lock);
/*
* If we failed to reclaim anything from this memory cgroup
* it is time to move on to the next cgroup
*/
next_mz = NULL;
if (!reclaimed) {
do {
/*
* Loop until we find yet another one.
*
* By the time we get the soft_limit lock
* again, someone might have aded the
* group back on the RB tree. Iterate to
* make sure we get a different mem.
* mem_cgroup_largest_soft_limit_node returns
* NULL if no other cgroup is present on
* the tree
*/
next_mz =
__mem_cgroup_largest_soft_limit_node(mctz);
if (next_mz == mz) {
css_put(&next_mz->mem->css);
next_mz = NULL;
} else /* next_mz == NULL or other memcg */
break;
} while (1);
}
__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
excess = res_counter_soft_limit_excess(&mz->mem->res);
/*
* One school of thought says that we should not add
* back the node to the tree if reclaim returns 0.
* But our reclaim could return 0, simply because due
* to priority we are exposing a smaller subset of
* memory to reclaim from. Consider this as a longer
* term TODO.
*/
/* If excess == 0, no tree ops */
__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
spin_unlock(&mctz->lock);
css_put(&mz->mem->css);
loop++;
/*
* Could not reclaim anything and there are no more
* mem cgroups to try or we seem to be looping without
* reclaiming anything.
*/
if (!nr_reclaimed &&
(next_mz == NULL ||
loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
break;
} while (!nr_reclaimed);
if (next_mz)
css_put(&next_mz->mem->css);
return nr_reclaimed;
}
/*
* This routine traverse page_cgroup in given list and drop them all.
* *And* this routine doesn't reclaim page itself, just removes page_cgroup.
*/
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
int node, int zid, enum lru_list lru)
{
struct zone *zone;
struct mem_cgroup_per_zone *mz;
struct page_cgroup *pc, *busy;
unsigned long flags, loop;
struct list_head *list;
int ret = 0;
zone = &NODE_DATA(node)->node_zones[zid];
mz = mem_cgroup_zoneinfo(mem, node, zid);
list = &mz->lists[lru];
loop = MEM_CGROUP_ZSTAT(mz, lru);
/* give some margin against EBUSY etc...*/
loop += 256;
busy = NULL;
while (loop--) {
ret = 0;
spin_lock_irqsave(&zone->lru_lock, flags);
if (list_empty(list)) {
spin_unlock_irqrestore(&zone->lru_lock, flags);
break;
}
pc = list_entry(list->prev, struct page_cgroup, lru);
if (busy == pc) {
list_move(&pc->lru, list);
busy = NULL;
spin_unlock_irqrestore(&zone->lru_lock, flags);
continue;
}
spin_unlock_irqrestore(&zone->lru_lock, flags);
ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
if (ret == -ENOMEM)
break;
if (ret == -EBUSY || ret == -EINVAL) {
/* found lock contention or "pc" is obsolete. */
busy = pc;
cond_resched();
} else
busy = NULL;
}
if (!ret && !list_empty(list))
return -EBUSY;
return ret;
}
/*
* make mem_cgroup's charge to be 0 if there is no task.
* This enables deleting this mem_cgroup.
*/
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
{
int ret;
int node, zid, shrink;
int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
struct cgroup *cgrp = mem->css.cgroup;
css_get(&mem->css);
shrink = 0;
/* should free all ? */
if (free_all)
goto try_to_free;
move_account:
do {
ret = -EBUSY;
if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
goto out;
ret = -EINTR;
if (signal_pending(current))
goto out;
/* This is for making all *used* pages to be on LRU. */
lru_add_drain_all();
drain_all_stock_sync();
ret = 0;
mem_cgroup_start_move(mem);
for_each_node_state(node, N_HIGH_MEMORY) {
for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
enum lru_list l;
for_each_lru(l) {
ret = mem_cgroup_force_empty_list(mem,
node, zid, l);
if (ret)
break;
}
}
if (ret)
break;
}
mem_cgroup_end_move(mem);
memcg_oom_recover(mem);
/* it seems parent cgroup doesn't have enough mem */
if (ret == -ENOMEM)
goto try_to_free;
cond_resched();
/* "ret" should also be checked to ensure all lists are empty. */
} while (mem->res.usage > 0 || ret);
out:
css_put(&mem->css);
return ret;
try_to_free:
/* returns EBUSY if there is a task or if we come here twice. */
if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
ret = -EBUSY;
goto out;
}
/* we call try-to-free pages for make this cgroup empty */
lru_add_drain_all();
/* try to free all pages in this cgroup */
shrink = 1;
while (nr_retries && mem->res.usage > 0) {
int progress;
if (signal_pending(current)) {
ret = -EINTR;
goto out;
}
progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
false, get_swappiness(mem));
if (!progress) {
nr_retries--;
/* maybe some writeback is necessary */
congestion_wait(BLK_RW_ASYNC, HZ/10);
}
}
lru_add_drain();
/* try move_account...there may be some *locked* pages. */
goto move_account;
}
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
return mem_cgroup_from_cont(cont)->use_hierarchy;
}
static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
u64 val)
{
int retval = 0;
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
struct cgroup *parent = cont->parent;
struct mem_cgroup *parent_mem = NULL;
if (parent)
parent_mem = mem_cgroup_from_cont(parent);
cgroup_lock();
/*
* If parent's use_hierarchy is set, we can't make any modifications
* in the child subtrees. If it is unset, then the change can
* occur, provided the current cgroup has no children.
