linux_old1/include/net/ieee80211.h

1137 lines
33 KiB
C

/*
* Merged with mainline ieee80211.h in Aug 2004. Original ieee802_11
* remains copyright by the original authors
*
* Portions of the merged code are based on Host AP (software wireless
* LAN access point) driver for Intersil Prism2/2.5/3.
*
* Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
* <jkmaline@cc.hut.fi>
* Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
*
* Adaption to a generic IEEE 802.11 stack by James Ketrenos
* <jketreno@linux.intel.com>
* Copyright (c) 2004-2005, Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. See README and COPYING for
* more details.
*
* API Version History
* 1.0.x -- Initial version
* 1.1.x -- Added radiotap, QoS, TIM, ieee80211_geo APIs,
* various structure changes, and crypto API init method
*/
#ifndef IEEE80211_H
#define IEEE80211_H
#include <linux/if_ether.h> /* ETH_ALEN */
#include <linux/kernel.h> /* ARRAY_SIZE */
#include <linux/wireless.h>
#define IEEE80211_VERSION "git-1.1.7"
#define IEEE80211_DATA_LEN 2304
/* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
6.2.1.1.2.
The figure in section 7.1.2 suggests a body size of up to 2312
bytes is allowed, which is a bit confusing, I suspect this
represents the 2304 bytes of real data, plus a possible 8 bytes of
WEP IV and ICV. (this interpretation suggested by Ramiro Barreiro) */
#define IEEE80211_1ADDR_LEN 10
#define IEEE80211_2ADDR_LEN 16
#define IEEE80211_3ADDR_LEN 24
#define IEEE80211_4ADDR_LEN 30
#define IEEE80211_FCS_LEN 4
#define IEEE80211_HLEN (IEEE80211_4ADDR_LEN)
#define IEEE80211_FRAME_LEN (IEEE80211_DATA_LEN + IEEE80211_HLEN)
#define MIN_FRAG_THRESHOLD 256U
#define MAX_FRAG_THRESHOLD 2346U
/* Frame control field constants */
#define IEEE80211_FCTL_VERS 0x0003
#define IEEE80211_FCTL_FTYPE 0x000c
#define IEEE80211_FCTL_STYPE 0x00f0
#define IEEE80211_FCTL_TODS 0x0100
#define IEEE80211_FCTL_FROMDS 0x0200
#define IEEE80211_FCTL_MOREFRAGS 0x0400
#define IEEE80211_FCTL_RETRY 0x0800
#define IEEE80211_FCTL_PM 0x1000
#define IEEE80211_FCTL_MOREDATA 0x2000
#define IEEE80211_FCTL_PROTECTED 0x4000
#define IEEE80211_FCTL_ORDER 0x8000
#define IEEE80211_FTYPE_MGMT 0x0000
#define IEEE80211_FTYPE_CTL 0x0004
#define IEEE80211_FTYPE_DATA 0x0008
/* management */
#define IEEE80211_STYPE_ASSOC_REQ 0x0000
#define IEEE80211_STYPE_ASSOC_RESP 0x0010
#define IEEE80211_STYPE_REASSOC_REQ 0x0020
#define IEEE80211_STYPE_REASSOC_RESP 0x0030
#define IEEE80211_STYPE_PROBE_REQ 0x0040
#define IEEE80211_STYPE_PROBE_RESP 0x0050
#define IEEE80211_STYPE_BEACON 0x0080
#define IEEE80211_STYPE_ATIM 0x0090
#define IEEE80211_STYPE_DISASSOC 0x00A0
#define IEEE80211_STYPE_AUTH 0x00B0
#define IEEE80211_STYPE_DEAUTH 0x00C0
#define IEEE80211_STYPE_ACTION 0x00D0
/* control */
#define IEEE80211_STYPE_PSPOLL 0x00A0
#define IEEE80211_STYPE_RTS 0x00B0
#define IEEE80211_STYPE_CTS 0x00C0
#define IEEE80211_STYPE_ACK 0x00D0
#define IEEE80211_STYPE_CFEND 0x00E0
#define IEEE80211_STYPE_CFENDACK 0x00F0
/* data */
#define IEEE80211_STYPE_DATA 0x0000
#define IEEE80211_STYPE_DATA_CFACK 0x0010
#define IEEE80211_STYPE_DATA_CFPOLL 0x0020
#define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030
#define IEEE80211_STYPE_NULLFUNC 0x0040
#define IEEE80211_STYPE_CFACK 0x0050
#define IEEE80211_STYPE_CFPOLL 0x0060
#define IEEE80211_STYPE_CFACKPOLL 0x0070
#define IEEE80211_STYPE_QOS_DATA 0x0080
#define IEEE80211_SCTL_FRAG 0x000F
#define IEEE80211_SCTL_SEQ 0xFFF0
/* debug macros */
#ifdef CONFIG_IEEE80211_DEBUG
extern u32 ieee80211_debug_level;
#define IEEE80211_DEBUG(level, fmt, args...) \
do { if (ieee80211_debug_level & (level)) \
printk(KERN_DEBUG "ieee80211: %c %s " fmt, \
in_interrupt() ? 'I' : 'U', __FUNCTION__ , ## args); } while (0)
#else
#define IEEE80211_DEBUG(level, fmt, args...) do {} while (0)
#endif /* CONFIG_IEEE80211_DEBUG */
/* debug macros not dependent on CONFIG_IEEE80211_DEBUG */
#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
#define MAC_ARG(x) ((u8*)(x))[0],((u8*)(x))[1],((u8*)(x))[2],((u8*)(x))[3],((u8*)(x))[4],((u8*)(x))[5]
/* escape_essid() is intended to be used in debug (and possibly error)
* messages. It should never be used for passing essid to user space. */
const char *escape_essid(const char *essid, u8 essid_len);
/*
* To use the debug system:
*
* If you are defining a new debug classification, simply add it to the #define
* list here in the form of:
*
* #define IEEE80211_DL_xxxx VALUE
*
* shifting value to the left one bit from the previous entry. xxxx should be
* the name of the classification (for example, WEP)
*
* You then need to either add a IEEE80211_xxxx_DEBUG() macro definition for your
* classification, or use IEEE80211_DEBUG(IEEE80211_DL_xxxx, ...) whenever you want
* to send output to that classification.
