linux_old1/arch/powerpc/mm/numa.c

733 lines
18 KiB
C

/*
* pSeries NUMA support
*
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <asm/sparsemem.h>
#include <asm/lmb.h>
#include <asm/system.h>
#include <asm/smp.h>
static int numa_enabled = 1;
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
int numa_cpu_lookup_table[NR_CPUS];
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
struct pglist_data *node_data[MAX_NUMNODES];
EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(node_data);
static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
static int min_common_depth;
/*
* We need somewhere to store start/end/node for each region until we have
* allocated the real node_data structures.
*/
#define MAX_REGIONS (MAX_LMB_REGIONS*2)
static struct {
unsigned long start_pfn;
unsigned long end_pfn;
int nid;
} init_node_data[MAX_REGIONS] __initdata;
int __init early_pfn_to_nid(unsigned long pfn)
{
unsigned int i;
for (i = 0; init_node_data[i].end_pfn; i++) {
unsigned long start_pfn = init_node_data[i].start_pfn;
unsigned long end_pfn = init_node_data[i].end_pfn;
if ((start_pfn <= pfn) && (pfn < end_pfn))
return init_node_data[i].nid;
}
return -1;
}
void __init add_region(unsigned int nid, unsigned long start_pfn,
unsigned long pages)
{
unsigned int i;
dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n",
nid, start_pfn, pages);
for (i = 0; init_node_data[i].end_pfn; i++) {
if (init_node_data[i].nid != nid)
continue;
if (init_node_data[i].end_pfn == start_pfn) {
init_node_data[i].end_pfn += pages;
return;
}
if (init_node_data[i].start_pfn == (start_pfn + pages)) {
init_node_data[i].start_pfn -= pages;
return;
}
}
/*
* Leave last entry NULL so we dont iterate off the end (we use
* entry.end_pfn to terminate the walk).
*/
if (i >= (MAX_REGIONS - 1)) {
printk(KERN_ERR "WARNING: too many memory regions in "
"numa code, truncating\n");
return;
}
init_node_data[i].start_pfn = start_pfn;
init_node_data[i].end_pfn = start_pfn + pages;
init_node_data[i].nid = nid;
}
/* We assume init_node_data has no overlapping regions */
void __init get_region(unsigned int nid, unsigned long *start_pfn,
unsigned long *end_pfn, unsigned long *pages_present)
{
unsigned int i;
*start_pfn = -1UL;
*end_pfn = *pages_present = 0;
for (i = 0; init_node_data[i].end_pfn; i++) {
if (init_node_data[i].nid != nid)
continue;
*pages_present += init_node_data[i].end_pfn -
init_node_data[i].start_pfn;
if (init_node_data[i].start_pfn < *start_pfn)
*start_pfn = init_node_data[i].start_pfn;
if (init_node_data[i].end_pfn > *end_pfn)
*end_pfn = init_node_data[i].end_pfn;
}
/* We didnt find a matching region, return start/end as 0 */
if (*start_pfn == -1UL)
start_pfn = 0;
}
static inline void map_cpu_to_node(int cpu, int node)
{
numa_cpu_lookup_table[cpu] = node;
if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
cpu_set(cpu, numa_cpumask_lookup_table[node]);
}
#ifdef CONFIG_HOTPLUG_CPU
static void unmap_cpu_from_node(unsigned long cpu)
{
int node = numa_cpu_lookup_table[cpu];
dbg("removing cpu %lu from node %d\n", cpu, node);
if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
cpu_clear(cpu, numa_cpumask_lookup_table[node]);
} else {
printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
cpu, node);
}
}
#endif /* CONFIG_HOTPLUG_CPU */
static struct device_node *find_cpu_node(unsigned int cpu)
{
unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
struct device_node *cpu_node = NULL;
unsigned int *interrupt_server, *reg;
int len;
while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
/* Try interrupt server first */
interrupt_server = (unsigned int *)get_property(cpu_node,
"ibm,ppc-interrupt-server#s", &len);
len = len / sizeof(u32);
if (interrupt_server && (len > 0)) {
while (len--) {
if (interrupt_server[len] == hw_cpuid)
return cpu_node;
}
} else {
reg = (unsigned int *)get_property(cpu_node,
"reg", &len);
if (reg && (len > 0) && (reg[0] == hw_cpuid))
return cpu_node;
}
}
return NULL;
}
/* must hold reference to node during call */
static int *of_get_associativity(struct device_node *dev)
{
return (unsigned int *)get_property(dev, "ibm,associativity", NULL);
}
static int of_node_numa_domain(struct device_node *device)
{
int numa_domain;
unsigned int *tmp;
if (min_common_depth == -1)
return 0;
tmp = of_get_associativity(device);
if (tmp && (tmp[0] >= min_common_depth)) {
numa_domain = tmp[min_common_depth];
} else {
dbg("WARNING: no NUMA information for %s\n",
device->full_name);
numa_domain = 0;
}
return numa_domain;
}
/*
* In theory, the "ibm,associativity" property may contain multiple
* associativity lists because a resource may be multiply connected
* into the machine. This resource then has different associativity
* characteristics relative to its multiple connections. We ignore
* this for now. We also assume that all cpu and memory sets have
* their distances represented at a common level. This won't be
* true for heirarchical NUMA.