*
* For the root cgroup, parent_mem is NULL, we allow value to be
* set if there are no children.
*/
if ((!parent_mem || !parent_mem->use_hierarchy) &&
(val == 1 || val == 0)) {
if (list_empty(&cont->children))
mem->use_hierarchy = val;
else
retval = -EBUSY;
} else
retval = -EINVAL;
cgroup_unlock();
return retval;
}
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
enum mem_cgroup_stat_index idx)
{
struct mem_cgroup *iter;
s64 val = 0;
/* each per cpu's value can be minus.Then, use s64 */
for_each_mem_cgroup_tree(iter, mem)
val += mem_cgroup_read_stat(iter, idx);
if (val < 0) /* race ? */
val = 0;
return val;
}
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
u64 val;
if (!mem_cgroup_is_root(mem)) {
if (!swap)
return res_counter_read_u64(&mem->res, RES_USAGE);
else
return res_counter_read_u64(&mem->memsw, RES_USAGE);
}
val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
if (swap)
val += mem_cgroup_get_recursive_idx_stat(mem,
MEM_CGROUP_STAT_SWAPOUT);
return val << PAGE_SHIFT;
}
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
u64 val;
int type, name;
type = MEMFILE_TYPE(cft->private);
name = MEMFILE_ATTR(cft->private);
switch (type) {
case _MEM:
if (name == RES_USAGE)
val = mem_cgroup_usage(mem, false);
else
val = res_counter_read_u64(&mem->res, name);
break;
case _MEMSWAP:
if (name == RES_USAGE)
val = mem_cgroup_usage(mem, true);
else
val = res_counter_read_u64(&mem->memsw, name);
break;
default:
BUG();
break;
}
return val;
}
/*
* The user of this function is...
* RES_LIMIT.
*/
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
const char *buffer)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
int type, name;
unsigned long long val;
int ret;
type = MEMFILE_TYPE(cft->private);
name = MEMFILE_ATTR(cft->private);
switch (name) {
case RES_LIMIT:
if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
ret = -EINVAL;
break;
}
/* This function does all necessary parse...reuse it */
ret = res_counter_memparse_write_strategy(buffer, &val);
if (ret)
break;
if (type == _MEM)
ret = mem_cgroup_resize_limit(memcg, val);
else
ret = mem_cgroup_resize_memsw_limit(memcg, val);
break;
case RES_SOFT_LIMIT:
ret = res_counter_memparse_write_strategy(buffer, &val);
if (ret)
break;
/*
* For memsw, soft limits are hard to implement in terms
* of semantics, for now, we support soft limits for
* control without swap
*/
if (type == _MEM)
ret = res_counter_set_soft_limit(&memcg->res, val);
else
ret = -EINVAL;
break;
default:
ret = -EINVAL; /* should be BUG() ? */
break;
}
return ret;
}
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
struct cgroup *cgroup;
unsigned long long min_limit, min_memsw_limit, tmp;
min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
cgroup = memcg->css.cgroup;
if (!memcg->use_hierarchy)
goto out;
while (cgroup->parent) {
cgroup = cgroup->parent;
memcg = mem_cgroup_from_cont(cgroup);
if (!memcg->use_hierarchy)
break;
tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
min_limit = min(min_limit, tmp);
tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
min_memsw_limit = min(min_memsw_limit, tmp);
}
out:
*mem_limit = min_limit;
*memsw_limit = min_memsw_limit;
return;
}
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
{
struct mem_cgroup *mem;
int type, name;
mem = mem_cgroup_from_cont(cont);
type = MEMFILE_TYPE(event);
name = MEMFILE_ATTR(event);
switch (name) {
case RES_MAX_USAGE:
if (type == _MEM)
res_counter_reset_max(&mem->res);
else
res_counter_reset_max(&mem->memsw);
break;
case RES_FAILCNT:
if (type == _MEM)
res_counter_reset_failcnt(&mem->res);
else
res_counter_reset_failcnt(&mem->memsw);
break;
}
return 0;
}
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
struct cftype *cft)
{
return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}
#ifdef CONFIG_MMU
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
if (val >= (1 << NR_MOVE_TYPE))
return -EINVAL;
/*
* We check this value several times in both in can_attach() and
* attach(), so we need cgroup lock to prevent this value from being
* inconsistent.