*
* To add your debug level to the list of levels seen when you perform
*
* % cat /proc/net/ieee80211/debug_level
*
* you simply need to add your entry to the ieee80211_debug_level array.
*
* If you do not see debug_level in /proc/net/ieee80211 then you do not have
* CONFIG_IEEE80211_DEBUG defined in your kernel configuration
*
*/
#define IEEE80211_DL_INFO (1<<0)
#define IEEE80211_DL_WX (1<<1)
#define IEEE80211_DL_SCAN (1<<2)
#define IEEE80211_DL_STATE (1<<3)
#define IEEE80211_DL_MGMT (1<<4)
#define IEEE80211_DL_FRAG (1<<5)
#define IEEE80211_DL_DROP (1<<7)
#define IEEE80211_DL_TX (1<<8)
#define IEEE80211_DL_RX (1<<9)
#define IEEE80211_DL_QOS (1<<31)
#define IEEE80211_ERROR(f, a...) printk(KERN_ERR "ieee80211: " f, ## a)
#define IEEE80211_WARNING(f, a...) printk(KERN_WARNING "ieee80211: " f, ## a)
#define IEEE80211_DEBUG_INFO(f, a...) IEEE80211_DEBUG(IEEE80211_DL_INFO, f, ## a)
#define IEEE80211_DEBUG_WX(f, a...) IEEE80211_DEBUG(IEEE80211_DL_WX, f, ## a)
#define IEEE80211_DEBUG_SCAN(f, a...) IEEE80211_DEBUG(IEEE80211_DL_SCAN, f, ## a)
#define IEEE80211_DEBUG_STATE(f, a...) IEEE80211_DEBUG(IEEE80211_DL_STATE, f, ## a)
#define IEEE80211_DEBUG_MGMT(f, a...) IEEE80211_DEBUG(IEEE80211_DL_MGMT, f, ## a)
#define IEEE80211_DEBUG_FRAG(f, a...) IEEE80211_DEBUG(IEEE80211_DL_FRAG, f, ## a)
#define IEEE80211_DEBUG_DROP(f, a...) IEEE80211_DEBUG(IEEE80211_DL_DROP, f, ## a)
#define IEEE80211_DEBUG_TX(f, a...) IEEE80211_DEBUG(IEEE80211_DL_TX, f, ## a)
#define IEEE80211_DEBUG_RX(f, a...) IEEE80211_DEBUG(IEEE80211_DL_RX, f, ## a)
#define IEEE80211_DEBUG_QOS(f, a...) IEEE80211_DEBUG(IEEE80211_DL_QOS, f, ## a)
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <linux/if_arp.h> /* ARPHRD_ETHER */
#ifndef WIRELESS_SPY
#define WIRELESS_SPY /* enable iwspy support */
#endif
#include <net/iw_handler.h> /* new driver API */
#ifndef ETH_P_PAE
#define ETH_P_PAE 0x888E /* Port Access Entity (IEEE 802.1X) */
#endif /* ETH_P_PAE */
#define ETH_P_PREAUTH 0x88C7 /* IEEE 802.11i pre-authentication */
#ifndef ETH_P_80211_RAW
#define ETH_P_80211_RAW (ETH_P_ECONET + 1)
#endif
/* IEEE 802.11 defines */
#define P80211_OUI_LEN 3
struct ieee80211_snap_hdr {
u8 dsap; /* always 0xAA */
u8 ssap; /* always 0xAA */
u8 ctrl; /* always 0x03 */
u8 oui[P80211_OUI_LEN]; /* organizational universal id */
} __attribute__ ((packed));
#define SNAP_SIZE sizeof(struct ieee80211_snap_hdr)
#define WLAN_FC_GET_VERS(fc) ((fc) & IEEE80211_FCTL_VERS)
#define WLAN_FC_GET_TYPE(fc) ((fc) & IEEE80211_FCTL_FTYPE)
#define WLAN_FC_GET_STYPE(fc) ((fc) & IEEE80211_FCTL_STYPE)
#define WLAN_GET_SEQ_FRAG(seq) ((seq) & IEEE80211_SCTL_FRAG)
#define WLAN_GET_SEQ_SEQ(seq) ((seq) & IEEE80211_SCTL_SEQ)
/* Authentication algorithms */
#define WLAN_AUTH_OPEN 0
#define WLAN_AUTH_SHARED_KEY 1
#define WLAN_AUTH_CHALLENGE_LEN 128
#define WLAN_CAPABILITY_ESS (1<<0)
#define WLAN_CAPABILITY_IBSS (1<<1)
#define WLAN_CAPABILITY_CF_POLLABLE (1<<2)
#define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3)
#define WLAN_CAPABILITY_PRIVACY (1<<4)
#define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5)
#define WLAN_CAPABILITY_PBCC (1<<6)
#define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7)
#define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8)
#define WLAN_CAPABILITY_QOS (1<<9)
#define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10)
#define WLAN_CAPABILITY_DSSS_OFDM (1<<13)
/* Status codes */
enum ieee80211_statuscode {
WLAN_STATUS_SUCCESS = 0,
WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
WLAN_STATUS_CAPS_UNSUPPORTED = 10,
WLAN_STATUS_REASSOC_NO_ASSOC = 11,
WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
WLAN_STATUS_CHALLENGE_FAIL = 15,
WLAN_STATUS_AUTH_TIMEOUT = 16,
WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