*
* In any case the ibm,associativity-reference-points should give
* the correct depth for a normal NUMA system.
*
* - Dave Hansen <haveblue@us.ibm.com>
*/
static int __init find_min_common_depth(void)
{
int depth;
unsigned int *ref_points;
struct device_node *rtas_root;
unsigned int len;
rtas_root = of_find_node_by_path("/rtas");
if (!rtas_root)
return -1;
/*
* this property is 2 32-bit integers, each representing a level of
* depth in the associativity nodes. The first is for an SMP
* configuration (should be all 0's) and the second is for a normal
* NUMA configuration.
*/
ref_points = (unsigned int *)get_property(rtas_root,
"ibm,associativity-reference-points", &len);
if ((len >= 1) && ref_points) {
depth = ref_points[1];
} else {
dbg("WARNING: could not find NUMA "
"associativity reference point\n");
depth = -1;
}
of_node_put(rtas_root);
return depth;
}
static int __init get_mem_addr_cells(void)
{
struct device_node *memory = NULL;
int rc;
memory = of_find_node_by_type(memory, "memory");
if (!memory)
return 0; /* it won't matter */
rc = prom_n_addr_cells(memory);
return rc;
}
static int __init get_mem_size_cells(void)
{
struct device_node *memory = NULL;
int rc;
memory = of_find_node_by_type(memory, "memory");
if (!memory)
return 0; /* it won't matter */
rc = prom_n_size_cells(memory);
return rc;
}
static unsigned long __init read_n_cells(int n, unsigned int **buf)
{
unsigned long result = 0;
while (n--) {
result = (result << 32) | **buf;
(*buf)++;
}
return result;
}
/*
* Figure out to which domain a cpu belongs and stick it there.
* Return the id of the domain used.
*/
static int numa_setup_cpu(unsigned long lcpu)
{
int numa_domain = 0;
struct device_node *cpu = find_cpu_node(lcpu);
if (!cpu) {
WARN_ON(1);
goto out;
}
numa_domain = of_node_numa_domain(cpu);
if (numa_domain >= num_online_nodes()) {
/*
* POWER4 LPAR uses 0xffff as invalid node,
* dont warn in this case.
*/
if (numa_domain != 0xffff)
printk(KERN_ERR "WARNING: cpu %ld "
"maps to invalid NUMA node %d\n",
lcpu, numa_domain);
numa_domain = 0;
}
out:
node_set_online(numa_domain);
map_cpu_to_node(lcpu, numa_domain);
of_node_put(cpu);
return numa_domain;
}
static int cpu_numa_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
unsigned long lcpu = (unsigned long)hcpu;
int ret = NOTIFY_DONE;
switch (action) {
case CPU_UP_PREPARE:
if (min_common_depth == -1 || !numa_enabled)
map_cpu_to_node(lcpu, 0);
else
numa_setup_cpu(lcpu);
ret = NOTIFY_OK;
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_DEAD:
case CPU_UP_CANCELED:
unmap_cpu_from_node(lcpu);
break;
ret = NOTIFY_OK;
#endif
}
return ret;
}
/*
* Check and possibly modify a memory region to enforce the memory limit.
*
* Returns the size the region should have to enforce the memory limit.
* This will either be the original value of size, a truncated value,
* or zero. If the returned value of size is 0 the region should be
* discarded as it lies wholy above the memory limit.