*/
cgroup_lock();
mem->move_charge_at_immigrate = val;
cgroup_unlock();
return 0;
}
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
return -ENOSYS;
}
#endif
/* For read statistics */
enum {
MCS_CACHE,
MCS_RSS,
MCS_FILE_MAPPED,
MCS_PGPGIN,
MCS_PGPGOUT,
MCS_SWAP,
MCS_INACTIVE_ANON,
MCS_ACTIVE_ANON,
MCS_INACTIVE_FILE,
MCS_ACTIVE_FILE,
MCS_UNEVICTABLE,
NR_MCS_STAT,
};
struct mcs_total_stat {
s64 stat[NR_MCS_STAT];
};
struct {
char *local_name;
char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
{"cache", "total_cache"},
{"rss", "total_rss"},
{"mapped_file", "total_mapped_file"},
{"pgpgin", "total_pgpgin"},
{"pgpgout", "total_pgpgout"},
{"swap", "total_swap"},
{"inactive_anon", "total_inactive_anon"},
{"active_anon", "total_active_anon"},
{"inactive_file", "total_inactive_file"},
{"active_file", "total_active_file"},
{"unevictable", "total_unevictable"}
};
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
s64 val;
/* per cpu stat */
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
s->stat[MCS_CACHE] += val * PAGE_SIZE;
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
s->stat[MCS_RSS] += val * PAGE_SIZE;
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
s->stat[MCS_PGPGIN] += val;
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
s->stat[MCS_PGPGOUT] += val;
if (do_swap_account) {
val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
s->stat[MCS_SWAP] += val * PAGE_SIZE;
}
/* per zone stat */
val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}
static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
mem_cgroup_get_local_stat(iter, s);
}
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
struct cgroup_map_cb *cb)
{
struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
struct mcs_total_stat mystat;
int i;
memset(&mystat, 0, sizeof(mystat));
mem_cgroup_get_local_stat(mem_cont, &mystat);
for (i = 0; i < NR_MCS_STAT; i++) {
if (i == MCS_SWAP && !do_swap_account)
continue;
cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
}
/* Hierarchical information */
{
unsigned long long limit, memsw_limit;
memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
cb->fill(cb, "hierarchical_memory_limit", limit);
if (do_swap_account)
cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
}
memset(&mystat, 0, sizeof(mystat));
mem_cgroup_get_total_stat(mem_cont, &mystat);
for (i = 0; i < NR_MCS_STAT; i++) {
if (i == MCS_SWAP && !do_swap_account)
continue;
cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
}
#ifdef CONFIG_DEBUG_VM
cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
{
int nid, zid;
struct mem_cgroup_per_zone *mz;
unsigned long recent_rotated[2] = {0, 0};
unsigned long recent_scanned[2] = {0, 0};
for_each_online_node(nid)
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
recent_rotated[0] +=
mz->reclaim_stat.recent_rotated[0];
recent_rotated[1] +=
mz->reclaim_stat.recent_rotated[1];
recent_scanned[0] +=
mz->reclaim_stat.recent_scanned[0];
recent_scanned[1] +=
mz->reclaim_stat.recent_scanned[1];
}
cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
}
#endif
return 0;
}
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
return get_swappiness(memcg);
}
static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
u64 val)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *parent;
if (val > 100)
return -EINVAL;
if (cgrp->parent == NULL)
return -EINVAL;
parent = mem_cgroup_from_cont(cgrp->parent);
cgroup_lock();
/* If under hierarchy, only empty-root can set this value */
if ((parent->use_hierarchy) ||
(memcg->use_hierarchy && !list_empty(&cgrp->children))) {
cgroup_unlock();
return -EINVAL;
}
spin_lock(&memcg->reclaim_param_lock);
memcg->swappiness = val;
spin_unlock(&memcg->reclaim_param_lock);
cgroup_unlock();
return 0;
}
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
struct mem_cgroup_threshold_ary *t;
u64 usage;
int i;
rcu_read_lock();
if (!swap)
t = rcu_dereference(memcg->thresholds.primary);
else
t = rcu_dereference(memcg->memsw_thresholds.primary);
if (!t)
goto unlock;
usage = mem_cgroup_usage(memcg, swap);
/*
* current_threshold points to threshold just below usage.
* If it's not true, a threshold was crossed after last
* call of __mem_cgroup_threshold().
*/
i = t->current_threshold;
/*
* Iterate backward over array of thresholds starting from
* current_threshold and check if a threshold is crossed.
* If none of thresholds below usage is crossed, we read
* only one element of the array here.
*/
for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
eventfd_signal(t->entries[i].eventfd, 1);
/* i = current_threshold + 1 */
i++;
/*
* Iterate forward over array of thresholds starting from
* current_threshold+1 and check if a threshold is crossed.
* If none of thresholds above usage is crossed, we read
* only one element of the array here.