WLAN_STATUS_ASSOC_DENIED_RATES = 18,
/* 802.11b */
WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
/* 802.11h */
WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
/* 802.11g */
WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
/* 802.11i */
WLAN_STATUS_INVALID_IE = 40,
WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
WLAN_STATUS_INVALID_AKMP = 43,
WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
};
/* Reason codes */
enum ieee80211_reasoncode {
WLAN_REASON_UNSPECIFIED = 1,
WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
WLAN_REASON_DEAUTH_LEAVING = 3,
WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
WLAN_REASON_DISASSOC_AP_BUSY = 5,
WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
/* 802.11h */
WLAN_REASON_DISASSOC_BAD_POWER = 10,
WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
/* 802.11i */
WLAN_REASON_INVALID_IE = 13,
WLAN_REASON_MIC_FAILURE = 14,
WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
WLAN_REASON_IE_DIFFERENT = 17,
WLAN_REASON_INVALID_GROUP_CIPHER = 18,
WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
WLAN_REASON_INVALID_AKMP = 20,
WLAN_REASON_UNSUPP_RSN_VERSION = 21,
WLAN_REASON_INVALID_RSN_IE_CAP = 22,
WLAN_REASON_IEEE8021X_FAILED = 23,
WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
};
#define IEEE80211_STATMASK_SIGNAL (1<<0)
#define IEEE80211_STATMASK_RSSI (1<<1)
#define IEEE80211_STATMASK_NOISE (1<<2)
#define IEEE80211_STATMASK_RATE (1<<3)
#define IEEE80211_STATMASK_WEMASK 0x7
#define IEEE80211_CCK_MODULATION (1<<0)
#define IEEE80211_OFDM_MODULATION (1<<1)
#define IEEE80211_24GHZ_BAND (1<<0)
#define IEEE80211_52GHZ_BAND (1<<1)
#define IEEE80211_CCK_RATE_1MB 0x02
#define IEEE80211_CCK_RATE_2MB 0x04
#define IEEE80211_CCK_RATE_5MB 0x0B
#define IEEE80211_CCK_RATE_11MB 0x16
#define IEEE80211_OFDM_RATE_6MB 0x0C
#define IEEE80211_OFDM_RATE_9MB 0x12
#define IEEE80211_OFDM_RATE_12MB 0x18
#define IEEE80211_OFDM_RATE_18MB 0x24
#define IEEE80211_OFDM_RATE_24MB 0x30
#define IEEE80211_OFDM_RATE_36MB 0x48
#define IEEE80211_OFDM_RATE_48MB 0x60
#define IEEE80211_OFDM_RATE_54MB 0x6C
#define IEEE80211_BASIC_RATE_MASK 0x80
#define IEEE80211_CCK_RATE_1MB_MASK (1<<0)
#define IEEE80211_CCK_RATE_2MB_MASK (1<<1)
#define IEEE80211_CCK_RATE_5MB_MASK (1<<2)
#define IEEE80211_CCK_RATE_11MB_MASK (1<<3)
#define IEEE80211_OFDM_RATE_6MB_MASK (1<<4)
#define IEEE80211_OFDM_RATE_9MB_MASK (1<<5)
#define IEEE80211_OFDM_RATE_12MB_MASK (1<<6)
#define IEEE80211_OFDM_RATE_18MB_MASK (1<<7)
#define IEEE80211_OFDM_RATE_24MB_MASK (1<<8)
#define IEEE80211_OFDM_RATE_36MB_MASK (1<<9)
#define IEEE80211_OFDM_RATE_48MB_MASK (1<<10)
#define IEEE80211_OFDM_RATE_54MB_MASK (1<<11)
#define IEEE80211_CCK_RATES_MASK 0x0000000F
#define IEEE80211_CCK_BASIC_RATES_MASK (IEEE80211_CCK_RATE_1MB_MASK | \
IEEE80211_CCK_RATE_2MB_MASK)
#define IEEE80211_CCK_DEFAULT_RATES_MASK (IEEE80211_CCK_BASIC_RATES_MASK | \
IEEE80211_CCK_RATE_5MB_MASK | \
IEEE80211_CCK_RATE_11MB_MASK)
#define IEEE80211_OFDM_RATES_MASK 0x00000FF0
#define IEEE80211_OFDM_BASIC_RATES_MASK (IEEE80211_OFDM_RATE_6MB_MASK | \
IEEE80211_OFDM_RATE_12MB_MASK | \
IEEE80211_OFDM_RATE_24MB_MASK)
#define IEEE80211_OFDM_DEFAULT_RATES_MASK (IEEE80211_OFDM_BASIC_RATES_MASK | \
IEEE80211_OFDM_RATE_9MB_MASK | \
IEEE80211_OFDM_RATE_18MB_MASK | \
IEEE80211_OFDM_RATE_36MB_MASK | \
IEEE80211_OFDM_RATE_48MB_MASK | \
IEEE80211_OFDM_RATE_54MB_MASK)
#define IEEE80211_DEFAULT_RATES_MASK (IEEE80211_OFDM_DEFAULT_RATES_MASK | \
IEEE80211_CCK_DEFAULT_RATES_MASK)
#define IEEE80211_NUM_OFDM_RATES 8
#define IEEE80211_NUM_CCK_RATES 4
#define IEEE80211_OFDM_SHIFT_MASK_A 4
/* NOTE: This data is for statistical purposes; not all hardware provides this
* information for frames received.