*/
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
unsigned long size)
{
/*
* We use lmb_end_of_DRAM() in here instead of memory_limit because
* we've already adjusted it for the limit and it takes care of
* having memory holes below the limit.
*/
if (! memory_limit)
return size;
if (start + size <= lmb_end_of_DRAM())
return size;
if (start >= lmb_end_of_DRAM())
return 0;
return lmb_end_of_DRAM() - start;
}
static int __init parse_numa_properties(void)
{
struct device_node *cpu = NULL;
struct device_node *memory = NULL;
int addr_cells, size_cells;
int max_domain;
unsigned long i;
if (numa_enabled == 0) {
printk(KERN_WARNING "NUMA disabled by user\n");
return -1;
}
min_common_depth = find_min_common_depth();
dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
if (min_common_depth < 0)
return min_common_depth;
max_domain = numa_setup_cpu(boot_cpuid);
/*
* Even though we connect cpus to numa domains later in SMP init,
* we need to know the maximum node id now. This is because each
* node id must have NODE_DATA etc backing it.
* As a result of hotplug we could still have cpus appear later on
* with larger node ids. In that case we force the cpu into node 0.
*/
for_each_cpu(i) {
int numa_domain;
cpu = find_cpu_node(i);
if (cpu) {
numa_domain = of_node_numa_domain(cpu);
of_node_put(cpu);
if (numa_domain < MAX_NUMNODES &&
max_domain < numa_domain)
max_domain = numa_domain;
}
}
addr_cells = get_mem_addr_cells();
size_cells = get_mem_size_cells();
memory = NULL;
while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
unsigned long start;
unsigned long size;
int numa_domain;
int ranges;
unsigned int *memcell_buf;
unsigned int len;
memcell_buf = (unsigned int *)get_property(memory, "reg", &len);
if (!memcell_buf || len <= 0)
continue;
ranges = memory->n_addrs;
new_range:
/* these are order-sensitive, and modify the buffer pointer */
start = read_n_cells(addr_cells, &memcell_buf);
size = read_n_cells(size_cells, &memcell_buf);
numa_domain = of_node_numa_domain(memory);
if (numa_domain >= MAX_NUMNODES) {
if (numa_domain != 0xffff)
printk(KERN_ERR "WARNING: memory at %lx maps "
"to invalid NUMA node %d\n", start,
numa_domain);
numa_domain = 0;
}
if (max_domain < numa_domain)
max_domain = numa_domain;
if (!(size = numa_enforce_memory_limit(start, size))) {
if (--ranges)
goto new_range;
else
continue;
}
add_region(numa_domain, start >> PAGE_SHIFT,
size >> PAGE_SHIFT);
if (--ranges)
goto new_range;
}
for (i = 0; i <= max_domain; i++)
node_set_online(i);
return 0;
}
static void __init setup_nonnuma(void)
{
unsigned long top_of_ram = lmb_end_of_DRAM();
unsigned long total_ram = lmb_phys_mem_size();
unsigned int i;
printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
top_of_ram, total_ram);
printk(KERN_INFO "Memory hole size: %ldMB\n",
(top_of_ram - total_ram) >> 20);
map_cpu_to_node(boot_cpuid, 0);
for (i = 0; i < lmb.memory.cnt; ++i)
add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT,
lmb_size_pages(&lmb.memory, i));
node_set_online(0);
}
static void __init dump_numa_topology(void)
{
unsigned int node;
unsigned int count;
if (min_common_depth == -1 || !numa_enabled)
return;
for_each_online_node(node) {
unsigned long i;
printk(KERN_INFO "Node %d Memory:", node);
count = 0;
for (i = 0; i < lmb_end_of_DRAM();
i += (1 << SECTION_SIZE_BITS)) {
if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
if (count == 0)
printk(" 0x%lx", i);
++count;
} else {
if (count > 0)
printk("-0x%lx", i);
count = 0;
}
}
if (count > 0)
printk("-0x%lx", i);
printk("\n");
}
return;
}
/*
* Allocate some memory, satisfying the lmb or bootmem allocator where
* required. nid is the preferred node and end is the physical address of
* the highest address in the node.
*
* Returns the physical address of the memory.