*/
for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
eventfd_signal(t->entries[i].eventfd, 1);
/* Update current_threshold */
t->current_threshold = i - 1;
unlock:
rcu_read_unlock();
}
static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
while (memcg) {
__mem_cgroup_threshold(memcg, false);
if (do_swap_account)
__mem_cgroup_threshold(memcg, true);
memcg = parent_mem_cgroup(memcg);
}
}
static int compare_thresholds(const void *a, const void *b)
{
const struct mem_cgroup_threshold *_a = a;
const struct mem_cgroup_threshold *_b = b;
return _a->threshold - _b->threshold;
}
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
{
struct mem_cgroup_eventfd_list *ev;
list_for_each_entry(ev, &mem->oom_notify, list)
eventfd_signal(ev->eventfd, 1);
return 0;
}
static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
struct mem_cgroup *iter;
for_each_mem_cgroup_tree(iter, mem)
mem_cgroup_oom_notify_cb(iter);
}
static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
int type = MEMFILE_TYPE(cft->private);
u64 threshold, usage;
int i, size, ret;
ret = res_counter_memparse_write_strategy(args, &threshold);
if (ret)
return ret;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM)
thresholds = &memcg->thresholds;
else if (type == _MEMSWAP)
thresholds = &memcg->memsw_thresholds;
else
BUG();
usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
/* Check if a threshold crossed before adding a new one */
if (thresholds->primary)
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
size = thresholds->primary ? thresholds->primary->size + 1 : 1;
/* Allocate memory for new array of thresholds */
new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
GFP_KERNEL);
if (!new) {
ret = -ENOMEM;
goto unlock;
}
new->size = size;
/* Copy thresholds (if any) to new array */
if (thresholds->primary) {
memcpy(new->entries, thresholds->primary->entries, (size - 1) *
sizeof(struct mem_cgroup_threshold));
}
/* Add new threshold */
new->entries[size - 1].eventfd = eventfd;
new->entries[size - 1].threshold = threshold;
/* Sort thresholds. Registering of new threshold isn't time-critical */
sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
compare_thresholds, NULL);
/* Find current threshold */
new->current_threshold = -1;
for (i = 0; i < size; i++) {
if (new->entries[i].threshold < usage) {
/*
* new->current_threshold will not be used until
* rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
}
}
/* Free old spare buffer and save old primary buffer as spare */
kfree(thresholds->spare);
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
unlock:
mutex_unlock(&memcg->thresholds_lock);
return ret;
}
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_thresholds *thresholds;
struct mem_cgroup_threshold_ary *new;
int type = MEMFILE_TYPE(cft->private);
u64 usage;
int i, j, size;
mutex_lock(&memcg->thresholds_lock);
if (type == _MEM)
thresholds = &memcg->thresholds;
else if (type == _MEMSWAP)
thresholds = &memcg->memsw_thresholds;
else
BUG();
/*
* Something went wrong if we trying to unregister a threshold
* if we don't have thresholds
*/
BUG_ON(!thresholds);
usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
/* Check if a threshold crossed before removing */
__mem_cgroup_threshold(memcg, type == _MEMSWAP);
/* Calculate new number of threshold */
size = 0;
for (i = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd != eventfd)
size++;
}
new = thresholds->spare;
/* Set thresholds array to NULL if we don't have thresholds */
if (!size) {
kfree(new);
new = NULL;
goto swap_buffers;
}
new->size = size;
/* Copy thresholds and find current threshold */
new->current_threshold = -1;
for (i = 0, j = 0; i < thresholds->primary->size; i++) {
if (thresholds->primary->entries[i].eventfd == eventfd)
continue;
new->entries[j] = thresholds->primary->entries[i];
if (new->entries[j].threshold < usage) {
/*
* new->current_threshold will not be used
* until rcu_assign_pointer(), so it's safe to increment
* it here.
*/
++new->current_threshold;
}
j++;
}
swap_buffers:
/* Swap primary and spare array */
thresholds->spare = thresholds->primary;
rcu_assign_pointer(thresholds->primary, new);
/* To be sure that nobody uses thresholds */
synchronize_rcu();
mutex_unlock(&memcg->thresholds_lock);
}
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_eventfd_list *event;
int type = MEMFILE_TYPE(cft->private);
BUG_ON(type != _OOM_TYPE);
event = kmalloc(sizeof(*event), GFP_KERNEL);
if (!event)
return -ENOMEM;
mutex_lock(&memcg_oom_mutex);
event->eventfd = eventfd;
list_add(&event->list, &memcg->oom_notify);
/* already in OOM ? */
if (atomic_read(&memcg->oom_lock))
eventfd_signal(eventfd, 1);
mutex_unlock(&memcg_oom_mutex);
return 0;
}
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
struct cftype *cft, struct eventfd_ctx *eventfd)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
struct mem_cgroup_eventfd_list *ev, *tmp;