* For ieee80211_rx_mgt, you need to set at least the 'len' parameter.
*/
struct ieee80211_rx_stats {
u32 mac_time;
s8 rssi;
u8 signal;
u8 noise;
u16 rate; /* in 100 kbps */
u8 received_channel;
u8 control;
u8 mask;
u8 freq;
u16 len;
};
/* IEEE 802.11 requires that STA supports concurrent reception of at least
* three fragmented frames. This define can be increased to support more
* concurrent frames, but it should be noted that each entry can consume about
* 2 kB of RAM and increasing cache size will slow down frame reassembly. */
#define IEEE80211_FRAG_CACHE_LEN 4
struct ieee80211_frag_entry {
unsigned long first_frag_time;
unsigned int seq;
unsigned int last_frag;
struct sk_buff *skb;
u8 src_addr[ETH_ALEN];
u8 dst_addr[ETH_ALEN];
};
struct ieee80211_stats {
unsigned int tx_unicast_frames;
unsigned int tx_multicast_frames;
unsigned int tx_fragments;
unsigned int tx_unicast_octets;
unsigned int tx_multicast_octets;
unsigned int tx_deferred_transmissions;
unsigned int tx_single_retry_frames;
unsigned int tx_multiple_retry_frames;
unsigned int tx_retry_limit_exceeded;
unsigned int tx_discards;
unsigned int rx_unicast_frames;
unsigned int rx_multicast_frames;
unsigned int rx_fragments;
unsigned int rx_unicast_octets;
unsigned int rx_multicast_octets;
unsigned int rx_fcs_errors;
unsigned int rx_discards_no_buffer;
unsigned int tx_discards_wrong_sa;
unsigned int rx_discards_undecryptable;
unsigned int rx_message_in_msg_fragments;
unsigned int rx_message_in_bad_msg_fragments;
};
struct ieee80211_device;
#include "ieee80211_crypt.h"
#define SEC_KEY_1 (1<<0)
#define SEC_KEY_2 (1<<1)
#define SEC_KEY_3 (1<<2)
#define SEC_KEY_4 (1<<3)
#define SEC_ACTIVE_KEY (1<<4)
#define SEC_AUTH_MODE (1<<5)
#define SEC_UNICAST_GROUP (1<<6)
#define SEC_LEVEL (1<<7)
#define SEC_ENABLED (1<<8)
#define SEC_ENCRYPT (1<<9)
#define SEC_LEVEL_0 0 /* None */
#define SEC_LEVEL_1 1 /* WEP 40 and 104 bit */
#define SEC_LEVEL_2 2 /* Level 1 + TKIP */
#define SEC_LEVEL_2_CKIP 3 /* Level 1 + CKIP */
#define SEC_LEVEL_3 4 /* Level 2 + CCMP */
#define SEC_ALG_NONE 0
#define SEC_ALG_WEP 1
#define SEC_ALG_TKIP 2
#define SEC_ALG_CCMP 3
#define WEP_KEYS 4
#define WEP_KEY_LEN 13
#define SCM_KEY_LEN 32
#define SCM_TEMPORAL_KEY_LENGTH 16
struct ieee80211_security {
u16 active_key:2,
enabled:1,
auth_mode:2, auth_algo:4, unicast_uses_group:1, encrypt:1;
u8 encode_alg[WEP_KEYS];
u8 key_sizes[WEP_KEYS];
u8 keys[WEP_KEYS][SCM_KEY_LEN];
u8 level;
u16 flags;
} __attribute__ ((packed));
/*
802.11 data frame from AP
,-------------------------------------------------------------------.
Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
|------|------|---------|---------|---------|------|---------|------|
Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | frame | fcs |
| | tion | (BSSID) | | | ence | data | |
`-------------------------------------------------------------------'
Total: 28-2340 bytes
*/
#define BEACON_PROBE_SSID_ID_POSITION 12
/* Management Frame Information Element Types */
enum ieee80211_mfie {
MFIE_TYPE_SSID = 0,
MFIE_TYPE_RATES = 1,
MFIE_TYPE_FH_SET = 2,
MFIE_TYPE_DS_SET = 3,
MFIE_TYPE_CF_SET = 4,
MFIE_TYPE_TIM = 5,
MFIE_TYPE_IBSS_SET = 6,
MFIE_TYPE_COUNTRY = 7,
MFIE_TYPE_HOP_PARAMS = 8,
MFIE_TYPE_HOP_TABLE = 9,
MFIE_TYPE_REQUEST = 10,
MFIE_TYPE_CHALLENGE = 16,
MFIE_TYPE_POWER_CONSTRAINT = 32,
MFIE_TYPE_POWER_CAPABILITY = 33,
MFIE_TYPE_TPC_REQUEST = 34,
MFIE_TYPE_TPC_REPORT = 35,
MFIE_TYPE_SUPP_CHANNELS = 36,
MFIE_TYPE_CSA = 37,
MFIE_TYPE_MEASURE_REQUEST = 38,
MFIE_TYPE_MEASURE_REPORT = 39,
MFIE_TYPE_QUIET = 40,
MFIE_TYPE_IBSS_DFS = 41,
MFIE_TYPE_ERP_INFO = 42,
MFIE_TYPE_RSN = 48,
MFIE_TYPE_RATES_EX = 50,
MFIE_TYPE_GENERIC = 221,
MFIE_TYPE_QOS_PARAMETER = 222,
};
/* Minimal header; can be used for passing 802.11 frames with sufficient
* information to determine what type of underlying data type is actually
* stored in the data. */
struct ieee80211_hdr {
__le16 frame_ctl;
__le16 duration_id;
u8 payload[0];
} __attribute__ ((packed));
struct ieee80211_hdr_1addr {
__le16 frame_ctl;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 payload[0];
} __attribute__ ((packed));
struct ieee80211_hdr_2addr {
__le16 frame_ctl;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 payload[0];
} __attribute__ ((packed));
struct ieee80211_hdr_3addr {
__le16 frame_ctl;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
__le16 seq_ctl;
u8 payload[0];
} __attribute__ ((packed));
struct ieee80211_hdr_4addr {
__le16 frame_ctl;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
__le16 seq_ctl;
u8 addr4[ETH_ALEN];
u8 payload[0];
} __attribute__ ((packed));
struct ieee80211_hdr_3addrqos {
__le16 frame_ctl;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
__le16 seq_ctl;
u8 payload[0];
__le16 qos_ctl;
} __attribute__ ((packed));
struct ieee80211_hdr_4addrqos {
__le16 frame_ctl;
__le16 duration_id;
u8 addr1[ETH_ALEN];
u8 addr2[ETH_ALEN];
u8 addr3[ETH_ALEN];
__le16 seq_ctl;
u8 addr4[ETH_ALEN];
u8 payload[0];
__le16 qos_ctl;
} __attribute__ ((packed));
struct ieee80211_info_element {
u8 id;
u8 len;
u8 data[0];
} __attribute__ ((packed));
/*
* These are the data types that can make up management packets
*
u16 auth_algorithm;
u16 auth_sequence;
u16 beacon_interval;
u16 capability;
u8 current_ap[ETH_ALEN];
u16 listen_interval;
struct {
u16 association_id:14, reserved:2;
} __attribute__ ((packed));
u32 time_stamp[2];
u16 reason;
u16 status;
*/
struct ieee80211_auth {
struct ieee80211_hdr_3addr header;
__le16 algorithm;
__le16 transaction;
__le16 status;
/* challenge */
struct ieee80211_info_element info_element[0];
} __attribute__ ((packed));
struct ieee80211_disassoc {
struct ieee80211_hdr_3addr header;
__le16 reason;
} __attribute__ ((packed));
/* Alias deauth for disassoc */
#define ieee80211_deauth ieee80211_disassoc
struct ieee80211_probe_request {
struct ieee80211_hdr_3addr header;
/* SSID, supported rates */
struct ieee80211_info_element info_element[0];
} __attribute__ ((packed));
struct ieee80211_probe_response {
struct ieee80211_hdr_3addr header;
u32 time_stamp[2];
__le16 beacon_interval;
__le16 capability;
/* SSID, supported rates, FH params, DS params,
* CF params, IBSS params, TIM (if beacon), RSN */
struct ieee80211_info_element info_element[0];
} __attribute__ ((packed));
/* Alias beacon for probe_response */
#define ieee80211_beacon ieee80211_probe_response
struct ieee80211_assoc_request {
struct ieee80211_hdr_3addr header;
__le16 capability;
__le16 listen_interval;
/* SSID, supported rates, RSN */
struct ieee80211_info_element info_element[0];
} __attribute__ ((packed));
struct ieee80211_reassoc_request {
struct ieee80211_hdr_3addr header;
__le16 capability;
__le16 listen_interval;
u8 current_ap[ETH_ALEN];
struct ieee80211_info_element info_element[0];