*/
static void __init *careful_allocation(int nid, unsigned long size,
unsigned long align,
unsigned long end_pfn)
{
int new_nid;
unsigned long ret = lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
/* retry over all memory */
if (!ret)
ret = lmb_alloc_base(size, align, lmb_end_of_DRAM());
if (!ret)
panic("numa.c: cannot allocate %lu bytes on node %d",
size, nid);
/*
* If the memory came from a previously allocated node, we must
* retry with the bootmem allocator.
*/
new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
if (new_nid < nid) {
ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
size, align, 0);
if (!ret)
panic("numa.c: cannot allocate %lu bytes on node %d",
size, new_nid);
ret = __pa(ret);
dbg("alloc_bootmem %lx %lx\n", ret, size);
}
return (void *)ret;
}
void __init do_init_bootmem(void)
{
int nid;
unsigned int i;
static struct notifier_block ppc64_numa_nb = {
.notifier_call = cpu_numa_callback,
.priority = 1 /* Must run before sched domains notifier. */
};
min_low_pfn = 0;
max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
max_pfn = max_low_pfn;
if (parse_numa_properties())
setup_nonnuma();
else
dump_numa_topology();
register_cpu_notifier(&ppc64_numa_nb);
for_each_online_node(nid) {
unsigned long start_pfn, end_pfn, pages_present;
unsigned long bootmem_paddr;
unsigned long bootmap_pages;
get_region(nid, &start_pfn, &end_pfn, &pages_present);
/* Allocate the node structure node local if possible */
NODE_DATA(nid) = careful_allocation(nid,
sizeof(struct pglist_data),
SMP_CACHE_BYTES, end_pfn);
NODE_DATA(nid) = __va(NODE_DATA(nid));
memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
dbg("node %d\n", nid);
dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
NODE_DATA(nid)->node_start_pfn = start_pfn;
NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
if (NODE_DATA(nid)->node_spanned_pages == 0)
continue;
dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
bootmem_paddr = (unsigned long)careful_allocation(nid,
bootmap_pages << PAGE_SHIFT,
PAGE_SIZE, end_pfn);
memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
dbg("bootmap_paddr = %lx\n", bootmem_paddr);
init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
start_pfn, end_pfn);
/* Add free regions on this node */
for (i = 0; init_node_data[i].end_pfn; i++) {
unsigned long start, end;
if (init_node_data[i].nid != nid)
continue;
start = init_node_data[i].start_pfn << PAGE_SHIFT;
end = init_node_data[i].end_pfn << PAGE_SHIFT;
dbg("free_bootmem %lx %lx\n", start, end - start);
free_bootmem_node(NODE_DATA(nid), start, end - start);
}
/* Mark reserved regions on this node */
for (i = 0; i < lmb.reserved.cnt; i++) {
unsigned long physbase = lmb.reserved.region[i].base;
unsigned long size = lmb.reserved.region[i].size;
unsigned long start_paddr = start_pfn << PAGE_SHIFT;
unsigned long end_paddr = end_pfn << PAGE_SHIFT;
if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
continue;
if (physbase < end_paddr &&
(physbase+size) > start_paddr) {
/* overlaps */
if (physbase < start_paddr) {
size -= start_paddr - physbase;
physbase = start_paddr;
}
if (size > end_paddr - physbase)
size = end_paddr - physbase;
dbg("reserve_bootmem %lx %lx\n", physbase,
size);
reserve_bootmem_node(NODE_DATA(nid), physbase,
size);
}
}
/* Add regions into sparsemem */
for (i = 0; init_node_data[i].end_pfn; i++) {
unsigned long start, end;
if (init_node_data[i].nid != nid)
continue;
start = init_node_data[i].start_pfn;
end = init_node_data[i].end_pfn;
memory_present(nid, start, end);
}
}
}
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
int nid;
memset(zones_size, 0, sizeof(zones_size));
memset(zholes_size, 0, sizeof(zholes_size));
for_each_online_node(nid) {
unsigned long start_pfn, end_pfn, pages_present;
get_region(nid, &start_pfn, &end_pfn, &pages_present);
zones_size[ZONE_DMA] = end_pfn - start_pfn;
zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present;
dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid,
zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]);
free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn,
zholes_size);
}
}
static int __init early_numa(char *p)
{
if (!p)
return 0;
if (strstr(p, "off"))
numa_enabled = 0;
if (strstr(p, "debug"))
numa_debug = 1;
return 0;
}
early_param("numa", early_numa);