int type = MEMFILE_TYPE(cft->private);
BUG_ON(type != _OOM_TYPE);
mutex_lock(&memcg_oom_mutex);
list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
if (ev->eventfd == eventfd) {
list_del(&ev->list);
kfree(ev);
}
}
mutex_unlock(&memcg_oom_mutex);
}
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
struct cftype *cft, struct cgroup_map_cb *cb)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
if (atomic_read(&mem->oom_lock))
cb->fill(cb, "under_oom", 1);
else
cb->fill(cb, "under_oom", 0);
return 0;
}
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
struct cftype *cft, u64 val)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
struct mem_cgroup *parent;
/* cannot set to root cgroup and only 0 and 1 are allowed */
if (!cgrp->parent || !((val == 0) || (val == 1)))
return -EINVAL;
parent = mem_cgroup_from_cont(cgrp->parent);
cgroup_lock();
/* oom-kill-disable is a flag for subhierarchy. */
if ((parent->use_hierarchy) ||
(mem->use_hierarchy && !list_empty(&cgrp->children))) {
cgroup_unlock();
return -EINVAL;
}
mem->oom_kill_disable = val;
if (!val)
memcg_oom_recover(mem);
cgroup_unlock();
return 0;
}
static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
.read_u64 = mem_cgroup_read,
.register_event = mem_cgroup_usage_register_event,
.unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
.name = "limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
.write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
.name = "soft_limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
.write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
.name = "failcnt",
.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
.name = "stat",
.read_map = mem_control_stat_show,
},
{
.name = "force_empty",
.trigger = mem_cgroup_force_empty_write,
},
{
.name = "use_hierarchy",
.write_u64 = mem_cgroup_hierarchy_write,
.read_u64 = mem_cgroup_hierarchy_read,
},
{
.name = "swappiness",
.read_u64 = mem_cgroup_swappiness_read,
.write_u64 = mem_cgroup_swappiness_write,
},
{
.name = "move_charge_at_immigrate",
.read_u64 = mem_cgroup_move_charge_read,
.write_u64 = mem_cgroup_move_charge_write,
},
{
.name = "oom_control",
.read_map = mem_cgroup_oom_control_read,
.write_u64 = mem_cgroup_oom_control_write,
.register_event = mem_cgroup_oom_register_event,
.unregister_event = mem_cgroup_oom_unregister_event,
.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
},
};
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
{
.name = "memsw.usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
.read_u64 = mem_cgroup_read,
.register_event = mem_cgroup_usage_register_event,
.unregister_event = mem_cgroup_usage_unregister_event,
},
{
.name = "memsw.max_usage_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
.name = "memsw.limit_in_bytes",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
.write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
.name = "memsw.failcnt",
.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
};
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
if (!do_swap_account)
return 0;
return cgroup_add_files(cont, ss, memsw_cgroup_files,
ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
return 0;
}
#endif
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
struct mem_cgroup_per_node *pn;
struct mem_cgroup_per_zone *mz;
enum lru_list l;
int zone, tmp = node;
/*
* This routine is called against possible nodes.
* But it's BUG to call kmalloc() against offline node.
*
* TODO: this routine can waste much memory for nodes which will
* never be onlined. It's better to use memory hotplug callback
* function.
*/
if (!node_state(node, N_NORMAL_MEMORY))
tmp = -1;
pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
if (!pn)
return 1;
mem->info.nodeinfo[node] = pn;
memset(pn, 0, sizeof(*pn));
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = &pn->zoneinfo[zone];
for_each_lru(l)
INIT_LIST_HEAD(&mz->lists[l]);
mz->usage_in_excess = 0;
mz->on_tree = false;
mz->mem = mem;
}
return 0;
}
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
kfree(mem->info.nodeinfo[node]);
}
static struct mem_cgroup *mem_cgroup_alloc(void)
{
struct mem_cgroup *mem;
int size = sizeof(struct mem_cgroup);
/* Can be very big if MAX_NUMNODES is very big */
if (size < PAGE_SIZE)
mem = kmalloc(size, GFP_KERNEL);
else
mem = vmalloc(size);
if (!mem)
return NULL;
memset(mem, 0, size);
mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
if (!mem->stat) {
if (size < PAGE_SIZE)
kfree(mem);
else
vfree(mem);
mem = NULL;
}
spin_lock_init(&mem->pcp_counter_lock);
return mem;
}
/*
* At destroying mem_cgroup, references from swap_cgroup can remain.
* (scanning all at force_empty is too costly...)
*
* Instead of clearing all references at force_empty, we remember
* the number of reference from swap_cgroup and free mem_cgroup when
* it goes down to 0.
*
* Removal of cgroup itself succeeds regardless of refs from swap.