} __attribute__ ((packed));
struct ieee80211_assoc_response {
struct ieee80211_hdr_3addr header;
__le16 capability;
__le16 status;
__le16 aid;
/* supported rates */
struct ieee80211_info_element info_element[0];
} __attribute__ ((packed));
struct ieee80211_txb {
u8 nr_frags;
u8 encrypted;
u8 rts_included;
u8 reserved;
__le16 frag_size;
__le16 payload_size;
struct sk_buff *fragments[0];
};
/* SWEEP TABLE ENTRIES NUMBER */
#define MAX_SWEEP_TAB_ENTRIES 42
#define MAX_SWEEP_TAB_ENTRIES_PER_PACKET 7
/* MAX_RATES_LENGTH needs to be 12. The spec says 8, and many APs
* only use 8, and then use extended rates for the remaining supported
* rates. Other APs, however, stick all of their supported rates on the
* main rates information element... */
#define MAX_RATES_LENGTH ((u8)12)
#define MAX_RATES_EX_LENGTH ((u8)16)
#define MAX_NETWORK_COUNT 128
#define CRC_LENGTH 4U
#define MAX_WPA_IE_LEN 64
#define NETWORK_EMPTY_ESSID (1<<0)
#define NETWORK_HAS_OFDM (1<<1)
#define NETWORK_HAS_CCK (1<<2)
/* QoS structure */
#define NETWORK_HAS_QOS_PARAMETERS (1<<3)
#define NETWORK_HAS_QOS_INFORMATION (1<<4)
#define NETWORK_HAS_QOS_MASK (NETWORK_HAS_QOS_PARAMETERS | NETWORK_HAS_QOS_INFORMATION)
#define QOS_QUEUE_NUM 4
#define QOS_OUI_LEN 3
#define QOS_OUI_TYPE 2
#define QOS_ELEMENT_ID 221
#define QOS_OUI_INFO_SUB_TYPE 0
#define QOS_OUI_PARAM_SUB_TYPE 1
#define QOS_VERSION_1 1
#define QOS_AIFSN_MIN_VALUE 2
struct ieee80211_qos_information_element {
u8 elementID;
u8 length;
u8 qui[QOS_OUI_LEN];
u8 qui_type;
u8 qui_subtype;
u8 version;
u8 ac_info;
} __attribute__ ((packed));
struct ieee80211_qos_ac_parameter {
u8 aci_aifsn;
u8 ecw_min_max;
__le16 tx_op_limit;
} __attribute__ ((packed));
struct ieee80211_qos_parameter_info {
struct ieee80211_qos_information_element info_element;
u8 reserved;
struct ieee80211_qos_ac_parameter ac_params_record[QOS_QUEUE_NUM];
} __attribute__ ((packed));
struct ieee80211_qos_parameters {
__le16 cw_min[QOS_QUEUE_NUM];
__le16 cw_max[QOS_QUEUE_NUM];
u8 aifs[QOS_QUEUE_NUM];
u8 flag[QOS_QUEUE_NUM];
__le16 tx_op_limit[QOS_QUEUE_NUM];
} __attribute__ ((packed));
struct ieee80211_qos_data {
struct ieee80211_qos_parameters parameters;
int active;
int supported;
u8 param_count;
u8 old_param_count;
};
struct ieee80211_tim_parameters {
u8 tim_count;
u8 tim_period;
} __attribute__ ((packed));
/*******************************************************/
struct ieee80211_network {
/* These entries are used to identify a unique network */
u8 bssid[ETH_ALEN];
u8 channel;
/* Ensure null-terminated for any debug msgs */
u8 ssid[IW_ESSID_MAX_SIZE + 1];
u8 ssid_len;
struct ieee80211_qos_data qos_data;
/* These are network statistics */
struct ieee80211_rx_stats stats;
u16 capability;
u8 rates[MAX_RATES_LENGTH];
u8 rates_len;
u8 rates_ex[MAX_RATES_EX_LENGTH];
u8 rates_ex_len;
unsigned long last_scanned;
u8 mode;
u8 flags;
u32 last_associate;
u32 time_stamp[2];
u16 beacon_interval;
u16 listen_interval;
u16 atim_window;
u8 erp_value;
u8 wpa_ie[MAX_WPA_IE_LEN];
size_t wpa_ie_len;
u8 rsn_ie[MAX_WPA_IE_LEN];
size_t rsn_ie_len;
struct ieee80211_tim_parameters tim;
struct list_head list;
};
enum ieee80211_state {
IEEE80211_UNINITIALIZED = 0,
IEEE80211_INITIALIZED,
IEEE80211_ASSOCIATING,
IEEE80211_ASSOCIATED,
IEEE80211_AUTHENTICATING,
IEEE80211_AUTHENTICATED,
IEEE80211_SHUTDOWN
};
#define DEFAULT_MAX_SCAN_AGE (15 * HZ)
#define DEFAULT_FTS 2346
#define CFG_IEEE80211_RESERVE_FCS (1<<0)
#define CFG_IEEE80211_COMPUTE_FCS (1<<1)
#define CFG_IEEE80211_RTS (1<<2)
#define IEEE80211_24GHZ_MIN_CHANNEL 1
#define IEEE80211_24GHZ_MAX_CHANNEL 14
#define IEEE80211_24GHZ_CHANNELS 14
#define IEEE80211_52GHZ_MIN_CHANNEL 34
#define IEEE80211_52GHZ_MAX_CHANNEL 165
#define IEEE80211_52GHZ_CHANNELS 131
enum {
IEEE80211_CH_PASSIVE_ONLY = (1 << 0),
IEEE80211_CH_B_ONLY = (1 << 2),
IEEE80211_CH_NO_IBSS = (1 << 3),
IEEE80211_CH_UNIFORM_SPREADING = (1 << 4),
IEEE80211_CH_RADAR_DETECT = (1 << 5),
IEEE80211_CH_INVALID = (1 << 6),
};
struct ieee80211_channel {
u32 freq;
u8 channel;
u8 flags;
u8 max_power;
};
struct ieee80211_geo {
u8 name[4];
u8 bg_channels;
u8 a_channels;
struct ieee80211_channel bg[IEEE80211_24GHZ_CHANNELS];