*/
static void __mem_cgroup_free(struct mem_cgroup *mem)
{
int node;
mem_cgroup_remove_from_trees(mem);
free_css_id(&mem_cgroup_subsys, &mem->css);
for_each_node_state(node, N_POSSIBLE)
free_mem_cgroup_per_zone_info(mem, node);
free_percpu(mem->stat);
if (sizeof(struct mem_cgroup) < PAGE_SIZE)
kfree(mem);
else
vfree(mem);
}
static void mem_cgroup_get(struct mem_cgroup *mem)
{
atomic_inc(&mem->refcnt);
}
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
{
if (atomic_sub_and_test(count, &mem->refcnt)) {
struct mem_cgroup *parent = parent_mem_cgroup(mem);
__mem_cgroup_free(mem);
if (parent)
mem_cgroup_put(parent);
}
}
static void mem_cgroup_put(struct mem_cgroup *mem)
{
__mem_cgroup_put(mem, 1);
}
/*
* Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
*/
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
if (!mem->res.parent)
return NULL;
return mem_cgroup_from_res_counter(mem->res.parent, res);
}
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
if (!mem_cgroup_disabled() && really_do_swap_account)
do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif
static int mem_cgroup_soft_limit_tree_init(void)
{
struct mem_cgroup_tree_per_node *rtpn;
struct mem_cgroup_tree_per_zone *rtpz;
int tmp, node, zone;
for_each_node_state(node, N_POSSIBLE) {
tmp = node;
if (!node_state(node, N_NORMAL_MEMORY))
tmp = -1;
rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
if (!rtpn)
return 1;
soft_limit_tree.rb_tree_per_node[node] = rtpn;
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
rtpz = &rtpn->rb_tree_per_zone[zone];
rtpz->rb_root = RB_ROOT;
spin_lock_init(&rtpz->lock);
}
}
return 0;
}
static struct cgroup_subsys_state * __ref
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
struct mem_cgroup *mem, *parent;
long error = -ENOMEM;
int node;
mem = mem_cgroup_alloc();
if (!mem)
return ERR_PTR(error);
for_each_node_state(node, N_POSSIBLE)
if (alloc_mem_cgroup_per_zone_info(mem, node))
goto free_out;
/* root ? */
if (cont->parent == NULL) {
int cpu;
enable_swap_cgroup();
parent = NULL;
root_mem_cgroup = mem;
if (mem_cgroup_soft_limit_tree_init())
goto free_out;
for_each_possible_cpu(cpu) {
struct memcg_stock_pcp *stock =
&per_cpu(memcg_stock, cpu);
INIT_WORK(&stock->work, drain_local_stock);
}
hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
} else {
parent = mem_cgroup_from_cont(cont->parent);
mem->use_hierarchy = parent->use_hierarchy;
mem->oom_kill_disable = parent->oom_kill_disable;
}
if (parent && parent->use_hierarchy) {
res_counter_init(&mem->res, &parent->res);
res_counter_init(&mem->memsw, &parent->memsw);
/*
* We increment refcnt of the parent to ensure that we can
* safely access it on res_counter_charge/uncharge.
* This refcnt will be decremented when freeing this
* mem_cgroup(see mem_cgroup_put).
*/
mem_cgroup_get(parent);
} else {
res_counter_init(&mem->res, NULL);
res_counter_init(&mem->memsw, NULL);
}
mem->last_scanned_child = 0;
spin_lock_init(&mem->reclaim_param_lock);
INIT_LIST_HEAD(&mem->oom_notify);
if (parent)
mem->swappiness = get_swappiness(parent);
atomic_set(&mem->refcnt, 1);
mem->move_charge_at_immigrate = 0;
mutex_init(&mem->thresholds_lock);
return &mem->css;
free_out:
__mem_cgroup_free(mem);
root_mem_cgroup = NULL;
return ERR_PTR(error);
}
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
return mem_cgroup_force_empty(mem, false);
}
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
mem_cgroup_put(mem);
}
static int mem_cgroup_populate(struct cgroup_subsys *ss,
struct cgroup *cont)
{
int ret;
ret = cgroup_add_files(cont, ss, mem_cgroup_files,
ARRAY_SIZE(mem_cgroup_files));
if (!ret)
ret = register_memsw_files(cont, ss);
return ret;
}
#ifdef CONFIG_MMU
/* Handlers for move charge at task migration. */
#define PRECHARGE_COUNT_AT_ONCE 256
static int mem_cgroup_do_precharge(unsigned long count)
{
int ret = 0;
int batch_count = PRECHARGE_COUNT_AT_ONCE;
struct mem_cgroup *mem = mc.to;
if (mem_cgroup_is_root(mem)) {
mc.precharge += count;
/* we don't need css_get for root */
return ret;
}
/* try to charge at once */
if (count > 1) {
struct res_counter *dummy;
/*
* "mem" cannot be under rmdir() because we've already checked
* by cgroup_lock_live_cgroup() that it is not removed and we
* are still under the same cgroup_mutex. So we can postpone
* css_get().
*/
if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
goto one_by_one;
if (do_swap_account && res_counter_charge(&mem->memsw,
PAGE_SIZE * count, &dummy)) {
res_counter_uncharge(&mem->res, PAGE_SIZE * count);
goto one_by_one;
}
mc.precharge += count;
return ret;
}
one_by_one:
/* fall back to one by one charge */
while (count--) {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
if (!batch_count--) {
batch_count = PRECHARGE_COUNT_AT_ONCE;
cond_resched();
}
ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
if (ret || !mem)
/* mem_cgroup_clear_mc() will do uncharge later */
return -ENOMEM;
mc.precharge++;
}
return ret;
}
/**
* is_target_pte_for_mc - check a pte whether it is valid for move charge
* @vma: the vma the pte to be checked belongs
* @addr: the address corresponding to the pte to be checked
* @ptent: the pte to be checked
* @target: the pointer the target page or swap ent will be stored(can be NULL)
*
* Returns
* 0(MC_TARGET_NONE): if the pte is not a target for move charge.
* 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
* move charge. if @target is not NULL, the page is stored in target->page
* with extra refcnt got(Callers should handle it).
* 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
* target for charge migration. if @target is not NULL, the entry is stored
* in target->ent.
*
* Called with pte lock held.
*/
union mc_target {
struct page *page;
swp_entry_t ent;
};
enum mc_target_type {
MC_TARGET_NONE, /* not used */
MC_TARGET_PAGE,
MC_TARGET_SWAP,
};
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent)
{
struct page *page = vm_normal_page(vma, addr, ptent);
if (!page || !page_mapped(page))
return NULL;
if (PageAnon(page)) {
/* we don't move shared anon */
if (!move_anon() || page_mapcount(page) > 2)
return NULL;
} else if (!move_file())
/* we ignore mapcount for file pages */
return NULL;
if (!get_page_unless_zero(page))
return NULL;
return page;
}
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
int usage_count;
struct page *page = NULL;
swp_entry_t ent = pte_to_swp_entry(ptent);
if (!move_anon() || non_swap_entry(ent))
return NULL;
usage_count = mem_cgroup_count_swap_user(ent, &page);
if (usage_count > 1) { /* we don't move shared anon */
if (page)
put_page(page);
return NULL;
}
if (do_swap_account)
entry->val = ent.val;
return page;
}
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
struct page *page = NULL;
struct inode *inode;
struct address_space *mapping;
pgoff_t pgoff;
if (!vma->vm_file) /* anonymous vma */
return NULL;
if (!move_file())
return NULL;
inode = vma->vm_file->f_path.dentry->d_inode;
mapping = vma->vm_file->f_mapping;
if (pte_none(ptent))
pgoff = linear_page_index(vma, addr);
else /* pte_file(ptent) is true */
pgoff = pte_to_pgoff(ptent);
/* page is moved even if it's not RSS of this task(page-faulted). */
if (!mapping_cap_swap_backed(mapping)) { /* normal file */
page = find_get_page(mapping, pgoff);
} else { /* shmem/tmpfs file. we should take account of swap too. */
swp_entry_t ent;
mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
if (do_swap_account)
entry->val = ent.val;
}
return page;
}
static int is_target_pte_for_mc(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, union mc_target *target)
{
struct page *page = NULL;
struct page_cgroup *pc;
int ret = 0;
swp_entry_t ent = { .val = 0 };
if (pte_present(ptent))
page = mc_handle_present_pte(vma, addr, ptent);
else if (is_swap_pte(ptent))
page = mc_handle_swap_pte(vma, addr, ptent, &ent);
else if (pte_none(ptent) || pte_file(ptent))
page = mc_handle_file_pte(vma, addr, ptent, &ent);
if (!page && !ent.val)
return 0;
if (page) {
pc = lookup_page_cgroup(page);
/*
* Do only loose check w/o page_cgroup lock.
* mem_cgroup_move_account() checks the pc is valid or not under
* the lock.
*/
if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
ret = MC_TARGET_PAGE;
if (target)
target->page = page;
}
if (!ret || !target)
put_page(page);
}
/* There is a swap entry and a page doesn't exist or isn't charged */
if (ent.val && !ret &&
css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
ret = MC_TARGET_SWAP;
if (target)
target->ent = ent;
}
return ret;
}
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->private;
pte_t *pte;
spinlock_t *ptl;
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
if (is_target_pte_for_mc(vma, addr, *pte, NULL))
mc.precharge++; /* increment precharge temporarily */
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
unsigned long precharge;
struct vm_area_struct *vma;
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
struct mm_walk mem_cgroup_count_precharge_walk = {
.pmd_entry = mem_cgroup_count_precharge_pte_range,
.mm = mm,
.private = vma,
};
if (is_vm_hugetlb_page(vma))
continue;
walk_page_range(vma->vm_start, vma->vm_end,
&mem_cgroup_count_precharge_walk);
}
up_read(&mm->mmap_sem);
precharge = mc.precharge;
mc.precharge = 0;
return precharge;
}
static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
}
static void mem_cgroup_clear_mc(void)
{
struct mem_cgroup *from = mc.from;
struct mem_cgroup *to = mc.to;
/* we must uncharge all the leftover precharges from mc.to */
if (mc.precharge) {
__mem_cgroup_cancel_charge(mc.to, mc.precharge);
mc.precharge = 0;
}
/*
* we didn't uncharge from mc.from at mem_cgroup_move_account(), so
* we must uncharge here.
*/
if (mc.moved_charge) {
__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
mc.moved_charge = 0;
}
/* we must fixup refcnts and charges */
if (mc.moved_swap) {
/* uncharge swap account from the old cgroup */
if (!mem_cgroup_is_root(mc.from))
res_counter_uncharge(&mc.from->memsw,
PAGE_SIZE * mc.moved_swap);
__mem_cgroup_put(mc.from, mc.moved_swap);
if (!mem_cgroup_is_root(mc.to)) {
/*
* we charged both to->res and to->memsw, so we should
* uncharge to->res.