struct ieee80211_channel a[IEEE80211_52GHZ_CHANNELS];
};
struct ieee80211_device {
struct net_device *dev;
struct ieee80211_security sec;
/* Bookkeeping structures */
struct net_device_stats stats;
struct ieee80211_stats ieee_stats;
struct ieee80211_geo geo;
/* Probe / Beacon management */
struct list_head network_free_list;
struct list_head network_list;
struct ieee80211_network *networks;
int scans;
int scan_age;
int iw_mode; /* operating mode (IW_MODE_*) */
struct iw_spy_data spy_data; /* iwspy support */
spinlock_t lock;
int tx_headroom; /* Set to size of any additional room needed at front
* of allocated Tx SKBs */
u32 config;
/* WEP and other encryption related settings at the device level */
int open_wep; /* Set to 1 to allow unencrypted frames */
int reset_on_keychange; /* Set to 1 if the HW needs to be reset on
* WEP key changes */
/* If the host performs {en,de}cryption, then set to 1 */
int host_encrypt;
int host_encrypt_msdu;
int host_decrypt;
/* host performs multicast decryption */
int host_mc_decrypt;
int host_open_frag;
int host_build_iv;
int ieee802_1x; /* is IEEE 802.1X used */
/* WPA data */
int wpa_enabled;
int drop_unencrypted;
int privacy_invoked;
size_t wpa_ie_len;
u8 *wpa_ie;
struct list_head crypt_deinit_list;
struct ieee80211_crypt_data *crypt[WEP_KEYS];
int tx_keyidx; /* default TX key index (crypt[tx_keyidx]) */
struct timer_list crypt_deinit_timer;
int crypt_quiesced;
int bcrx_sta_key; /* use individual keys to override default keys even
* with RX of broad/multicast frames */
/* Fragmentation structures */
struct ieee80211_frag_entry frag_cache[IEEE80211_FRAG_CACHE_LEN];
unsigned int frag_next_idx;
u16 fts; /* Fragmentation Threshold */
u16 rts; /* RTS threshold */
/* Association info */
u8 bssid[ETH_ALEN];
enum ieee80211_state state;
int mode; /* A, B, G */
int modulation; /* CCK, OFDM */
int freq_band; /* 2.4Ghz, 5.2Ghz, Mixed */
int abg_true; /* ABG flag */
int perfect_rssi;
int worst_rssi;
/* Callback functions */
void (*set_security) (struct net_device * dev,
struct ieee80211_security * sec);
int (*hard_start_xmit) (struct ieee80211_txb * txb,
struct net_device * dev, int pri);
int (*reset_port) (struct net_device * dev);
int (*is_queue_full) (struct net_device * dev, int pri);
int (*handle_management) (struct net_device * dev,
struct ieee80211_network * network, u16 type);
/* Typical STA methods */
int (*handle_auth) (struct net_device * dev,
struct ieee80211_auth * auth);
int (*handle_deauth) (struct net_device * dev,
struct ieee80211_auth * auth);
int (*handle_disassoc) (struct net_device * dev,
struct ieee80211_disassoc * assoc);
int (*handle_beacon) (struct net_device * dev,
struct ieee80211_beacon * beacon,
struct ieee80211_network * network);
int (*handle_probe_response) (struct net_device * dev,
struct ieee80211_probe_response * resp,
struct ieee80211_network * network);
int (*handle_probe_request) (struct net_device * dev,
struct ieee80211_probe_request * req,
struct ieee80211_rx_stats * stats);
int (*handle_assoc_response) (struct net_device * dev,
struct ieee80211_assoc_response * resp,
struct ieee80211_network * network);
/* Typical AP methods */
int (*handle_assoc_request) (struct net_device * dev);
int (*handle_reassoc_request) (struct net_device * dev,
struct ieee80211_reassoc_request * req);
/* This must be the last item so that it points to the data
* allocated beyond this structure by alloc_ieee80211 */
u8 priv[0];
};
#define IEEE_A (1<<0)
#define IEEE_B (1<<1)
#define IEEE_G (1<<2)
#define IEEE_MODE_MASK (IEEE_A|IEEE_B|IEEE_G)
static inline void *ieee80211_priv(struct net_device *dev)
{
return ((struct ieee80211_device *)netdev_priv(dev))->priv;
}
static inline int ieee80211_is_empty_essid(const char *essid, int essid_len)
{
/* Single white space is for Linksys APs */
if (essid_len == 1 && essid[0] == ' ')
return 1;
/* Otherwise, if the entire essid is 0, we assume it is hidden */
while (essid_len) {
essid_len--;
if (essid[essid_len] != '\0')
return 0;
}
return 1;
}
static inline int ieee80211_is_valid_mode(struct ieee80211_device *ieee,
int mode)
{
/*
* It is possible for both access points and our device to support
* combinations of modes, so as long as there is one valid combination
* of ap/device supported modes, then return success
*
*/
if ((mode & IEEE_A) &&
(ieee->modulation & IEEE80211_OFDM_MODULATION) &&
(ieee->freq_band & IEEE80211_52GHZ_BAND))
return 1;
if ((mode & IEEE_G) &&
(ieee->modulation & IEEE80211_OFDM_MODULATION) &&
(ieee->freq_band & IEEE80211_24GHZ_BAND))
return 1;
if ((mode & IEEE_B) &&
(ieee->modulation & IEEE80211_CCK_MODULATION) &&
(ieee->freq_band & IEEE80211_24GHZ_BAND))
return 1;
return 0;
}
static inline int ieee80211_get_hdrlen(u16 fc)
{
int hdrlen = IEEE80211_3ADDR_LEN;
u16 stype = WLAN_FC_GET_STYPE(fc);
switch (WLAN_FC_GET_TYPE(fc)) {
case IEEE80211_FTYPE_DATA:
if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS))
hdrlen = IEEE80211_4ADDR_LEN;
if (stype & IEEE80211_STYPE_QOS_DATA)
hdrlen += 2;
break;
case IEEE80211_FTYPE_CTL:
switch (WLAN_FC_GET_STYPE(fc)) {
case IEEE80211_STYPE_CTS:
case IEEE80211_STYPE_ACK:
hdrlen = IEEE80211_1ADDR_LEN;
break;
default:
hdrlen = IEEE80211_2ADDR_LEN;
break;
}
break;
}
return hdrlen;
}
static inline u8 *ieee80211_get_payload(struct ieee80211_hdr *hdr)
{
switch (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl))) {
case IEEE80211_1ADDR_LEN:
return ((struct ieee80211_hdr_1addr *)hdr)->payload;
case IEEE80211_2ADDR_LEN:
return ((struct ieee80211_hdr_2addr *)hdr)->payload;
case IEEE80211_3ADDR_LEN:
return ((struct ieee80211_hdr_3addr *)hdr)->payload;
case IEEE80211_4ADDR_LEN:
return ((struct ieee80211_hdr_4addr *)hdr)->payload;
}
return NULL;
}
static inline int ieee80211_is_ofdm_rate(u8 rate)
{
switch (rate & ~IEEE80211_BASIC_RATE_MASK) {
case IEEE80211_OFDM_RATE_6MB:
case IEEE80211_OFDM_RATE_9MB:
case IEEE80211_OFDM_RATE_12MB:
case IEEE80211_OFDM_RATE_18MB:
case IEEE80211_OFDM_RATE_24MB:
case IEEE80211_OFDM_RATE_36MB:
case IEEE80211_OFDM_RATE_48MB:
case IEEE80211_OFDM_RATE_54MB:
return 1;
}
return 0;
}
static inline int ieee80211_is_cck_rate(u8 rate)
{
switch (rate & ~IEEE80211_BASIC_RATE_MASK) {
case IEEE80211_CCK_RATE_1MB:
case IEEE80211_CCK_RATE_2MB:
case IEEE80211_CCK_RATE_5MB:
case IEEE80211_CCK_RATE_11MB:
return 1;
}
return 0;
}
/* ieee80211.c */
extern void free_ieee80211(struct net_device *dev);
extern struct net_device *alloc_ieee80211(int sizeof_priv);
extern int ieee80211_set_encryption(struct ieee80211_device *ieee);
/* ieee80211_tx.c */
extern int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev);
extern void ieee80211_txb_free(struct ieee80211_txb *);
extern int ieee80211_tx_frame(struct ieee80211_device *ieee,
struct ieee80211_hdr *frame, int len);
/* ieee80211_rx.c */
extern int ieee80211_rx(struct ieee80211_device *ieee, struct sk_buff *skb,
struct ieee80211_rx_stats *rx_stats);
/* make sure to set stats->len */
extern void ieee80211_rx_mgt(struct ieee80211_device *ieee,
struct ieee80211_hdr_4addr *header,
struct ieee80211_rx_stats *stats);
/* ieee80211_geo.c */
extern const struct ieee80211_geo *ieee80211_get_geo(struct ieee80211_device
*ieee);
extern int ieee80211_set_geo(struct ieee80211_device *ieee,
const struct ieee80211_geo *geo);
extern int ieee80211_is_valid_channel(struct ieee80211_device *ieee,
u8 channel);
extern int ieee80211_channel_to_index(struct ieee80211_device *ieee,
u8 channel);
extern u8 ieee80211_freq_to_channel(struct ieee80211_device *ieee, u32 freq);
/* ieee80211_wx.c */
extern int ieee80211_wx_get_scan(struct ieee80211_device *ieee,
struct iw_request_info *info,
union iwreq_data *wrqu, char *key);
extern int ieee80211_wx_set_encode(struct ieee80211_device *ieee,
struct iw_request_info *info,
union iwreq_data *wrqu, char *key);
extern int ieee80211_wx_get_encode(struct ieee80211_device *ieee,
struct iw_request_info *info,
union iwreq_data *wrqu, char *key);
extern int ieee80211_wx_set_encodeext(struct ieee80211_device *ieee,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
extern int ieee80211_wx_get_encodeext(struct ieee80211_device *ieee,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra);
static inline void ieee80211_increment_scans(struct ieee80211_device *ieee)
{
ieee->scans++;
}
static inline int ieee80211_get_scans(struct ieee80211_device *ieee)
{
return ieee->scans;
}
#endif /* IEEE80211_H */