*/
res_counter_uncharge(&mc.to->res,
PAGE_SIZE * mc.moved_swap);
}
/* we've already done mem_cgroup_get(mc.to) */
mc.moved_swap = 0;
}
spin_lock(&mc.lock);
mc.from = NULL;
mc.to = NULL;
mc.moving_task = NULL;
spin_unlock(&mc.lock);
mem_cgroup_end_move(from);
memcg_oom_recover(from);
memcg_oom_recover(to);
wake_up_all(&mc.waitq);
}
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
struct task_struct *p,
bool threadgroup)
{
int ret = 0;
struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
if (mem->move_charge_at_immigrate) {
struct mm_struct *mm;
struct mem_cgroup *from = mem_cgroup_from_task(p);
VM_BUG_ON(from == mem);
mm = get_task_mm(p);
if (!mm)
return 0;
/* We move charges only when we move a owner of the mm */
if (mm->owner == p) {
VM_BUG_ON(mc.from);
VM_BUG_ON(mc.to);
VM_BUG_ON(mc.precharge);
VM_BUG_ON(mc.moved_charge);
VM_BUG_ON(mc.moved_swap);
VM_BUG_ON(mc.moving_task);
mem_cgroup_start_move(from);
spin_lock(&mc.lock);
mc.from = from;
mc.to = mem;
mc.precharge = 0;
mc.moved_charge = 0;
mc.moved_swap = 0;
mc.moving_task = current;
spin_unlock(&mc.lock);
ret = mem_cgroup_precharge_mc(mm);
if (ret)
mem_cgroup_clear_mc();
}
mmput(mm);
}
return ret;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
struct task_struct *p,
bool threadgroup)
{
mem_cgroup_clear_mc();
}
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
int ret = 0;
struct vm_area_struct *vma = walk->private;
pte_t *pte;
spinlock_t *ptl;
retry:
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; addr += PAGE_SIZE) {
pte_t ptent = *(pte++);
union mc_target target;
int type;
struct page *page;
struct page_cgroup *pc;
swp_entry_t ent;
if (!mc.precharge)
break;
type = is_target_pte_for_mc(vma, addr, ptent, &target);
switch (type) {
case MC_TARGET_PAGE:
page = target.page;
if (isolate_lru_page(page))
goto put;
pc = lookup_page_cgroup(page);
if (!mem_cgroup_move_account(pc,
mc.from, mc.to, false)) {
mc.precharge--;
/* we uncharge from mc.from later. */
mc.moved_charge++;
}
putback_lru_page(page);
put: /* is_target_pte_for_mc() gets the page */
put_page(page);
break;
case MC_TARGET_SWAP:
ent = target.ent;
if (!mem_cgroup_move_swap_account(ent,
mc.from, mc.to, false)) {
mc.precharge--;
/* we fixup refcnts and charges later. */
mc.moved_swap++;
}
break;
default:
break;
}
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
if (addr != end) {
/*
* We have consumed all precharges we got in can_attach().
* We try charge one by one, but don't do any additional
* charges to mc.to if we have failed in charge once in attach()
* phase.
*/
ret = mem_cgroup_do_precharge(1);
if (!ret)
goto retry;
}
return ret;
}
static void mem_cgroup_move_charge(struct mm_struct *mm)
{
struct vm_area_struct *vma;
lru_add_drain_all();
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
int ret;
struct mm_walk mem_cgroup_move_charge_walk = {
.pmd_entry = mem_cgroup_move_charge_pte_range,
.mm = mm,
.private = vma,
};
if (is_vm_hugetlb_page(vma))
continue;
ret = walk_page_range(vma->vm_start, vma->vm_end,
&mem_cgroup_move_charge_walk);
if (ret)
/*
* means we have consumed all precharges and failed in
* doing additional charge. Just abandon here.
*/
break;
}
up_read(&mm->mmap_sem);
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
struct cgroup *cont,
struct cgroup *old_cont,
struct task_struct *p,
bool threadgroup)
{
struct mm_struct *mm;
if (!mc.to)
/* no need to move charge */
return;
mm = get_task_mm(p);
if (mm) {
mem_cgroup_move_charge(mm);
mmput(mm);
}
mem_cgroup_clear_mc();
}
#else /* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
struct task_struct *p,
bool threadgroup)
{
return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
struct cgroup *cgroup,
struct task_struct *p,
bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
struct cgroup *cont,
struct cgroup *old_cont,
struct task_struct *p,
bool threadgroup)
{
}
#endif
struct cgroup_subsys mem_cgroup_subsys = {
.name = "memory",
.subsys_id = mem_cgroup_subsys_id,
.create = mem_cgroup_create,
.pre_destroy = mem_cgroup_pre_destroy,
.destroy = mem_cgroup_destroy,
.populate = mem_cgroup_populate,
.can_attach = mem_cgroup_can_attach,
.cancel_attach = mem_cgroup_cancel_attach,
.attach = mem_cgroup_move_task,
.early_init = 0,
.use_id = 1,
};
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static int __init disable_swap_account(char *s)
{
really_do_swap_account = 0;
return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif