4821 lines
138 KiB
C
4821 lines
138 KiB
C
/*
|
|
* Copyright © 2006-2007 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/input.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/kernel.h>
|
|
#include "drmP.h"
|
|
#include "intel_drv.h"
|
|
#include "i915_drm.h"
|
|
#include "i915_drv.h"
|
|
#include "drm_dp_helper.h"
|
|
|
|
#include "drm_crtc_helper.h"
|
|
|
|
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
|
|
|
|
bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
|
|
static void intel_update_watermarks(struct drm_device *dev);
|
|
static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
|
|
|
|
typedef struct {
|
|
/* given values */
|
|
int n;
|
|
int m1, m2;
|
|
int p1, p2;
|
|
/* derived values */
|
|
int dot;
|
|
int vco;
|
|
int m;
|
|
int p;
|
|
} intel_clock_t;
|
|
|
|
typedef struct {
|
|
int min, max;
|
|
} intel_range_t;
|
|
|
|
typedef struct {
|
|
int dot_limit;
|
|
int p2_slow, p2_fast;
|
|
} intel_p2_t;
|
|
|
|
#define INTEL_P2_NUM 2
|
|
typedef struct intel_limit intel_limit_t;
|
|
struct intel_limit {
|
|
intel_range_t dot, vco, n, m, m1, m2, p, p1;
|
|
intel_p2_t p2;
|
|
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
|
|
int, int, intel_clock_t *);
|
|
bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
|
|
int, int, intel_clock_t *);
|
|
};
|
|
|
|
#define I8XX_DOT_MIN 25000
|
|
#define I8XX_DOT_MAX 350000
|
|
#define I8XX_VCO_MIN 930000
|
|
#define I8XX_VCO_MAX 1400000
|
|
#define I8XX_N_MIN 3
|
|
#define I8XX_N_MAX 16
|
|
#define I8XX_M_MIN 96
|
|
#define I8XX_M_MAX 140
|
|
#define I8XX_M1_MIN 18
|
|
#define I8XX_M1_MAX 26
|
|
#define I8XX_M2_MIN 6
|
|
#define I8XX_M2_MAX 16
|
|
#define I8XX_P_MIN 4
|
|
#define I8XX_P_MAX 128
|
|
#define I8XX_P1_MIN 2
|
|
#define I8XX_P1_MAX 33
|
|
#define I8XX_P1_LVDS_MIN 1
|
|
#define I8XX_P1_LVDS_MAX 6
|
|
#define I8XX_P2_SLOW 4
|
|
#define I8XX_P2_FAST 2
|
|
#define I8XX_P2_LVDS_SLOW 14
|
|
#define I8XX_P2_LVDS_FAST 7
|
|
#define I8XX_P2_SLOW_LIMIT 165000
|
|
|
|
#define I9XX_DOT_MIN 20000
|
|
#define I9XX_DOT_MAX 400000
|
|
#define I9XX_VCO_MIN 1400000
|
|
#define I9XX_VCO_MAX 2800000
|
|
#define PINEVIEW_VCO_MIN 1700000
|
|
#define PINEVIEW_VCO_MAX 3500000
|
|
#define I9XX_N_MIN 1
|
|
#define I9XX_N_MAX 6
|
|
/* Pineview's Ncounter is a ring counter */
|
|
#define PINEVIEW_N_MIN 3
|
|
#define PINEVIEW_N_MAX 6
|
|
#define I9XX_M_MIN 70
|
|
#define I9XX_M_MAX 120
|
|
#define PINEVIEW_M_MIN 2
|
|
#define PINEVIEW_M_MAX 256
|
|
#define I9XX_M1_MIN 10
|
|
#define I9XX_M1_MAX 22
|
|
#define I9XX_M2_MIN 5
|
|
#define I9XX_M2_MAX 9
|
|
/* Pineview M1 is reserved, and must be 0 */
|
|
#define PINEVIEW_M1_MIN 0
|
|
#define PINEVIEW_M1_MAX 0
|
|
#define PINEVIEW_M2_MIN 0
|
|
#define PINEVIEW_M2_MAX 254
|
|
#define I9XX_P_SDVO_DAC_MIN 5
|
|
#define I9XX_P_SDVO_DAC_MAX 80
|
|
#define I9XX_P_LVDS_MIN 7
|
|
#define I9XX_P_LVDS_MAX 98
|
|
#define PINEVIEW_P_LVDS_MIN 7
|
|
#define PINEVIEW_P_LVDS_MAX 112
|
|
#define I9XX_P1_MIN 1
|
|
#define I9XX_P1_MAX 8
|
|
#define I9XX_P2_SDVO_DAC_SLOW 10
|
|
#define I9XX_P2_SDVO_DAC_FAST 5
|
|
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
|
|
#define I9XX_P2_LVDS_SLOW 14
|
|
#define I9XX_P2_LVDS_FAST 7
|
|
#define I9XX_P2_LVDS_SLOW_LIMIT 112000
|
|
|
|
/*The parameter is for SDVO on G4x platform*/
|
|
#define G4X_DOT_SDVO_MIN 25000
|
|
#define G4X_DOT_SDVO_MAX 270000
|
|
#define G4X_VCO_MIN 1750000
|
|
#define G4X_VCO_MAX 3500000
|
|
#define G4X_N_SDVO_MIN 1
|
|
#define G4X_N_SDVO_MAX 4
|
|
#define G4X_M_SDVO_MIN 104
|
|
#define G4X_M_SDVO_MAX 138
|
|
#define G4X_M1_SDVO_MIN 17
|
|
#define G4X_M1_SDVO_MAX 23
|
|
#define G4X_M2_SDVO_MIN 5
|
|
#define G4X_M2_SDVO_MAX 11
|
|
#define G4X_P_SDVO_MIN 10
|
|
#define G4X_P_SDVO_MAX 30
|
|
#define G4X_P1_SDVO_MIN 1
|
|
#define G4X_P1_SDVO_MAX 3
|
|
#define G4X_P2_SDVO_SLOW 10
|
|
#define G4X_P2_SDVO_FAST 10
|
|
#define G4X_P2_SDVO_LIMIT 270000
|
|
|
|
/*The parameter is for HDMI_DAC on G4x platform*/
|
|
#define G4X_DOT_HDMI_DAC_MIN 22000
|
|
#define G4X_DOT_HDMI_DAC_MAX 400000
|
|
#define G4X_N_HDMI_DAC_MIN 1
|
|
#define G4X_N_HDMI_DAC_MAX 4
|
|
#define G4X_M_HDMI_DAC_MIN 104
|
|
#define G4X_M_HDMI_DAC_MAX 138
|
|
#define G4X_M1_HDMI_DAC_MIN 16
|
|
#define G4X_M1_HDMI_DAC_MAX 23
|
|
#define G4X_M2_HDMI_DAC_MIN 5
|
|
#define G4X_M2_HDMI_DAC_MAX 11
|
|
#define G4X_P_HDMI_DAC_MIN 5
|
|
#define G4X_P_HDMI_DAC_MAX 80
|
|
#define G4X_P1_HDMI_DAC_MIN 1
|
|
#define G4X_P1_HDMI_DAC_MAX 8
|
|
#define G4X_P2_HDMI_DAC_SLOW 10
|
|
#define G4X_P2_HDMI_DAC_FAST 5
|
|
#define G4X_P2_HDMI_DAC_LIMIT 165000
|
|
|
|
/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
|
|
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
|
|
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
|
|
#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
|
|
#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
|
|
#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
|
|
#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
|
|
#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
|
|
#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
|
|
#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
|
|
#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
|
|
#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
|
|
#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
|
|
#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
|
|
#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
|
|
#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
|
|
#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
|
|
#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
|
|
|
|
/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
|
|
#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
|
|
#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
|
|
#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
|
|
#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
|
|
#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
|
|
#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
|
|
#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
|
|
#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
|
|
#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
|
|
#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
|
|
#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
|
|
#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
|
|
#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
|
|
#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
|
|
#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
|
|
#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
|
|
#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
|
|
|
|
/*The parameter is for DISPLAY PORT on G4x platform*/
|
|
#define G4X_DOT_DISPLAY_PORT_MIN 161670
|
|
#define G4X_DOT_DISPLAY_PORT_MAX 227000
|
|
#define G4X_N_DISPLAY_PORT_MIN 1
|
|
#define G4X_N_DISPLAY_PORT_MAX 2
|
|
#define G4X_M_DISPLAY_PORT_MIN 97
|
|
#define G4X_M_DISPLAY_PORT_MAX 108
|
|
#define G4X_M1_DISPLAY_PORT_MIN 0x10
|
|
#define G4X_M1_DISPLAY_PORT_MAX 0x12
|
|
#define G4X_M2_DISPLAY_PORT_MIN 0x05
|
|
#define G4X_M2_DISPLAY_PORT_MAX 0x06
|
|
#define G4X_P_DISPLAY_PORT_MIN 10
|
|
#define G4X_P_DISPLAY_PORT_MAX 20
|
|
#define G4X_P1_DISPLAY_PORT_MIN 1
|
|
#define G4X_P1_DISPLAY_PORT_MAX 2
|
|
#define G4X_P2_DISPLAY_PORT_SLOW 10
|
|
#define G4X_P2_DISPLAY_PORT_FAST 10
|
|
#define G4X_P2_DISPLAY_PORT_LIMIT 0
|
|
|
|
/* Ironlake */
|
|
/* as we calculate clock using (register_value + 2) for
|
|
N/M1/M2, so here the range value for them is (actual_value-2).
|
|
*/
|
|
#define IRONLAKE_DOT_MIN 25000
|
|
#define IRONLAKE_DOT_MAX 350000
|
|
#define IRONLAKE_VCO_MIN 1760000
|
|
#define IRONLAKE_VCO_MAX 3510000
|
|
#define IRONLAKE_N_MIN 1
|
|
#define IRONLAKE_N_MAX 5
|
|
#define IRONLAKE_M_MIN 79
|
|
#define IRONLAKE_M_MAX 118
|
|
#define IRONLAKE_M1_MIN 12
|
|
#define IRONLAKE_M1_MAX 23
|
|
#define IRONLAKE_M2_MIN 5
|
|
#define IRONLAKE_M2_MAX 9
|
|
#define IRONLAKE_P_SDVO_DAC_MIN 5
|
|
#define IRONLAKE_P_SDVO_DAC_MAX 80
|
|
#define IRONLAKE_P_LVDS_MIN 28
|
|
#define IRONLAKE_P_LVDS_MAX 112
|
|
#define IRONLAKE_P1_MIN 1
|
|
#define IRONLAKE_P1_MAX 8
|
|
#define IRONLAKE_P2_SDVO_DAC_SLOW 10
|
|
#define IRONLAKE_P2_SDVO_DAC_FAST 5
|
|
#define IRONLAKE_P2_LVDS_SLOW 14 /* single channel */
|
|
#define IRONLAKE_P2_LVDS_FAST 7 /* double channel */
|
|
#define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
|
|
|
|
static bool
|
|
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock);
|
|
static bool
|
|
intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock);
|
|
static bool
|
|
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock);
|
|
static bool
|
|
intel_ironlake_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock);
|
|
|
|
static bool
|
|
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock);
|
|
static bool
|
|
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock);
|
|
|
|
static const intel_limit_t intel_limits_i8xx_dvo = {
|
|
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
|
|
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
|
|
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
|
|
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
|
|
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
|
|
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
|
|
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
|
|
.p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
|
|
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
|
|
.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
|
|
.find_pll = intel_find_best_PLL,
|
|
.find_reduced_pll = intel_find_best_reduced_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i8xx_lvds = {
|
|
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
|
|
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
|
|
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
|
|
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
|
|
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
|
|
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
|
|
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
|
|
.p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
|
|
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
|
|
.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
|
|
.find_pll = intel_find_best_PLL,
|
|
.find_reduced_pll = intel_find_best_reduced_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i9xx_sdvo = {
|
|
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
|
|
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
|
|
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
|
|
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
|
|
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
|
|
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
|
|
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
|
|
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
|
|
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
|
|
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
|
|
.find_pll = intel_find_best_PLL,
|
|
.find_reduced_pll = intel_find_best_reduced_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_i9xx_lvds = {
|
|
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
|
|
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
|
|
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
|
|
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
|
|
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
|
|
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
|
|
.p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
|
|
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
|
|
/* The single-channel range is 25-112Mhz, and dual-channel
|
|
* is 80-224Mhz. Prefer single channel as much as possible.
|
|
*/
|
|
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
|
|
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
|
|
.find_pll = intel_find_best_PLL,
|
|
.find_reduced_pll = intel_find_best_reduced_PLL,
|
|
};
|
|
|
|
/* below parameter and function is for G4X Chipset Family*/
|
|
static const intel_limit_t intel_limits_g4x_sdvo = {
|
|
.dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
|
|
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
|
|
.n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
|
|
.m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
|
|
.m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
|
|
.m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
|
|
.p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
|
|
.p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
|
|
.p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
|
|
.p2_slow = G4X_P2_SDVO_SLOW,
|
|
.p2_fast = G4X_P2_SDVO_FAST
|
|
},
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
.find_reduced_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_hdmi = {
|
|
.dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
|
|
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
|
|
.n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
|
|
.m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
|
|
.m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
|
|
.m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
|
|
.p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
|
|
.p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
|
|
.p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
|
|
.p2_slow = G4X_P2_HDMI_DAC_SLOW,
|
|
.p2_fast = G4X_P2_HDMI_DAC_FAST
|
|
},
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
.find_reduced_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
|
|
.dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
|
|
.max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
|
|
.vco = { .min = G4X_VCO_MIN,
|
|
.max = G4X_VCO_MAX },
|
|
.n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
|
|
.max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
|
|
.m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
|
|
.max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
|
|
.m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
|
|
.max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
|
|
.m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
|
|
.max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
|
|
.p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
|
|
.max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
|
|
.p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
|
|
.max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
|
|
.p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
|
|
.p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
|
|
.p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
|
|
},
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
.find_reduced_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
|
|
.dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
|
|
.max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
|
|
.vco = { .min = G4X_VCO_MIN,
|
|
.max = G4X_VCO_MAX },
|
|
.n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
|
|
.max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
|
|
.m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
|
|
.max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
|
|
.m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
|
|
.max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
|
|
.m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
|
|
.max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
|
|
.p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
|
|
.max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
|
|
.p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
|
|
.max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
|
|
.p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
|
|
.p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
|
|
.p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
|
|
},
|
|
.find_pll = intel_g4x_find_best_PLL,
|
|
.find_reduced_pll = intel_g4x_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_g4x_display_port = {
|
|
.dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
|
|
.max = G4X_DOT_DISPLAY_PORT_MAX },
|
|
.vco = { .min = G4X_VCO_MIN,
|
|
.max = G4X_VCO_MAX},
|
|
.n = { .min = G4X_N_DISPLAY_PORT_MIN,
|
|
.max = G4X_N_DISPLAY_PORT_MAX },
|
|
.m = { .min = G4X_M_DISPLAY_PORT_MIN,
|
|
.max = G4X_M_DISPLAY_PORT_MAX },
|
|
.m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
|
|
.max = G4X_M1_DISPLAY_PORT_MAX },
|
|
.m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
|
|
.max = G4X_M2_DISPLAY_PORT_MAX },
|
|
.p = { .min = G4X_P_DISPLAY_PORT_MIN,
|
|
.max = G4X_P_DISPLAY_PORT_MAX },
|
|
.p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
|
|
.max = G4X_P1_DISPLAY_PORT_MAX},
|
|
.p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
|
|
.p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
|
|
.p2_fast = G4X_P2_DISPLAY_PORT_FAST },
|
|
.find_pll = intel_find_pll_g4x_dp,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_pineview_sdvo = {
|
|
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
|
|
.vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
|
|
.n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
|
|
.m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
|
|
.m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
|
|
.m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
|
|
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
|
|
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
|
|
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
|
|
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
|
|
.find_pll = intel_find_best_PLL,
|
|
.find_reduced_pll = intel_find_best_reduced_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_pineview_lvds = {
|
|
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
|
|
.vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
|
|
.n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
|
|
.m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
|
|
.m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
|
|
.m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
|
|
.p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
|
|
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
|
|
/* Pineview only supports single-channel mode. */
|
|
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
|
|
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
|
|
.find_pll = intel_find_best_PLL,
|
|
.find_reduced_pll = intel_find_best_reduced_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_sdvo = {
|
|
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
|
|
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
|
|
.n = { .min = IRONLAKE_N_MIN, .max = IRONLAKE_N_MAX },
|
|
.m = { .min = IRONLAKE_M_MIN, .max = IRONLAKE_M_MAX },
|
|
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
|
|
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
|
|
.p = { .min = IRONLAKE_P_SDVO_DAC_MIN, .max = IRONLAKE_P_SDVO_DAC_MAX },
|
|
.p1 = { .min = IRONLAKE_P1_MIN, .max = IRONLAKE_P1_MAX },
|
|
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
|
|
.p2_slow = IRONLAKE_P2_SDVO_DAC_SLOW,
|
|
.p2_fast = IRONLAKE_P2_SDVO_DAC_FAST },
|
|
.find_pll = intel_ironlake_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t intel_limits_ironlake_lvds = {
|
|
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
|
|
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
|
|
.n = { .min = IRONLAKE_N_MIN, .max = IRONLAKE_N_MAX },
|
|
.m = { .min = IRONLAKE_M_MIN, .max = IRONLAKE_M_MAX },
|
|
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
|
|
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
|
|
.p = { .min = IRONLAKE_P_LVDS_MIN, .max = IRONLAKE_P_LVDS_MAX },
|
|
.p1 = { .min = IRONLAKE_P1_MIN, .max = IRONLAKE_P1_MAX },
|
|
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
|
|
.p2_slow = IRONLAKE_P2_LVDS_SLOW,
|
|
.p2_fast = IRONLAKE_P2_LVDS_FAST },
|
|
.find_pll = intel_ironlake_find_best_PLL,
|
|
};
|
|
|
|
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
|
|
{
|
|
const intel_limit_t *limit;
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_ironlake_lvds;
|
|
else
|
|
limit = &intel_limits_ironlake_sdvo;
|
|
|
|
return limit;
|
|
}
|
|
|
|
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
const intel_limit_t *limit;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
|
|
LVDS_CLKB_POWER_UP)
|
|
/* LVDS with dual channel */
|
|
limit = &intel_limits_g4x_dual_channel_lvds;
|
|
else
|
|
/* LVDS with dual channel */
|
|
limit = &intel_limits_g4x_single_channel_lvds;
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
|
|
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
|
|
limit = &intel_limits_g4x_hdmi;
|
|
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
|
|
limit = &intel_limits_g4x_sdvo;
|
|
} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
|
|
limit = &intel_limits_g4x_display_port;
|
|
} else /* The option is for other outputs */
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
|
|
return limit;
|
|
}
|
|
|
|
static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
const intel_limit_t *limit;
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
limit = intel_ironlake_limit(crtc);
|
|
else if (IS_G4X(dev)) {
|
|
limit = intel_g4x_limit(crtc);
|
|
} else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_i9xx_lvds;
|
|
else
|
|
limit = &intel_limits_i9xx_sdvo;
|
|
} else if (IS_PINEVIEW(dev)) {
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_pineview_lvds;
|
|
else
|
|
limit = &intel_limits_pineview_sdvo;
|
|
} else {
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
|
|
limit = &intel_limits_i8xx_lvds;
|
|
else
|
|
limit = &intel_limits_i8xx_dvo;
|
|
}
|
|
return limit;
|
|
}
|
|
|
|
/* m1 is reserved as 0 in Pineview, n is a ring counter */
|
|
static void pineview_clock(int refclk, intel_clock_t *clock)
|
|
{
|
|
clock->m = clock->m2 + 2;
|
|
clock->p = clock->p1 * clock->p2;
|
|
clock->vco = refclk * clock->m / clock->n;
|
|
clock->dot = clock->vco / clock->p;
|
|
}
|
|
|
|
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
|
|
{
|
|
if (IS_PINEVIEW(dev)) {
|
|
pineview_clock(refclk, clock);
|
|
return;
|
|
}
|
|
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
|
|
clock->p = clock->p1 * clock->p2;
|
|
clock->vco = refclk * clock->m / (clock->n + 2);
|
|
clock->dot = clock->vco / clock->p;
|
|
}
|
|
|
|
/**
|
|
* Returns whether any output on the specified pipe is of the specified type
|
|
*/
|
|
bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct drm_connector *l_entry;
|
|
|
|
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
|
|
if (l_entry->encoder &&
|
|
l_entry->encoder->crtc == crtc) {
|
|
struct intel_output *intel_output = to_intel_output(l_entry);
|
|
if (intel_output->type == type)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct drm_connector *
|
|
intel_pipe_get_output (struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct drm_connector *l_entry, *ret = NULL;
|
|
|
|
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
|
|
if (l_entry->encoder &&
|
|
l_entry->encoder->crtc == crtc) {
|
|
ret = l_entry;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
|
|
/**
|
|
* Returns whether the given set of divisors are valid for a given refclk with
|
|
* the given connectors.
|
|
*/
|
|
|
|
static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
|
|
{
|
|
const intel_limit_t *limit = intel_limit (crtc);
|
|
struct drm_device *dev = crtc->dev;
|
|
|
|
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
|
|
INTELPllInvalid ("p1 out of range\n");
|
|
if (clock->p < limit->p.min || limit->p.max < clock->p)
|
|
INTELPllInvalid ("p out of range\n");
|
|
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
|
|
INTELPllInvalid ("m2 out of range\n");
|
|
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
|
|
INTELPllInvalid ("m1 out of range\n");
|
|
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
|
|
INTELPllInvalid ("m1 <= m2\n");
|
|
if (clock->m < limit->m.min || limit->m.max < clock->m)
|
|
INTELPllInvalid ("m out of range\n");
|
|
if (clock->n < limit->n.min || limit->n.max < clock->n)
|
|
INTELPllInvalid ("n out of range\n");
|
|
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
|
|
INTELPllInvalid ("vco out of range\n");
|
|
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
|
|
* connector, etc., rather than just a single range.
|
|
*/
|
|
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
|
|
INTELPllInvalid ("dot out of range\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock)
|
|
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
intel_clock_t clock;
|
|
int err = target;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
|
|
(I915_READ(LVDS)) != 0) {
|
|
/*
|
|
* For LVDS, if the panel is on, just rely on its current
|
|
* settings for dual-channel. We haven't figured out how to
|
|
* reliably set up different single/dual channel state, if we
|
|
* even can.
|
|
*/
|
|
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
|
|
LVDS_CLKB_POWER_UP)
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset (best_clock, 0, sizeof (*best_clock));
|
|
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
|
|
clock.m1++) {
|
|
for (clock.m2 = limit->m2.min;
|
|
clock.m2 <= limit->m2.max; clock.m2++) {
|
|
/* m1 is always 0 in Pineview */
|
|
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
|
|
break;
|
|
for (clock.n = limit->n.min;
|
|
clock.n <= limit->n.max; clock.n++) {
|
|
for (clock.p1 = limit->p1.min;
|
|
clock.p1 <= limit->p1.max; clock.p1++) {
|
|
int this_err;
|
|
|
|
intel_clock(dev, refclk, &clock);
|
|
|
|
if (!intel_PLL_is_valid(crtc, &clock))
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err) {
|
|
*best_clock = clock;
|
|
err = this_err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return (err != target);
|
|
}
|
|
|
|
|
|
static bool
|
|
intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock)
|
|
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
intel_clock_t clock;
|
|
int err = target;
|
|
bool found = false;
|
|
|
|
memcpy(&clock, best_clock, sizeof(intel_clock_t));
|
|
|
|
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
|
|
for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
|
|
/* m1 is always 0 in Pineview */
|
|
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
|
|
break;
|
|
for (clock.n = limit->n.min; clock.n <= limit->n.max;
|
|
clock.n++) {
|
|
int this_err;
|
|
|
|
intel_clock(dev, refclk, &clock);
|
|
|
|
if (!intel_PLL_is_valid(crtc, &clock))
|
|
continue;
|
|
|
|
this_err = abs(clock.dot - target);
|
|
if (this_err < err) {
|
|
*best_clock = clock;
|
|
err = this_err;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
static bool
|
|
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
intel_clock_t clock;
|
|
int max_n;
|
|
bool found;
|
|
/* approximately equals target * 0.00488 */
|
|
int err_most = (target >> 8) + (target >> 10);
|
|
found = false;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
|
|
LVDS_CLKB_POWER_UP)
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
max_n = limit->n.max;
|
|
/* based on hardware requriment prefer smaller n to precision */
|
|
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
|
|
/* based on hardware requirment prefere larger m1,m2 */
|
|
for (clock.m1 = limit->m1.max;
|
|
clock.m1 >= limit->m1.min; clock.m1--) {
|
|
for (clock.m2 = limit->m2.max;
|
|
clock.m2 >= limit->m2.min; clock.m2--) {
|
|
for (clock.p1 = limit->p1.max;
|
|
clock.p1 >= limit->p1.min; clock.p1--) {
|
|
int this_err;
|
|
|
|
intel_clock(dev, refclk, &clock);
|
|
if (!intel_PLL_is_valid(crtc, &clock))
|
|
continue;
|
|
this_err = abs(clock.dot - target) ;
|
|
if (this_err < err_most) {
|
|
*best_clock = clock;
|
|
err_most = this_err;
|
|
max_n = clock.n;
|
|
found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static bool
|
|
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
intel_clock_t clock;
|
|
if (target < 200000) {
|
|
clock.n = 1;
|
|
clock.p1 = 2;
|
|
clock.p2 = 10;
|
|
clock.m1 = 12;
|
|
clock.m2 = 9;
|
|
} else {
|
|
clock.n = 2;
|
|
clock.p1 = 1;
|
|
clock.p2 = 10;
|
|
clock.m1 = 14;
|
|
clock.m2 = 8;
|
|
}
|
|
intel_clock(dev, refclk, &clock);
|
|
memcpy(best_clock, &clock, sizeof(intel_clock_t));
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_ironlake_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
intel_clock_t clock;
|
|
int err_most = 47;
|
|
int err_min = 10000;
|
|
|
|
/* eDP has only 2 clock choice, no n/m/p setting */
|
|
if (HAS_eDP)
|
|
return true;
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
|
|
return intel_find_pll_ironlake_dp(limit, crtc, target,
|
|
refclk, best_clock);
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
|
|
LVDS_CLKB_POWER_UP)
|
|
clock.p2 = limit->p2.p2_fast;
|
|
else
|
|
clock.p2 = limit->p2.p2_slow;
|
|
} else {
|
|
if (target < limit->p2.dot_limit)
|
|
clock.p2 = limit->p2.p2_slow;
|
|
else
|
|
clock.p2 = limit->p2.p2_fast;
|
|
}
|
|
|
|
memset(best_clock, 0, sizeof(*best_clock));
|
|
for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
|
|
/* based on hardware requriment prefer smaller n to precision */
|
|
for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
|
|
/* based on hardware requirment prefere larger m1,m2 */
|
|
for (clock.m1 = limit->m1.max;
|
|
clock.m1 >= limit->m1.min; clock.m1--) {
|
|
for (clock.m2 = limit->m2.max;
|
|
clock.m2 >= limit->m2.min; clock.m2--) {
|
|
int this_err;
|
|
|
|
intel_clock(dev, refclk, &clock);
|
|
if (!intel_PLL_is_valid(crtc, &clock))
|
|
continue;
|
|
this_err = abs((10000 - (target*10000/clock.dot)));
|
|
if (this_err < err_most) {
|
|
*best_clock = clock;
|
|
/* found on first matching */
|
|
goto out;
|
|
} else if (this_err < err_min) {
|
|
*best_clock = clock;
|
|
err_min = this_err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
return true;
|
|
}
|
|
|
|
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
|
|
static bool
|
|
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
|
|
int target, int refclk, intel_clock_t *best_clock)
|
|
{
|
|
intel_clock_t clock;
|
|
if (target < 200000) {
|
|
clock.p1 = 2;
|
|
clock.p2 = 10;
|
|
clock.n = 2;
|
|
clock.m1 = 23;
|
|
clock.m2 = 8;
|
|
} else {
|
|
clock.p1 = 1;
|
|
clock.p2 = 10;
|
|
clock.n = 1;
|
|
clock.m1 = 14;
|
|
clock.m2 = 2;
|
|
}
|
|
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
|
|
clock.p = (clock.p1 * clock.p2);
|
|
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
|
|
clock.vco = 0;
|
|
memcpy(best_clock, &clock, sizeof(intel_clock_t));
|
|
return true;
|
|
}
|
|
|
|
void
|
|
intel_wait_for_vblank(struct drm_device *dev)
|
|
{
|
|
/* Wait for 20ms, i.e. one cycle at 50hz. */
|
|
msleep(20);
|
|
}
|
|
|
|
/* Parameters have changed, update FBC info */
|
|
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_framebuffer *fb = crtc->fb;
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int plane, i;
|
|
u32 fbc_ctl, fbc_ctl2;
|
|
|
|
dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
|
|
|
|
if (fb->pitch < dev_priv->cfb_pitch)
|
|
dev_priv->cfb_pitch = fb->pitch;
|
|
|
|
/* FBC_CTL wants 64B units */
|
|
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
|
|
dev_priv->cfb_fence = obj_priv->fence_reg;
|
|
dev_priv->cfb_plane = intel_crtc->plane;
|
|
plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
|
|
|
|
/* Clear old tags */
|
|
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
|
|
I915_WRITE(FBC_TAG + (i * 4), 0);
|
|
|
|
/* Set it up... */
|
|
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE)
|
|
fbc_ctl2 |= FBC_CTL_CPU_FENCE;
|
|
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
|
|
I915_WRITE(FBC_FENCE_OFF, crtc->y);
|
|
|
|
/* enable it... */
|
|
fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
|
|
fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
|
|
fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE)
|
|
fbc_ctl |= dev_priv->cfb_fence;
|
|
I915_WRITE(FBC_CONTROL, fbc_ctl);
|
|
|
|
DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
|
|
dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
|
|
}
|
|
|
|
void i8xx_disable_fbc(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 fbc_ctl;
|
|
|
|
if (!I915_HAS_FBC(dev))
|
|
return;
|
|
|
|
/* Disable compression */
|
|
fbc_ctl = I915_READ(FBC_CONTROL);
|
|
fbc_ctl &= ~FBC_CTL_EN;
|
|
I915_WRITE(FBC_CONTROL, fbc_ctl);
|
|
|
|
/* Wait for compressing bit to clear */
|
|
while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
|
|
; /* nothing */
|
|
|
|
intel_wait_for_vblank(dev);
|
|
|
|
DRM_DEBUG_KMS("disabled FBC\n");
|
|
}
|
|
|
|
static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
|
|
}
|
|
|
|
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_framebuffer *fb = crtc->fb;
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
|
|
DPFC_CTL_PLANEB);
|
|
unsigned long stall_watermark = 200;
|
|
u32 dpfc_ctl;
|
|
|
|
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
|
|
dev_priv->cfb_fence = obj_priv->fence_reg;
|
|
dev_priv->cfb_plane = intel_crtc->plane;
|
|
|
|
dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE) {
|
|
dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
|
|
I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
|
|
} else {
|
|
I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
|
|
}
|
|
|
|
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
|
|
I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
|
|
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
|
|
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
|
|
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
|
|
|
|
/* enable it... */
|
|
I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
|
|
|
|
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
|
|
}
|
|
|
|
void g4x_disable_fbc(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpfc_ctl;
|
|
|
|
/* Disable compression */
|
|
dpfc_ctl = I915_READ(DPFC_CONTROL);
|
|
dpfc_ctl &= ~DPFC_CTL_EN;
|
|
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
|
|
intel_wait_for_vblank(dev);
|
|
|
|
DRM_DEBUG_KMS("disabled FBC\n");
|
|
}
|
|
|
|
static bool g4x_fbc_enabled(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
|
|
}
|
|
|
|
/**
|
|
* intel_update_fbc - enable/disable FBC as needed
|
|
* @crtc: CRTC to point the compressor at
|
|
* @mode: mode in use
|
|
*
|
|
* Set up the framebuffer compression hardware at mode set time. We
|
|
* enable it if possible:
|
|
* - plane A only (on pre-965)
|
|
* - no pixel mulitply/line duplication
|
|
* - no alpha buffer discard
|
|
* - no dual wide
|
|
* - framebuffer <= 2048 in width, 1536 in height
|
|
*
|
|
* We can't assume that any compression will take place (worst case),
|
|
* so the compressed buffer has to be the same size as the uncompressed
|
|
* one. It also must reside (along with the line length buffer) in
|
|
* stolen memory.
|
|
*
|
|
* We need to enable/disable FBC on a global basis.
|
|
*/
|
|
static void intel_update_fbc(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_framebuffer *fb = crtc->fb;
|
|
struct intel_framebuffer *intel_fb;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int plane = intel_crtc->plane;
|
|
|
|
if (!i915_powersave)
|
|
return;
|
|
|
|
if (!dev_priv->display.fbc_enabled ||
|
|
!dev_priv->display.enable_fbc ||
|
|
!dev_priv->display.disable_fbc)
|
|
return;
|
|
|
|
if (!crtc->fb)
|
|
return;
|
|
|
|
intel_fb = to_intel_framebuffer(fb);
|
|
obj_priv = intel_fb->obj->driver_private;
|
|
|
|
/*
|
|
* If FBC is already on, we just have to verify that we can
|
|
* keep it that way...
|
|
* Need to disable if:
|
|
* - changing FBC params (stride, fence, mode)
|
|
* - new fb is too large to fit in compressed buffer
|
|
* - going to an unsupported config (interlace, pixel multiply, etc.)
|
|
*/
|
|
if (intel_fb->obj->size > dev_priv->cfb_size) {
|
|
DRM_DEBUG_KMS("framebuffer too large, disabling "
|
|
"compression\n");
|
|
goto out_disable;
|
|
}
|
|
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
|
|
(mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
|
|
DRM_DEBUG_KMS("mode incompatible with compression, "
|
|
"disabling\n");
|
|
goto out_disable;
|
|
}
|
|
if ((mode->hdisplay > 2048) ||
|
|
(mode->vdisplay > 1536)) {
|
|
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
|
|
goto out_disable;
|
|
}
|
|
if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
|
|
DRM_DEBUG_KMS("plane not 0, disabling compression\n");
|
|
goto out_disable;
|
|
}
|
|
if (obj_priv->tiling_mode != I915_TILING_X) {
|
|
DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
|
|
goto out_disable;
|
|
}
|
|
|
|
if (dev_priv->display.fbc_enabled(crtc)) {
|
|
/* We can re-enable it in this case, but need to update pitch */
|
|
if (fb->pitch > dev_priv->cfb_pitch)
|
|
dev_priv->display.disable_fbc(dev);
|
|
if (obj_priv->fence_reg != dev_priv->cfb_fence)
|
|
dev_priv->display.disable_fbc(dev);
|
|
if (plane != dev_priv->cfb_plane)
|
|
dev_priv->display.disable_fbc(dev);
|
|
}
|
|
|
|
if (!dev_priv->display.fbc_enabled(crtc)) {
|
|
/* Now try to turn it back on if possible */
|
|
dev_priv->display.enable_fbc(crtc, 500);
|
|
}
|
|
|
|
return;
|
|
|
|
out_disable:
|
|
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
|
|
/* Multiple disables should be harmless */
|
|
if (dev_priv->display.fbc_enabled(crtc))
|
|
dev_priv->display.disable_fbc(dev);
|
|
}
|
|
|
|
static int
|
|
intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
u32 alignment;
|
|
int ret;
|
|
|
|
switch (obj_priv->tiling_mode) {
|
|
case I915_TILING_NONE:
|
|
alignment = 64 * 1024;
|
|
break;
|
|
case I915_TILING_X:
|
|
/* pin() will align the object as required by fence */
|
|
alignment = 0;
|
|
break;
|
|
case I915_TILING_Y:
|
|
/* FIXME: Is this true? */
|
|
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
|
|
return -EINVAL;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
ret = i915_gem_object_pin(obj, alignment);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* Install a fence for tiled scan-out. Pre-i965 always needs a
|
|
* fence, whereas 965+ only requires a fence if using
|
|
* framebuffer compression. For simplicity, we always install
|
|
* a fence as the cost is not that onerous.
|
|
*/
|
|
if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
|
|
obj_priv->tiling_mode != I915_TILING_NONE) {
|
|
ret = i915_gem_object_get_fence_reg(obj);
|
|
if (ret != 0) {
|
|
i915_gem_object_unpin(obj);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
|
|
struct drm_framebuffer *old_fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_master_private *master_priv;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_framebuffer *intel_fb;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
struct drm_gem_object *obj;
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
unsigned long Start, Offset;
|
|
int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
|
|
int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
|
|
int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
|
|
int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
|
|
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
|
|
u32 dspcntr;
|
|
int ret;
|
|
|
|
/* no fb bound */
|
|
if (!crtc->fb) {
|
|
DRM_DEBUG_KMS("No FB bound\n");
|
|
return 0;
|
|
}
|
|
|
|
switch (plane) {
|
|
case 0:
|
|
case 1:
|
|
break;
|
|
default:
|
|
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_fb = to_intel_framebuffer(crtc->fb);
|
|
obj = intel_fb->obj;
|
|
obj_priv = obj->driver_private;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = intel_pin_and_fence_fb_obj(dev, obj);
|
|
if (ret != 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret != 0) {
|
|
i915_gem_object_unpin(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
dspcntr = I915_READ(dspcntr_reg);
|
|
/* Mask out pixel format bits in case we change it */
|
|
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
|
|
switch (crtc->fb->bits_per_pixel) {
|
|
case 8:
|
|
dspcntr |= DISPPLANE_8BPP;
|
|
break;
|
|
case 16:
|
|
if (crtc->fb->depth == 15)
|
|
dspcntr |= DISPPLANE_15_16BPP;
|
|
else
|
|
dspcntr |= DISPPLANE_16BPP;
|
|
break;
|
|
case 24:
|
|
case 32:
|
|
if (crtc->fb->depth == 30)
|
|
dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
|
|
else
|
|
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
|
|
break;
|
|
default:
|
|
DRM_ERROR("Unknown color depth\n");
|
|
i915_gem_object_unpin(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
if (IS_I965G(dev)) {
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE)
|
|
dspcntr |= DISPPLANE_TILED;
|
|
else
|
|
dspcntr &= ~DISPPLANE_TILED;
|
|
}
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
/* must disable */
|
|
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
|
|
|
|
I915_WRITE(dspcntr_reg, dspcntr);
|
|
|
|
Start = obj_priv->gtt_offset;
|
|
Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
|
|
|
|
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
|
|
I915_WRITE(dspstride, crtc->fb->pitch);
|
|
if (IS_I965G(dev)) {
|
|
I915_WRITE(dspbase, Offset);
|
|
I915_READ(dspbase);
|
|
I915_WRITE(dspsurf, Start);
|
|
I915_READ(dspsurf);
|
|
I915_WRITE(dsptileoff, (y << 16) | x);
|
|
} else {
|
|
I915_WRITE(dspbase, Start + Offset);
|
|
I915_READ(dspbase);
|
|
}
|
|
|
|
if ((IS_I965G(dev) || plane == 0))
|
|
intel_update_fbc(crtc, &crtc->mode);
|
|
|
|
intel_wait_for_vblank(dev);
|
|
|
|
if (old_fb) {
|
|
intel_fb = to_intel_framebuffer(old_fb);
|
|
obj_priv = intel_fb->obj->driver_private;
|
|
i915_gem_object_unpin(intel_fb->obj);
|
|
}
|
|
intel_increase_pllclock(crtc, true);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (!dev->primary->master)
|
|
return 0;
|
|
|
|
master_priv = dev->primary->master->driver_priv;
|
|
if (!master_priv->sarea_priv)
|
|
return 0;
|
|
|
|
if (pipe) {
|
|
master_priv->sarea_priv->pipeB_x = x;
|
|
master_priv->sarea_priv->pipeB_y = y;
|
|
} else {
|
|
master_priv->sarea_priv->pipeA_x = x;
|
|
master_priv->sarea_priv->pipeA_y = y;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Disable the VGA plane that we never use */
|
|
static void i915_disable_vga (struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u8 sr1;
|
|
u32 vga_reg;
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
vga_reg = CPU_VGACNTRL;
|
|
else
|
|
vga_reg = VGACNTRL;
|
|
|
|
if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
|
|
return;
|
|
|
|
I915_WRITE8(VGA_SR_INDEX, 1);
|
|
sr1 = I915_READ8(VGA_SR_DATA);
|
|
I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
|
|
udelay(100);
|
|
|
|
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
|
|
}
|
|
|
|
static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
dpa_ctl = I915_READ(DP_A);
|
|
dpa_ctl &= ~DP_PLL_ENABLE;
|
|
I915_WRITE(DP_A, dpa_ctl);
|
|
}
|
|
|
|
static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
dpa_ctl = I915_READ(DP_A);
|
|
dpa_ctl |= DP_PLL_ENABLE;
|
|
I915_WRITE(DP_A, dpa_ctl);
|
|
udelay(200);
|
|
}
|
|
|
|
|
|
static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 dpa_ctl;
|
|
|
|
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
|
|
dpa_ctl = I915_READ(DP_A);
|
|
dpa_ctl &= ~DP_PLL_FREQ_MASK;
|
|
|
|
if (clock < 200000) {
|
|
u32 temp;
|
|
dpa_ctl |= DP_PLL_FREQ_160MHZ;
|
|
/* workaround for 160Mhz:
|
|
1) program 0x4600c bits 15:0 = 0x8124
|
|
2) program 0x46010 bit 0 = 1
|
|
3) program 0x46034 bit 24 = 1
|
|
4) program 0x64000 bit 14 = 1
|
|
*/
|
|
temp = I915_READ(0x4600c);
|
|
temp &= 0xffff0000;
|
|
I915_WRITE(0x4600c, temp | 0x8124);
|
|
|
|
temp = I915_READ(0x46010);
|
|
I915_WRITE(0x46010, temp | 1);
|
|
|
|
temp = I915_READ(0x46034);
|
|
I915_WRITE(0x46034, temp | (1 << 24));
|
|
} else {
|
|
dpa_ctl |= DP_PLL_FREQ_270MHZ;
|
|
}
|
|
I915_WRITE(DP_A, dpa_ctl);
|
|
|
|
udelay(500);
|
|
}
|
|
|
|
static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
|
|
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
|
|
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
|
|
int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
|
|
int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
|
|
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
|
|
int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
|
|
int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
|
|
int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
|
|
int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
|
|
int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
|
|
int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
|
|
int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
|
|
int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
|
|
int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
|
|
int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
|
|
int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
|
|
int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
|
|
int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
|
|
int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
|
|
int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
|
|
int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
|
|
int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
|
|
int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
|
|
u32 temp;
|
|
int tries = 5, j, n;
|
|
|
|
/* XXX: When our outputs are all unaware of DPMS modes other than off
|
|
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
|
|
*/
|
|
switch (mode) {
|
|
case DRM_MODE_DPMS_ON:
|
|
case DRM_MODE_DPMS_STANDBY:
|
|
case DRM_MODE_DPMS_SUSPEND:
|
|
DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
temp = I915_READ(PCH_LVDS);
|
|
if ((temp & LVDS_PORT_EN) == 0) {
|
|
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
|
|
POSTING_READ(PCH_LVDS);
|
|
}
|
|
}
|
|
|
|
if (HAS_eDP) {
|
|
/* enable eDP PLL */
|
|
ironlake_enable_pll_edp(crtc);
|
|
} else {
|
|
/* enable PCH DPLL */
|
|
temp = I915_READ(pch_dpll_reg);
|
|
if ((temp & DPLL_VCO_ENABLE) == 0) {
|
|
I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
|
|
I915_READ(pch_dpll_reg);
|
|
}
|
|
|
|
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
|
|
temp = I915_READ(fdi_rx_reg);
|
|
I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
|
|
FDI_SEL_PCDCLK |
|
|
FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
|
|
I915_READ(fdi_rx_reg);
|
|
udelay(200);
|
|
|
|
/* Enable CPU FDI TX PLL, always on for Ironlake */
|
|
temp = I915_READ(fdi_tx_reg);
|
|
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
|
|
I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
|
|
I915_READ(fdi_tx_reg);
|
|
udelay(100);
|
|
}
|
|
}
|
|
|
|
/* Enable panel fitting for LVDS */
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
temp = I915_READ(pf_ctl_reg);
|
|
I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
|
|
|
|
/* currently full aspect */
|
|
I915_WRITE(pf_win_pos, 0);
|
|
|
|
I915_WRITE(pf_win_size,
|
|
(dev_priv->panel_fixed_mode->hdisplay << 16) |
|
|
(dev_priv->panel_fixed_mode->vdisplay));
|
|
}
|
|
|
|
/* Enable CPU pipe */
|
|
temp = I915_READ(pipeconf_reg);
|
|
if ((temp & PIPEACONF_ENABLE) == 0) {
|
|
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
|
|
I915_READ(pipeconf_reg);
|
|
udelay(100);
|
|
}
|
|
|
|
/* configure and enable CPU plane */
|
|
temp = I915_READ(dspcntr_reg);
|
|
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
|
|
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
|
|
/* Flush the plane changes */
|
|
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
|
|
}
|
|
|
|
if (!HAS_eDP) {
|
|
/* enable CPU FDI TX and PCH FDI RX */
|
|
temp = I915_READ(fdi_tx_reg);
|
|
temp |= FDI_TX_ENABLE;
|
|
temp |= FDI_DP_PORT_WIDTH_X4; /* default */
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(fdi_tx_reg, temp);
|
|
I915_READ(fdi_tx_reg);
|
|
|
|
temp = I915_READ(fdi_rx_reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
|
|
I915_READ(fdi_rx_reg);
|
|
|
|
udelay(150);
|
|
|
|
/* Train FDI. */
|
|
/* umask FDI RX Interrupt symbol_lock and bit_lock bit
|
|
for train result */
|
|
temp = I915_READ(fdi_rx_imr_reg);
|
|
temp &= ~FDI_RX_SYMBOL_LOCK;
|
|
temp &= ~FDI_RX_BIT_LOCK;
|
|
I915_WRITE(fdi_rx_imr_reg, temp);
|
|
I915_READ(fdi_rx_imr_reg);
|
|
udelay(150);
|
|
|
|
temp = I915_READ(fdi_rx_iir_reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if ((temp & FDI_RX_BIT_LOCK) == 0) {
|
|
for (j = 0; j < tries; j++) {
|
|
temp = I915_READ(fdi_rx_iir_reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
|
|
temp);
|
|
if (temp & FDI_RX_BIT_LOCK)
|
|
break;
|
|
udelay(200);
|
|
}
|
|
if (j != tries)
|
|
I915_WRITE(fdi_rx_iir_reg,
|
|
temp | FDI_RX_BIT_LOCK);
|
|
else
|
|
DRM_DEBUG_KMS("train 1 fail\n");
|
|
} else {
|
|
I915_WRITE(fdi_rx_iir_reg,
|
|
temp | FDI_RX_BIT_LOCK);
|
|
DRM_DEBUG_KMS("train 1 ok 2!\n");
|
|
}
|
|
temp = I915_READ(fdi_tx_reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(fdi_tx_reg, temp);
|
|
|
|
temp = I915_READ(fdi_rx_reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_2;
|
|
I915_WRITE(fdi_rx_reg, temp);
|
|
|
|
udelay(150);
|
|
|
|
temp = I915_READ(fdi_rx_iir_reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
|
|
|
|
if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
|
|
for (j = 0; j < tries; j++) {
|
|
temp = I915_READ(fdi_rx_iir_reg);
|
|
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
|
|
temp);
|
|
if (temp & FDI_RX_SYMBOL_LOCK)
|
|
break;
|
|
udelay(200);
|
|
}
|
|
if (j != tries) {
|
|
I915_WRITE(fdi_rx_iir_reg,
|
|
temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("train 2 ok 1!\n");
|
|
} else
|
|
DRM_DEBUG_KMS("train 2 fail\n");
|
|
} else {
|
|
I915_WRITE(fdi_rx_iir_reg,
|
|
temp | FDI_RX_SYMBOL_LOCK);
|
|
DRM_DEBUG_KMS("train 2 ok 2!\n");
|
|
}
|
|
DRM_DEBUG_KMS("train done\n");
|
|
|
|
/* set transcoder timing */
|
|
I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
|
|
I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
|
|
I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
|
|
|
|
I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
|
|
I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
|
|
I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
|
|
|
|
/* enable PCH transcoder */
|
|
temp = I915_READ(transconf_reg);
|
|
I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
|
|
I915_READ(transconf_reg);
|
|
|
|
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
|
|
;
|
|
|
|
/* enable normal */
|
|
|
|
temp = I915_READ(fdi_tx_reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
|
|
FDI_TX_ENHANCE_FRAME_ENABLE);
|
|
I915_READ(fdi_tx_reg);
|
|
|
|
temp = I915_READ(fdi_rx_reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
|
|
FDI_RX_ENHANCE_FRAME_ENABLE);
|
|
I915_READ(fdi_rx_reg);
|
|
|
|
/* wait one idle pattern time */
|
|
udelay(100);
|
|
|
|
}
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
break;
|
|
case DRM_MODE_DPMS_OFF:
|
|
DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
|
|
|
|
/* Disable display plane */
|
|
temp = I915_READ(dspcntr_reg);
|
|
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
|
|
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
|
|
/* Flush the plane changes */
|
|
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
|
|
I915_READ(dspbase_reg);
|
|
}
|
|
|
|
i915_disable_vga(dev);
|
|
|
|
/* disable cpu pipe, disable after all planes disabled */
|
|
temp = I915_READ(pipeconf_reg);
|
|
if ((temp & PIPEACONF_ENABLE) != 0) {
|
|
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
|
|
I915_READ(pipeconf_reg);
|
|
n = 0;
|
|
/* wait for cpu pipe off, pipe state */
|
|
while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
|
|
n++;
|
|
if (n < 60) {
|
|
udelay(500);
|
|
continue;
|
|
} else {
|
|
DRM_DEBUG_KMS("pipe %d off delay\n",
|
|
pipe);
|
|
break;
|
|
}
|
|
}
|
|
} else
|
|
DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
|
|
|
|
udelay(100);
|
|
|
|
/* Disable PF */
|
|
temp = I915_READ(pf_ctl_reg);
|
|
if ((temp & PF_ENABLE) != 0) {
|
|
I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
|
|
I915_READ(pf_ctl_reg);
|
|
}
|
|
I915_WRITE(pf_win_size, 0);
|
|
|
|
/* disable CPU FDI tx and PCH FDI rx */
|
|
temp = I915_READ(fdi_tx_reg);
|
|
I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
|
|
I915_READ(fdi_tx_reg);
|
|
|
|
temp = I915_READ(fdi_rx_reg);
|
|
I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
|
|
I915_READ(fdi_rx_reg);
|
|
|
|
udelay(100);
|
|
|
|
/* still set train pattern 1 */
|
|
temp = I915_READ(fdi_tx_reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(fdi_tx_reg, temp);
|
|
|
|
temp = I915_READ(fdi_rx_reg);
|
|
temp &= ~FDI_LINK_TRAIN_NONE;
|
|
temp |= FDI_LINK_TRAIN_PATTERN_1;
|
|
I915_WRITE(fdi_rx_reg, temp);
|
|
|
|
udelay(100);
|
|
|
|
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
|
|
temp = I915_READ(PCH_LVDS);
|
|
I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
|
|
I915_READ(PCH_LVDS);
|
|
udelay(100);
|
|
}
|
|
|
|
/* disable PCH transcoder */
|
|
temp = I915_READ(transconf_reg);
|
|
if ((temp & TRANS_ENABLE) != 0) {
|
|
I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
|
|
I915_READ(transconf_reg);
|
|
n = 0;
|
|
/* wait for PCH transcoder off, transcoder state */
|
|
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
|
|
n++;
|
|
if (n < 60) {
|
|
udelay(500);
|
|
continue;
|
|
} else {
|
|
DRM_DEBUG_KMS("transcoder %d off "
|
|
"delay\n", pipe);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
udelay(100);
|
|
|
|
/* disable PCH DPLL */
|
|
temp = I915_READ(pch_dpll_reg);
|
|
if ((temp & DPLL_VCO_ENABLE) != 0) {
|
|
I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
|
|
I915_READ(pch_dpll_reg);
|
|
}
|
|
|
|
if (HAS_eDP) {
|
|
ironlake_disable_pll_edp(crtc);
|
|
}
|
|
|
|
temp = I915_READ(fdi_rx_reg);
|
|
temp &= ~FDI_SEL_PCDCLK;
|
|
I915_WRITE(fdi_rx_reg, temp);
|
|
I915_READ(fdi_rx_reg);
|
|
|
|
temp = I915_READ(fdi_rx_reg);
|
|
temp &= ~FDI_RX_PLL_ENABLE;
|
|
I915_WRITE(fdi_rx_reg, temp);
|
|
I915_READ(fdi_rx_reg);
|
|
|
|
/* Disable CPU FDI TX PLL */
|
|
temp = I915_READ(fdi_tx_reg);
|
|
if ((temp & FDI_TX_PLL_ENABLE) != 0) {
|
|
I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
|
|
I915_READ(fdi_tx_reg);
|
|
udelay(100);
|
|
}
|
|
|
|
/* Wait for the clocks to turn off. */
|
|
udelay(100);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
|
|
{
|
|
struct intel_overlay *overlay;
|
|
int ret;
|
|
|
|
if (!enable && intel_crtc->overlay) {
|
|
overlay = intel_crtc->overlay;
|
|
mutex_lock(&overlay->dev->struct_mutex);
|
|
for (;;) {
|
|
ret = intel_overlay_switch_off(overlay);
|
|
if (ret == 0)
|
|
break;
|
|
|
|
ret = intel_overlay_recover_from_interrupt(overlay, 0);
|
|
if (ret != 0) {
|
|
/* overlay doesn't react anymore. Usually
|
|
* results in a black screen and an unkillable
|
|
* X server. */
|
|
BUG();
|
|
overlay->hw_wedged = HW_WEDGED;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&overlay->dev->struct_mutex);
|
|
}
|
|
/* Let userspace switch the overlay on again. In most cases userspace
|
|
* has to recompute where to put it anyway. */
|
|
|
|
return;
|
|
}
|
|
|
|
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
|
|
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
|
|
int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
|
|
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
|
|
u32 temp;
|
|
|
|
/* XXX: When our outputs are all unaware of DPMS modes other than off
|
|
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
|
|
*/
|
|
switch (mode) {
|
|
case DRM_MODE_DPMS_ON:
|
|
case DRM_MODE_DPMS_STANDBY:
|
|
case DRM_MODE_DPMS_SUSPEND:
|
|
intel_update_watermarks(dev);
|
|
|
|
/* Enable the DPLL */
|
|
temp = I915_READ(dpll_reg);
|
|
if ((temp & DPLL_VCO_ENABLE) == 0) {
|
|
I915_WRITE(dpll_reg, temp);
|
|
I915_READ(dpll_reg);
|
|
/* Wait for the clocks to stabilize. */
|
|
udelay(150);
|
|
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
|
|
I915_READ(dpll_reg);
|
|
/* Wait for the clocks to stabilize. */
|
|
udelay(150);
|
|
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
|
|
I915_READ(dpll_reg);
|
|
/* Wait for the clocks to stabilize. */
|
|
udelay(150);
|
|
}
|
|
|
|
/* Enable the pipe */
|
|
temp = I915_READ(pipeconf_reg);
|
|
if ((temp & PIPEACONF_ENABLE) == 0)
|
|
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
|
|
|
|
/* Enable the plane */
|
|
temp = I915_READ(dspcntr_reg);
|
|
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
|
|
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
|
|
/* Flush the plane changes */
|
|
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
|
|
}
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
|
|
if ((IS_I965G(dev) || plane == 0))
|
|
intel_update_fbc(crtc, &crtc->mode);
|
|
|
|
/* Give the overlay scaler a chance to enable if it's on this pipe */
|
|
intel_crtc_dpms_overlay(intel_crtc, true);
|
|
break;
|
|
case DRM_MODE_DPMS_OFF:
|
|
intel_update_watermarks(dev);
|
|
|
|
/* Give the overlay scaler a chance to disable if it's on this pipe */
|
|
intel_crtc_dpms_overlay(intel_crtc, false);
|
|
drm_vblank_off(dev, pipe);
|
|
|
|
if (dev_priv->cfb_plane == plane &&
|
|
dev_priv->display.disable_fbc)
|
|
dev_priv->display.disable_fbc(dev);
|
|
|
|
/* Disable the VGA plane that we never use */
|
|
i915_disable_vga(dev);
|
|
|
|
/* Disable display plane */
|
|
temp = I915_READ(dspcntr_reg);
|
|
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
|
|
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
|
|
/* Flush the plane changes */
|
|
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
|
|
I915_READ(dspbase_reg);
|
|
}
|
|
|
|
if (!IS_I9XX(dev)) {
|
|
/* Wait for vblank for the disable to take effect */
|
|
intel_wait_for_vblank(dev);
|
|
}
|
|
|
|
/* Next, disable display pipes */
|
|
temp = I915_READ(pipeconf_reg);
|
|
if ((temp & PIPEACONF_ENABLE) != 0) {
|
|
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
|
|
I915_READ(pipeconf_reg);
|
|
}
|
|
|
|
/* Wait for vblank for the disable to take effect. */
|
|
intel_wait_for_vblank(dev);
|
|
|
|
temp = I915_READ(dpll_reg);
|
|
if ((temp & DPLL_VCO_ENABLE) != 0) {
|
|
I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
|
|
I915_READ(dpll_reg);
|
|
}
|
|
|
|
/* Wait for the clocks to turn off. */
|
|
udelay(150);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the power management mode of the pipe and plane.
|
|
*
|
|
* This code should probably grow support for turning the cursor off and back
|
|
* on appropriately at the same time as we're turning the pipe off/on.
|
|
*/
|
|
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_master_private *master_priv;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
bool enabled;
|
|
|
|
dev_priv->display.dpms(crtc, mode);
|
|
|
|
intel_crtc->dpms_mode = mode;
|
|
|
|
if (!dev->primary->master)
|
|
return;
|
|
|
|
master_priv = dev->primary->master->driver_priv;
|
|
if (!master_priv->sarea_priv)
|
|
return;
|
|
|
|
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
|
|
|
|
switch (pipe) {
|
|
case 0:
|
|
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
|
|
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
|
|
break;
|
|
case 1:
|
|
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
|
|
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
|
|
break;
|
|
default:
|
|
DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void intel_crtc_prepare (struct drm_crtc *crtc)
|
|
{
|
|
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
|
|
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
|
|
}
|
|
|
|
static void intel_crtc_commit (struct drm_crtc *crtc)
|
|
{
|
|
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
|
|
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
|
|
}
|
|
|
|
void intel_encoder_prepare (struct drm_encoder *encoder)
|
|
{
|
|
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
|
|
/* lvds has its own version of prepare see intel_lvds_prepare */
|
|
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
|
|
}
|
|
|
|
void intel_encoder_commit (struct drm_encoder *encoder)
|
|
{
|
|
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
|
|
/* lvds has its own version of commit see intel_lvds_commit */
|
|
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
|
|
}
|
|
|
|
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
if (IS_IRONLAKE(dev)) {
|
|
/* FDI link clock is fixed at 2.7G */
|
|
if (mode->clock * 3 > 27000 * 4)
|
|
return MODE_CLOCK_HIGH;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int i945_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 400000;
|
|
}
|
|
|
|
static int i915_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 333000;
|
|
}
|
|
|
|
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 200000;
|
|
}
|
|
|
|
static int i915gm_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 gcfgc = 0;
|
|
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
|
|
return 133000;
|
|
else {
|
|
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
|
|
case GC_DISPLAY_CLOCK_333_MHZ:
|
|
return 333000;
|
|
default:
|
|
case GC_DISPLAY_CLOCK_190_200_MHZ:
|
|
return 190000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int i865_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 266000;
|
|
}
|
|
|
|
static int i855_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
u16 hpllcc = 0;
|
|
/* Assume that the hardware is in the high speed state. This
|
|
* should be the default.
|
|
*/
|
|
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
|
|
case GC_CLOCK_133_200:
|
|
case GC_CLOCK_100_200:
|
|
return 200000;
|
|
case GC_CLOCK_166_250:
|
|
return 250000;
|
|
case GC_CLOCK_100_133:
|
|
return 133000;
|
|
}
|
|
|
|
/* Shouldn't happen */
|
|
return 0;
|
|
}
|
|
|
|
static int i830_get_display_clock_speed(struct drm_device *dev)
|
|
{
|
|
return 133000;
|
|
}
|
|
|
|
/**
|
|
* Return the pipe currently connected to the panel fitter,
|
|
* or -1 if the panel fitter is not present or not in use
|
|
*/
|
|
int intel_panel_fitter_pipe (struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pfit_control;
|
|
|
|
/* i830 doesn't have a panel fitter */
|
|
if (IS_I830(dev))
|
|
return -1;
|
|
|
|
pfit_control = I915_READ(PFIT_CONTROL);
|
|
|
|
/* See if the panel fitter is in use */
|
|
if ((pfit_control & PFIT_ENABLE) == 0)
|
|
return -1;
|
|
|
|
/* 965 can place panel fitter on either pipe */
|
|
if (IS_I965G(dev))
|
|
return (pfit_control >> 29) & 0x3;
|
|
|
|
/* older chips can only use pipe 1 */
|
|
return 1;
|
|
}
|
|
|
|
struct fdi_m_n {
|
|
u32 tu;
|
|
u32 gmch_m;
|
|
u32 gmch_n;
|
|
u32 link_m;
|
|
u32 link_n;
|
|
};
|
|
|
|
static void
|
|
fdi_reduce_ratio(u32 *num, u32 *den)
|
|
{
|
|
while (*num > 0xffffff || *den > 0xffffff) {
|
|
*num >>= 1;
|
|
*den >>= 1;
|
|
}
|
|
}
|
|
|
|
#define DATA_N 0x800000
|
|
#define LINK_N 0x80000
|
|
|
|
static void
|
|
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
|
|
int link_clock, struct fdi_m_n *m_n)
|
|
{
|
|
u64 temp;
|
|
|
|
m_n->tu = 64; /* default size */
|
|
|
|
temp = (u64) DATA_N * pixel_clock;
|
|
temp = div_u64(temp, link_clock);
|
|
m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
|
|
m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
|
|
m_n->gmch_n = DATA_N;
|
|
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
|
|
|
|
temp = (u64) LINK_N * pixel_clock;
|
|
m_n->link_m = div_u64(temp, link_clock);
|
|
m_n->link_n = LINK_N;
|
|
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
|
|
}
|
|
|
|
|
|
struct intel_watermark_params {
|
|
unsigned long fifo_size;
|
|
unsigned long max_wm;
|
|
unsigned long default_wm;
|
|
unsigned long guard_size;
|
|
unsigned long cacheline_size;
|
|
};
|
|
|
|
/* Pineview has different values for various configs */
|
|
static struct intel_watermark_params pineview_display_wm = {
|
|
PINEVIEW_DISPLAY_FIFO,
|
|
PINEVIEW_MAX_WM,
|
|
PINEVIEW_DFT_WM,
|
|
PINEVIEW_GUARD_WM,
|
|
PINEVIEW_FIFO_LINE_SIZE
|
|
};
|
|
static struct intel_watermark_params pineview_display_hplloff_wm = {
|
|
PINEVIEW_DISPLAY_FIFO,
|
|
PINEVIEW_MAX_WM,
|
|
PINEVIEW_DFT_HPLLOFF_WM,
|
|
PINEVIEW_GUARD_WM,
|
|
PINEVIEW_FIFO_LINE_SIZE
|
|
};
|
|
static struct intel_watermark_params pineview_cursor_wm = {
|
|
PINEVIEW_CURSOR_FIFO,
|
|
PINEVIEW_CURSOR_MAX_WM,
|
|
PINEVIEW_CURSOR_DFT_WM,
|
|
PINEVIEW_CURSOR_GUARD_WM,
|
|
PINEVIEW_FIFO_LINE_SIZE,
|
|
};
|
|
static struct intel_watermark_params pineview_cursor_hplloff_wm = {
|
|
PINEVIEW_CURSOR_FIFO,
|
|
PINEVIEW_CURSOR_MAX_WM,
|
|
PINEVIEW_CURSOR_DFT_WM,
|
|
PINEVIEW_CURSOR_GUARD_WM,
|
|
PINEVIEW_FIFO_LINE_SIZE
|
|
};
|
|
static struct intel_watermark_params g4x_wm_info = {
|
|
G4X_FIFO_SIZE,
|
|
G4X_MAX_WM,
|
|
G4X_MAX_WM,
|
|
2,
|
|
G4X_FIFO_LINE_SIZE,
|
|
};
|
|
static struct intel_watermark_params i945_wm_info = {
|
|
I945_FIFO_SIZE,
|
|
I915_MAX_WM,
|
|
1,
|
|
2,
|
|
I915_FIFO_LINE_SIZE
|
|
};
|
|
static struct intel_watermark_params i915_wm_info = {
|
|
I915_FIFO_SIZE,
|
|
I915_MAX_WM,
|
|
1,
|
|
2,
|
|
I915_FIFO_LINE_SIZE
|
|
};
|
|
static struct intel_watermark_params i855_wm_info = {
|
|
I855GM_FIFO_SIZE,
|
|
I915_MAX_WM,
|
|
1,
|
|
2,
|
|
I830_FIFO_LINE_SIZE
|
|
};
|
|
static struct intel_watermark_params i830_wm_info = {
|
|
I830_FIFO_SIZE,
|
|
I915_MAX_WM,
|
|
1,
|
|
2,
|
|
I830_FIFO_LINE_SIZE
|
|
};
|
|
|
|
/**
|
|
* intel_calculate_wm - calculate watermark level
|
|
* @clock_in_khz: pixel clock
|
|
* @wm: chip FIFO params
|
|
* @pixel_size: display pixel size
|
|
* @latency_ns: memory latency for the platform
|
|
*
|
|
* Calculate the watermark level (the level at which the display plane will
|
|
* start fetching from memory again). Each chip has a different display
|
|
* FIFO size and allocation, so the caller needs to figure that out and pass
|
|
* in the correct intel_watermark_params structure.
|
|
*
|
|
* As the pixel clock runs, the FIFO will be drained at a rate that depends
|
|
* on the pixel size. When it reaches the watermark level, it'll start
|
|
* fetching FIFO line sized based chunks from memory until the FIFO fills
|
|
* past the watermark point. If the FIFO drains completely, a FIFO underrun
|
|
* will occur, and a display engine hang could result.
|
|
*/
|
|
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
|
|
struct intel_watermark_params *wm,
|
|
int pixel_size,
|
|
unsigned long latency_ns)
|
|
{
|
|
long entries_required, wm_size;
|
|
|
|
/*
|
|
* Note: we need to make sure we don't overflow for various clock &
|
|
* latency values.
|
|
* clocks go from a few thousand to several hundred thousand.
|
|
* latency is usually a few thousand
|
|
*/
|
|
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
|
|
1000;
|
|
entries_required /= wm->cacheline_size;
|
|
|
|
DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
|
|
|
|
wm_size = wm->fifo_size - (entries_required + wm->guard_size);
|
|
|
|
DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
|
|
|
|
/* Don't promote wm_size to unsigned... */
|
|
if (wm_size > (long)wm->max_wm)
|
|
wm_size = wm->max_wm;
|
|
if (wm_size <= 0)
|
|
wm_size = wm->default_wm;
|
|
return wm_size;
|
|
}
|
|
|
|
struct cxsr_latency {
|
|
int is_desktop;
|
|
unsigned long fsb_freq;
|
|
unsigned long mem_freq;
|
|
unsigned long display_sr;
|
|
unsigned long display_hpll_disable;
|
|
unsigned long cursor_sr;
|
|
unsigned long cursor_hpll_disable;
|
|
};
|
|
|
|
static struct cxsr_latency cxsr_latency_table[] = {
|
|
{1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
|
|
{1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
|
|
{1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
|
|
|
|
{1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
|
|
{1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
|
|
{1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
|
|
|
|
{1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
|
|
{1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
|
|
{1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
|
|
|
|
{0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
|
|
{0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
|
|
{0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
|
|
|
|
{0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
|
|
{0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
|
|
{0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
|
|
|
|
{0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
|
|
{0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
|
|
{0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
|
|
};
|
|
|
|
static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
|
|
int mem)
|
|
{
|
|
int i;
|
|
struct cxsr_latency *latency;
|
|
|
|
if (fsb == 0 || mem == 0)
|
|
return NULL;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
|
|
latency = &cxsr_latency_table[i];
|
|
if (is_desktop == latency->is_desktop &&
|
|
fsb == latency->fsb_freq && mem == latency->mem_freq)
|
|
return latency;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void pineview_disable_cxsr(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg;
|
|
|
|
/* deactivate cxsr */
|
|
reg = I915_READ(DSPFW3);
|
|
reg &= ~(PINEVIEW_SELF_REFRESH_EN);
|
|
I915_WRITE(DSPFW3, reg);
|
|
DRM_INFO("Big FIFO is disabled\n");
|
|
}
|
|
|
|
static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
|
|
int pixel_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 reg;
|
|
unsigned long wm;
|
|
struct cxsr_latency *latency;
|
|
|
|
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
|
|
dev_priv->mem_freq);
|
|
if (!latency) {
|
|
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
|
|
pineview_disable_cxsr(dev);
|
|
return;
|
|
}
|
|
|
|
/* Display SR */
|
|
wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
|
|
latency->display_sr);
|
|
reg = I915_READ(DSPFW1);
|
|
reg &= 0x7fffff;
|
|
reg |= wm << 23;
|
|
I915_WRITE(DSPFW1, reg);
|
|
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
|
|
|
|
/* cursor SR */
|
|
wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
|
|
latency->cursor_sr);
|
|
reg = I915_READ(DSPFW3);
|
|
reg &= ~(0x3f << 24);
|
|
reg |= (wm & 0x3f) << 24;
|
|
I915_WRITE(DSPFW3, reg);
|
|
|
|
/* Display HPLL off SR */
|
|
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
|
|
latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
|
|
reg = I915_READ(DSPFW3);
|
|
reg &= 0xfffffe00;
|
|
reg |= wm & 0x1ff;
|
|
I915_WRITE(DSPFW3, reg);
|
|
|
|
/* cursor HPLL off SR */
|
|
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
|
|
latency->cursor_hpll_disable);
|
|
reg = I915_READ(DSPFW3);
|
|
reg &= ~(0x3f << 16);
|
|
reg |= (wm & 0x3f) << 16;
|
|
I915_WRITE(DSPFW3, reg);
|
|
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
|
|
|
|
/* activate cxsr */
|
|
reg = I915_READ(DSPFW3);
|
|
reg |= PINEVIEW_SELF_REFRESH_EN;
|
|
I915_WRITE(DSPFW3, reg);
|
|
|
|
DRM_INFO("Big FIFO is enabled\n");
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Latency for FIFO fetches is dependent on several factors:
|
|
* - memory configuration (speed, channels)
|
|
* - chipset
|
|
* - current MCH state
|
|
* It can be fairly high in some situations, so here we assume a fairly
|
|
* pessimal value. It's a tradeoff between extra memory fetches (if we
|
|
* set this value too high, the FIFO will fetch frequently to stay full)
|
|
* and power consumption (set it too low to save power and we might see
|
|
* FIFO underruns and display "flicker").
|
|
*
|
|
* A value of 5us seems to be a good balance; safe for very low end
|
|
* platforms but not overly aggressive on lower latency configs.
|
|
*/
|
|
const static int latency_ns = 5000;
|
|
|
|
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t dsparb = I915_READ(DSPARB);
|
|
int size;
|
|
|
|
if (plane == 0)
|
|
size = dsparb & 0x7f;
|
|
else
|
|
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
|
|
(dsparb & 0x7f);
|
|
|
|
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
|
|
plane ? "B" : "A", size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t dsparb = I915_READ(DSPARB);
|
|
int size;
|
|
|
|
if (plane == 0)
|
|
size = dsparb & 0x1ff;
|
|
else
|
|
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
|
|
(dsparb & 0x1ff);
|
|
size >>= 1; /* Convert to cachelines */
|
|
|
|
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
|
|
plane ? "B" : "A", size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int i845_get_fifo_size(struct drm_device *dev, int plane)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t dsparb = I915_READ(DSPARB);
|
|
int size;
|
|
|
|
size = dsparb & 0x7f;
|
|
size >>= 2; /* Convert to cachelines */
|
|
|
|
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
|
|
plane ? "B" : "A",
|
|
size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static int i830_get_fifo_size(struct drm_device *dev, int plane)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t dsparb = I915_READ(DSPARB);
|
|
int size;
|
|
|
|
size = dsparb & 0x7f;
|
|
size >>= 1; /* Convert to cachelines */
|
|
|
|
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
|
|
plane ? "B" : "A", size);
|
|
|
|
return size;
|
|
}
|
|
|
|
static void g4x_update_wm(struct drm_device *dev, int planea_clock,
|
|
int planeb_clock, int sr_hdisplay, int pixel_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int total_size, cacheline_size;
|
|
int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
|
|
struct intel_watermark_params planea_params, planeb_params;
|
|
unsigned long line_time_us;
|
|
int sr_clock, sr_entries = 0, entries_required;
|
|
|
|
/* Create copies of the base settings for each pipe */
|
|
planea_params = planeb_params = g4x_wm_info;
|
|
|
|
/* Grab a couple of global values before we overwrite them */
|
|
total_size = planea_params.fifo_size;
|
|
cacheline_size = planea_params.cacheline_size;
|
|
|
|
/*
|
|
* Note: we need to make sure we don't overflow for various clock &
|
|
* latency values.
|
|
* clocks go from a few thousand to several hundred thousand.
|
|
* latency is usually a few thousand
|
|
*/
|
|
entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
|
|
1000;
|
|
entries_required /= G4X_FIFO_LINE_SIZE;
|
|
planea_wm = entries_required + planea_params.guard_size;
|
|
|
|
entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
|
|
1000;
|
|
entries_required /= G4X_FIFO_LINE_SIZE;
|
|
planeb_wm = entries_required + planeb_params.guard_size;
|
|
|
|
cursora_wm = cursorb_wm = 16;
|
|
cursor_sr = 32;
|
|
|
|
DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
|
|
|
|
/* Calc sr entries for one plane configs */
|
|
if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
|
|
/* self-refresh has much higher latency */
|
|
const static int sr_latency_ns = 12000;
|
|
|
|
sr_clock = planea_clock ? planea_clock : planeb_clock;
|
|
line_time_us = ((sr_hdisplay * 1000) / sr_clock);
|
|
|
|
/* Use ns/us then divide to preserve precision */
|
|
sr_entries = (((sr_latency_ns / line_time_us) + 1) *
|
|
pixel_size * sr_hdisplay) / 1000;
|
|
sr_entries = roundup(sr_entries / cacheline_size, 1);
|
|
DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
|
|
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
|
|
}
|
|
|
|
DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
|
|
planea_wm, planeb_wm, sr_entries);
|
|
|
|
planea_wm &= 0x3f;
|
|
planeb_wm &= 0x3f;
|
|
|
|
I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
|
|
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
|
|
(planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
|
|
I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
|
|
(cursora_wm << DSPFW_CURSORA_SHIFT));
|
|
/* HPLL off in SR has some issues on G4x... disable it */
|
|
I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
|
|
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
|
|
}
|
|
|
|
static void i965_update_wm(struct drm_device *dev, int planea_clock,
|
|
int planeb_clock, int sr_hdisplay, int pixel_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long line_time_us;
|
|
int sr_clock, sr_entries, srwm = 1;
|
|
|
|
/* Calc sr entries for one plane configs */
|
|
if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
|
|
/* self-refresh has much higher latency */
|
|
const static int sr_latency_ns = 12000;
|
|
|
|
sr_clock = planea_clock ? planea_clock : planeb_clock;
|
|
line_time_us = ((sr_hdisplay * 1000) / sr_clock);
|
|
|
|
/* Use ns/us then divide to preserve precision */
|
|
sr_entries = (((sr_latency_ns / line_time_us) + 1) *
|
|
pixel_size * sr_hdisplay) / 1000;
|
|
sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
|
|
DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
|
|
srwm = I945_FIFO_SIZE - sr_entries;
|
|
if (srwm < 0)
|
|
srwm = 1;
|
|
srwm &= 0x3f;
|
|
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
|
|
srwm);
|
|
|
|
/* 965 has limitations... */
|
|
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
|
|
(8 << 0));
|
|
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
|
|
}
|
|
|
|
static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
|
|
int planeb_clock, int sr_hdisplay, int pixel_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t fwater_lo;
|
|
uint32_t fwater_hi;
|
|
int total_size, cacheline_size, cwm, srwm = 1;
|
|
int planea_wm, planeb_wm;
|
|
struct intel_watermark_params planea_params, planeb_params;
|
|
unsigned long line_time_us;
|
|
int sr_clock, sr_entries = 0;
|
|
|
|
/* Create copies of the base settings for each pipe */
|
|
if (IS_I965GM(dev) || IS_I945GM(dev))
|
|
planea_params = planeb_params = i945_wm_info;
|
|
else if (IS_I9XX(dev))
|
|
planea_params = planeb_params = i915_wm_info;
|
|
else
|
|
planea_params = planeb_params = i855_wm_info;
|
|
|
|
/* Grab a couple of global values before we overwrite them */
|
|
total_size = planea_params.fifo_size;
|
|
cacheline_size = planea_params.cacheline_size;
|
|
|
|
/* Update per-plane FIFO sizes */
|
|
planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
|
|
planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
|
|
|
|
planea_wm = intel_calculate_wm(planea_clock, &planea_params,
|
|
pixel_size, latency_ns);
|
|
planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
|
|
pixel_size, latency_ns);
|
|
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
|
|
|
|
/*
|
|
* Overlay gets an aggressive default since video jitter is bad.
|
|
*/
|
|
cwm = 2;
|
|
|
|
/* Calc sr entries for one plane configs */
|
|
if (HAS_FW_BLC(dev) && sr_hdisplay &&
|
|
(!planea_clock || !planeb_clock)) {
|
|
/* self-refresh has much higher latency */
|
|
const static int sr_latency_ns = 6000;
|
|
|
|
sr_clock = planea_clock ? planea_clock : planeb_clock;
|
|
line_time_us = ((sr_hdisplay * 1000) / sr_clock);
|
|
|
|
/* Use ns/us then divide to preserve precision */
|
|
sr_entries = (((sr_latency_ns / line_time_us) + 1) *
|
|
pixel_size * sr_hdisplay) / 1000;
|
|
sr_entries = roundup(sr_entries / cacheline_size, 1);
|
|
DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
|
|
srwm = total_size - sr_entries;
|
|
if (srwm < 0)
|
|
srwm = 1;
|
|
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
|
|
planea_wm, planeb_wm, cwm, srwm);
|
|
|
|
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
|
|
fwater_hi = (cwm & 0x1f);
|
|
|
|
/* Set request length to 8 cachelines per fetch */
|
|
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
|
|
fwater_hi = fwater_hi | (1 << 8);
|
|
|
|
I915_WRITE(FW_BLC, fwater_lo);
|
|
I915_WRITE(FW_BLC2, fwater_hi);
|
|
}
|
|
|
|
static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
|
|
int unused2, int pixel_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
|
|
int planea_wm;
|
|
|
|
i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
|
|
|
|
planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
|
|
pixel_size, latency_ns);
|
|
fwater_lo |= (3<<8) | planea_wm;
|
|
|
|
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
|
|
|
|
I915_WRITE(FW_BLC, fwater_lo);
|
|
}
|
|
|
|
/**
|
|
* intel_update_watermarks - update FIFO watermark values based on current modes
|
|
*
|
|
* Calculate watermark values for the various WM regs based on current mode
|
|
* and plane configuration.
|
|
*
|
|
* There are several cases to deal with here:
|
|
* - normal (i.e. non-self-refresh)
|
|
* - self-refresh (SR) mode
|
|
* - lines are large relative to FIFO size (buffer can hold up to 2)
|
|
* - lines are small relative to FIFO size (buffer can hold more than 2
|
|
* lines), so need to account for TLB latency
|
|
*
|
|
* The normal calculation is:
|
|
* watermark = dotclock * bytes per pixel * latency
|
|
* where latency is platform & configuration dependent (we assume pessimal
|
|
* values here).
|
|
*
|
|
* The SR calculation is:
|
|
* watermark = (trunc(latency/line time)+1) * surface width *
|
|
* bytes per pixel
|
|
* where
|
|
* line time = htotal / dotclock
|
|
* and latency is assumed to be high, as above.
|
|
*
|
|
* The final value programmed to the register should always be rounded up,
|
|
* and include an extra 2 entries to account for clock crossings.
|
|
*
|
|
* We don't use the sprite, so we can ignore that. And on Crestline we have
|
|
* to set the non-SR watermarks to 8.
|
|
*/
|
|
static void intel_update_watermarks(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc;
|
|
struct intel_crtc *intel_crtc;
|
|
int sr_hdisplay = 0;
|
|
unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
|
|
int enabled = 0, pixel_size = 0;
|
|
|
|
if (!dev_priv->display.update_wm)
|
|
return;
|
|
|
|
/* Get the clock config from both planes */
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
if (crtc->enabled) {
|
|
enabled++;
|
|
if (intel_crtc->plane == 0) {
|
|
DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
|
|
intel_crtc->pipe, crtc->mode.clock);
|
|
planea_clock = crtc->mode.clock;
|
|
} else {
|
|
DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
|
|
intel_crtc->pipe, crtc->mode.clock);
|
|
planeb_clock = crtc->mode.clock;
|
|
}
|
|
sr_hdisplay = crtc->mode.hdisplay;
|
|
sr_clock = crtc->mode.clock;
|
|
if (crtc->fb)
|
|
pixel_size = crtc->fb->bits_per_pixel / 8;
|
|
else
|
|
pixel_size = 4; /* by default */
|
|
}
|
|
}
|
|
|
|
if (enabled <= 0)
|
|
return;
|
|
|
|
/* Single plane configs can enable self refresh */
|
|
if (enabled == 1 && IS_PINEVIEW(dev))
|
|
pineview_enable_cxsr(dev, sr_clock, pixel_size);
|
|
else if (IS_PINEVIEW(dev))
|
|
pineview_disable_cxsr(dev);
|
|
|
|
dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
|
|
sr_hdisplay, pixel_size);
|
|
}
|
|
|
|
static int intel_crtc_mode_set(struct drm_crtc *crtc,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode,
|
|
int x, int y,
|
|
struct drm_framebuffer *old_fb)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int plane = intel_crtc->plane;
|
|
int fp_reg = (pipe == 0) ? FPA0 : FPB0;
|
|
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
|
|
int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
|
|
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
|
|
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
|
|
int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
|
|
int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
|
|
int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
|
|
int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
|
|
int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
|
|
int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
|
|
int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
|
|
int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
|
|
int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
|
|
int refclk, num_outputs = 0;
|
|
intel_clock_t clock, reduced_clock;
|
|
u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
|
|
bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
|
|
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
|
|
bool is_edp = false;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct drm_connector *connector;
|
|
const intel_limit_t *limit;
|
|
int ret;
|
|
struct fdi_m_n m_n = {0};
|
|
int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
|
|
int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
|
|
int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
|
|
int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
|
|
int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
|
|
int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
|
|
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
|
|
int lvds_reg = LVDS;
|
|
u32 temp;
|
|
int sdvo_pixel_multiply;
|
|
int target_clock;
|
|
|
|
drm_vblank_pre_modeset(dev, pipe);
|
|
|
|
list_for_each_entry(connector, &mode_config->connector_list, head) {
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
|
|
if (!connector->encoder || connector->encoder->crtc != crtc)
|
|
continue;
|
|
|
|
switch (intel_output->type) {
|
|
case INTEL_OUTPUT_LVDS:
|
|
is_lvds = true;
|
|
break;
|
|
case INTEL_OUTPUT_SDVO:
|
|
case INTEL_OUTPUT_HDMI:
|
|
is_sdvo = true;
|
|
if (intel_output->needs_tv_clock)
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_DVO:
|
|
is_dvo = true;
|
|
break;
|
|
case INTEL_OUTPUT_TVOUT:
|
|
is_tv = true;
|
|
break;
|
|
case INTEL_OUTPUT_ANALOG:
|
|
is_crt = true;
|
|
break;
|
|
case INTEL_OUTPUT_DISPLAYPORT:
|
|
is_dp = true;
|
|
break;
|
|
case INTEL_OUTPUT_EDP:
|
|
is_edp = true;
|
|
break;
|
|
}
|
|
|
|
num_outputs++;
|
|
}
|
|
|
|
if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
|
|
refclk = dev_priv->lvds_ssc_freq * 1000;
|
|
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
|
|
refclk / 1000);
|
|
} else if (IS_I9XX(dev)) {
|
|
refclk = 96000;
|
|
if (IS_IRONLAKE(dev))
|
|
refclk = 120000; /* 120Mhz refclk */
|
|
} else {
|
|
refclk = 48000;
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns a set of divisors for the desired target clock with the given
|
|
* refclk, or FALSE. The returned values represent the clock equation:
|
|
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
|
|
*/
|
|
limit = intel_limit(crtc);
|
|
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
|
|
if (!ok) {
|
|
DRM_ERROR("Couldn't find PLL settings for mode!\n");
|
|
drm_vblank_post_modeset(dev, pipe);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (is_lvds && limit->find_reduced_pll &&
|
|
dev_priv->lvds_downclock_avail) {
|
|
memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
|
|
has_reduced_clock = limit->find_reduced_pll(limit, crtc,
|
|
dev_priv->lvds_downclock,
|
|
refclk,
|
|
&reduced_clock);
|
|
if (has_reduced_clock && (clock.p != reduced_clock.p)) {
|
|
/*
|
|
* If the different P is found, it means that we can't
|
|
* switch the display clock by using the FP0/FP1.
|
|
* In such case we will disable the LVDS downclock
|
|
* feature.
|
|
*/
|
|
DRM_DEBUG_KMS("Different P is found for "
|
|
"LVDS clock/downclock\n");
|
|
has_reduced_clock = 0;
|
|
}
|
|
}
|
|
/* SDVO TV has fixed PLL values depend on its clock range,
|
|
this mirrors vbios setting. */
|
|
if (is_sdvo && is_tv) {
|
|
if (adjusted_mode->clock >= 100000
|
|
&& adjusted_mode->clock < 140500) {
|
|
clock.p1 = 2;
|
|
clock.p2 = 10;
|
|
clock.n = 3;
|
|
clock.m1 = 16;
|
|
clock.m2 = 8;
|
|
} else if (adjusted_mode->clock >= 140500
|
|
&& adjusted_mode->clock <= 200000) {
|
|
clock.p1 = 1;
|
|
clock.p2 = 10;
|
|
clock.n = 6;
|
|
clock.m1 = 12;
|
|
clock.m2 = 8;
|
|
}
|
|
}
|
|
|
|
/* FDI link */
|
|
if (IS_IRONLAKE(dev)) {
|
|
int lane, link_bw, bpp;
|
|
/* eDP doesn't require FDI link, so just set DP M/N
|
|
according to current link config */
|
|
if (is_edp) {
|
|
struct drm_connector *edp;
|
|
target_clock = mode->clock;
|
|
edp = intel_pipe_get_output(crtc);
|
|
intel_edp_link_config(to_intel_output(edp),
|
|
&lane, &link_bw);
|
|
} else {
|
|
/* DP over FDI requires target mode clock
|
|
instead of link clock */
|
|
if (is_dp)
|
|
target_clock = mode->clock;
|
|
else
|
|
target_clock = adjusted_mode->clock;
|
|
lane = 4;
|
|
link_bw = 270000;
|
|
}
|
|
|
|
/* determine panel color depth */
|
|
temp = I915_READ(pipeconf_reg);
|
|
|
|
switch (temp & PIPE_BPC_MASK) {
|
|
case PIPE_8BPC:
|
|
bpp = 24;
|
|
break;
|
|
case PIPE_10BPC:
|
|
bpp = 30;
|
|
break;
|
|
case PIPE_6BPC:
|
|
bpp = 18;
|
|
break;
|
|
case PIPE_12BPC:
|
|
bpp = 36;
|
|
break;
|
|
default:
|
|
DRM_ERROR("unknown pipe bpc value\n");
|
|
bpp = 24;
|
|
}
|
|
|
|
ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
|
|
}
|
|
|
|
/* Ironlake: try to setup display ref clock before DPLL
|
|
* enabling. This is only under driver's control after
|
|
* PCH B stepping, previous chipset stepping should be
|
|
* ignoring this setting.
|
|
*/
|
|
if (IS_IRONLAKE(dev)) {
|
|
temp = I915_READ(PCH_DREF_CONTROL);
|
|
/* Always enable nonspread source */
|
|
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
|
|
temp |= DREF_NONSPREAD_SOURCE_ENABLE;
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
|
|
temp &= ~DREF_SSC_SOURCE_MASK;
|
|
temp |= DREF_SSC_SOURCE_ENABLE;
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
|
|
udelay(200);
|
|
|
|
if (is_edp) {
|
|
if (dev_priv->lvds_use_ssc) {
|
|
temp |= DREF_SSC1_ENABLE;
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
|
|
udelay(200);
|
|
|
|
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
|
|
temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
} else {
|
|
temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
|
|
I915_WRITE(PCH_DREF_CONTROL, temp);
|
|
POSTING_READ(PCH_DREF_CONTROL);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IS_PINEVIEW(dev)) {
|
|
fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
|
|
if (has_reduced_clock)
|
|
fp2 = (1 << reduced_clock.n) << 16 |
|
|
reduced_clock.m1 << 8 | reduced_clock.m2;
|
|
} else {
|
|
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
|
|
if (has_reduced_clock)
|
|
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
|
|
reduced_clock.m2;
|
|
}
|
|
|
|
if (!IS_IRONLAKE(dev))
|
|
dpll = DPLL_VGA_MODE_DIS;
|
|
|
|
if (IS_I9XX(dev)) {
|
|
if (is_lvds)
|
|
dpll |= DPLLB_MODE_LVDS;
|
|
else
|
|
dpll |= DPLLB_MODE_DAC_SERIAL;
|
|
if (is_sdvo) {
|
|
dpll |= DPLL_DVO_HIGH_SPEED;
|
|
sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
|
|
else if (IS_IRONLAKE(dev))
|
|
dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
|
|
}
|
|
if (is_dp)
|
|
dpll |= DPLL_DVO_HIGH_SPEED;
|
|
|
|
/* compute bitmask from p1 value */
|
|
if (IS_PINEVIEW(dev))
|
|
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
|
|
else {
|
|
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
/* also FPA1 */
|
|
if (IS_IRONLAKE(dev))
|
|
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
if (IS_G4X(dev) && has_reduced_clock)
|
|
dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
|
|
}
|
|
switch (clock.p2) {
|
|
case 5:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
|
|
break;
|
|
case 7:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
|
|
break;
|
|
case 10:
|
|
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
|
|
break;
|
|
case 14:
|
|
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
|
|
break;
|
|
}
|
|
if (IS_I965G(dev) && !IS_IRONLAKE(dev))
|
|
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
|
|
} else {
|
|
if (is_lvds) {
|
|
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
} else {
|
|
if (clock.p1 == 2)
|
|
dpll |= PLL_P1_DIVIDE_BY_TWO;
|
|
else
|
|
dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
|
|
if (clock.p2 == 4)
|
|
dpll |= PLL_P2_DIVIDE_BY_4;
|
|
}
|
|
}
|
|
|
|
if (is_sdvo && is_tv)
|
|
dpll |= PLL_REF_INPUT_TVCLKINBC;
|
|
else if (is_tv)
|
|
/* XXX: just matching BIOS for now */
|
|
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
|
|
dpll |= 3;
|
|
else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
|
|
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
|
|
else
|
|
dpll |= PLL_REF_INPUT_DREFCLK;
|
|
|
|
/* setup pipeconf */
|
|
pipeconf = I915_READ(pipeconf_reg);
|
|
|
|
/* Set up the display plane register */
|
|
dspcntr = DISPPLANE_GAMMA_ENABLE;
|
|
|
|
/* Ironlake's plane is forced to pipe, bit 24 is to
|
|
enable color space conversion */
|
|
if (!IS_IRONLAKE(dev)) {
|
|
if (pipe == 0)
|
|
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
|
|
else
|
|
dspcntr |= DISPPLANE_SEL_PIPE_B;
|
|
}
|
|
|
|
if (pipe == 0 && !IS_I965G(dev)) {
|
|
/* Enable pixel doubling when the dot clock is > 90% of the (display)
|
|
* core speed.
|
|
*
|
|
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
|
|
* pipe == 0 check?
|
|
*/
|
|
if (mode->clock >
|
|
dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
|
|
pipeconf |= PIPEACONF_DOUBLE_WIDE;
|
|
else
|
|
pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
|
|
}
|
|
|
|
dspcntr |= DISPLAY_PLANE_ENABLE;
|
|
pipeconf |= PIPEACONF_ENABLE;
|
|
dpll |= DPLL_VCO_ENABLE;
|
|
|
|
|
|
/* Disable the panel fitter if it was on our pipe */
|
|
if (!IS_IRONLAKE(dev) && intel_panel_fitter_pipe(dev) == pipe)
|
|
I915_WRITE(PFIT_CONTROL, 0);
|
|
|
|
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
|
|
drm_mode_debug_printmodeline(mode);
|
|
|
|
/* assign to Ironlake registers */
|
|
if (IS_IRONLAKE(dev)) {
|
|
fp_reg = pch_fp_reg;
|
|
dpll_reg = pch_dpll_reg;
|
|
}
|
|
|
|
if (is_edp) {
|
|
ironlake_disable_pll_edp(crtc);
|
|
} else if ((dpll & DPLL_VCO_ENABLE)) {
|
|
I915_WRITE(fp_reg, fp);
|
|
I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
|
|
I915_READ(dpll_reg);
|
|
udelay(150);
|
|
}
|
|
|
|
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
|
|
* This is an exception to the general rule that mode_set doesn't turn
|
|
* things on.
|
|
*/
|
|
if (is_lvds) {
|
|
u32 lvds;
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
lvds_reg = PCH_LVDS;
|
|
|
|
lvds = I915_READ(lvds_reg);
|
|
lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
|
|
/* set the corresponsding LVDS_BORDER bit */
|
|
lvds |= dev_priv->lvds_border_bits;
|
|
/* Set the B0-B3 data pairs corresponding to whether we're going to
|
|
* set the DPLLs for dual-channel mode or not.
|
|
*/
|
|
if (clock.p2 == 7)
|
|
lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
|
|
else
|
|
lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
|
|
|
|
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
|
|
* appropriately here, but we need to look more thoroughly into how
|
|
* panels behave in the two modes.
|
|
*/
|
|
|
|
I915_WRITE(lvds_reg, lvds);
|
|
I915_READ(lvds_reg);
|
|
}
|
|
if (is_dp)
|
|
intel_dp_set_m_n(crtc, mode, adjusted_mode);
|
|
|
|
if (!is_edp) {
|
|
I915_WRITE(fp_reg, fp);
|
|
I915_WRITE(dpll_reg, dpll);
|
|
I915_READ(dpll_reg);
|
|
/* Wait for the clocks to stabilize. */
|
|
udelay(150);
|
|
|
|
if (IS_I965G(dev) && !IS_IRONLAKE(dev)) {
|
|
if (is_sdvo) {
|
|
sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
|
|
I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
|
|
((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
|
|
} else
|
|
I915_WRITE(dpll_md_reg, 0);
|
|
} else {
|
|
/* write it again -- the BIOS does, after all */
|
|
I915_WRITE(dpll_reg, dpll);
|
|
}
|
|
I915_READ(dpll_reg);
|
|
/* Wait for the clocks to stabilize. */
|
|
udelay(150);
|
|
}
|
|
|
|
if (is_lvds && has_reduced_clock && i915_powersave) {
|
|
I915_WRITE(fp_reg + 4, fp2);
|
|
intel_crtc->lowfreq_avail = true;
|
|
if (HAS_PIPE_CXSR(dev)) {
|
|
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
|
|
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
|
|
}
|
|
} else {
|
|
I915_WRITE(fp_reg + 4, fp);
|
|
intel_crtc->lowfreq_avail = false;
|
|
if (HAS_PIPE_CXSR(dev)) {
|
|
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
|
|
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
|
|
}
|
|
}
|
|
|
|
I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
|
|
((adjusted_mode->crtc_htotal - 1) << 16));
|
|
I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
|
|
((adjusted_mode->crtc_hblank_end - 1) << 16));
|
|
I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
|
|
((adjusted_mode->crtc_hsync_end - 1) << 16));
|
|
I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
|
|
((adjusted_mode->crtc_vtotal - 1) << 16));
|
|
I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
|
|
((adjusted_mode->crtc_vblank_end - 1) << 16));
|
|
I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
|
|
((adjusted_mode->crtc_vsync_end - 1) << 16));
|
|
/* pipesrc and dspsize control the size that is scaled from, which should
|
|
* always be the user's requested size.
|
|
*/
|
|
if (!IS_IRONLAKE(dev)) {
|
|
I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
|
|
(mode->hdisplay - 1));
|
|
I915_WRITE(dsppos_reg, 0);
|
|
}
|
|
I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
|
|
|
|
if (IS_IRONLAKE(dev)) {
|
|
I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
|
|
I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
|
|
I915_WRITE(link_m1_reg, m_n.link_m);
|
|
I915_WRITE(link_n1_reg, m_n.link_n);
|
|
|
|
if (is_edp) {
|
|
ironlake_set_pll_edp(crtc, adjusted_mode->clock);
|
|
} else {
|
|
/* enable FDI RX PLL too */
|
|
temp = I915_READ(fdi_rx_reg);
|
|
I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
|
|
udelay(200);
|
|
}
|
|
}
|
|
|
|
I915_WRITE(pipeconf_reg, pipeconf);
|
|
I915_READ(pipeconf_reg);
|
|
|
|
intel_wait_for_vblank(dev);
|
|
|
|
if (IS_IRONLAKE(dev)) {
|
|
/* enable address swizzle for tiling buffer */
|
|
temp = I915_READ(DISP_ARB_CTL);
|
|
I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
|
|
}
|
|
|
|
I915_WRITE(dspcntr_reg, dspcntr);
|
|
|
|
/* Flush the plane changes */
|
|
ret = intel_pipe_set_base(crtc, x, y, old_fb);
|
|
|
|
if ((IS_I965G(dev) || plane == 0))
|
|
intel_update_fbc(crtc, &crtc->mode);
|
|
|
|
intel_update_watermarks(dev);
|
|
|
|
drm_vblank_post_modeset(dev, pipe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/** Loads the palette/gamma unit for the CRTC with the prepared values */
|
|
void intel_crtc_load_lut(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
|
|
int i;
|
|
|
|
/* The clocks have to be on to load the palette. */
|
|
if (!crtc->enabled)
|
|
return;
|
|
|
|
/* use legacy palette for Ironlake */
|
|
if (IS_IRONLAKE(dev))
|
|
palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
|
|
LGC_PALETTE_B;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
I915_WRITE(palreg + 4 * i,
|
|
(intel_crtc->lut_r[i] << 16) |
|
|
(intel_crtc->lut_g[i] << 8) |
|
|
intel_crtc->lut_b[i]);
|
|
}
|
|
}
|
|
|
|
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
|
|
struct drm_file *file_priv,
|
|
uint32_t handle,
|
|
uint32_t width, uint32_t height)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct drm_gem_object *bo;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int pipe = intel_crtc->pipe;
|
|
uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
|
|
uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
|
|
uint32_t temp = I915_READ(control);
|
|
size_t addr;
|
|
int ret;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
/* if we want to turn off the cursor ignore width and height */
|
|
if (!handle) {
|
|
DRM_DEBUG_KMS("cursor off\n");
|
|
if (IS_MOBILE(dev) || IS_I9XX(dev)) {
|
|
temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
|
|
temp |= CURSOR_MODE_DISABLE;
|
|
} else {
|
|
temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
|
|
}
|
|
addr = 0;
|
|
bo = NULL;
|
|
mutex_lock(&dev->struct_mutex);
|
|
goto finish;
|
|
}
|
|
|
|
/* Currently we only support 64x64 cursors */
|
|
if (width != 64 || height != 64) {
|
|
DRM_ERROR("we currently only support 64x64 cursors\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bo = drm_gem_object_lookup(dev, file_priv, handle);
|
|
if (!bo)
|
|
return -ENOENT;
|
|
|
|
obj_priv = bo->driver_private;
|
|
|
|
if (bo->size < width * height * 4) {
|
|
DRM_ERROR("buffer is to small\n");
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* we only need to pin inside GTT if cursor is non-phy */
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (!dev_priv->cursor_needs_physical) {
|
|
ret = i915_gem_object_pin(bo, PAGE_SIZE);
|
|
if (ret) {
|
|
DRM_ERROR("failed to pin cursor bo\n");
|
|
goto fail_locked;
|
|
}
|
|
addr = obj_priv->gtt_offset;
|
|
} else {
|
|
ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
|
|
if (ret) {
|
|
DRM_ERROR("failed to attach phys object\n");
|
|
goto fail_locked;
|
|
}
|
|
addr = obj_priv->phys_obj->handle->busaddr;
|
|
}
|
|
|
|
if (!IS_I9XX(dev))
|
|
I915_WRITE(CURSIZE, (height << 12) | width);
|
|
|
|
/* Hooray for CUR*CNTR differences */
|
|
if (IS_MOBILE(dev) || IS_I9XX(dev)) {
|
|
temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
|
|
temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
|
|
temp |= (pipe << 28); /* Connect to correct pipe */
|
|
} else {
|
|
temp &= ~(CURSOR_FORMAT_MASK);
|
|
temp |= CURSOR_ENABLE;
|
|
temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
|
|
}
|
|
|
|
finish:
|
|
I915_WRITE(control, temp);
|
|
I915_WRITE(base, addr);
|
|
|
|
if (intel_crtc->cursor_bo) {
|
|
if (dev_priv->cursor_needs_physical) {
|
|
if (intel_crtc->cursor_bo != bo)
|
|
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
|
|
} else
|
|
i915_gem_object_unpin(intel_crtc->cursor_bo);
|
|
drm_gem_object_unreference(intel_crtc->cursor_bo);
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
intel_crtc->cursor_addr = addr;
|
|
intel_crtc->cursor_bo = bo;
|
|
|
|
return 0;
|
|
fail:
|
|
mutex_lock(&dev->struct_mutex);
|
|
fail_locked:
|
|
drm_gem_object_unreference(bo);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_framebuffer *intel_fb;
|
|
int pipe = intel_crtc->pipe;
|
|
uint32_t temp = 0;
|
|
uint32_t adder;
|
|
|
|
if (crtc->fb) {
|
|
intel_fb = to_intel_framebuffer(crtc->fb);
|
|
intel_mark_busy(dev, intel_fb->obj);
|
|
}
|
|
|
|
if (x < 0) {
|
|
temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
|
|
x = -x;
|
|
}
|
|
if (y < 0) {
|
|
temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
|
|
y = -y;
|
|
}
|
|
|
|
temp |= x << CURSOR_X_SHIFT;
|
|
temp |= y << CURSOR_Y_SHIFT;
|
|
|
|
adder = intel_crtc->cursor_addr;
|
|
I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
|
|
I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Sets the color ramps on behalf of RandR */
|
|
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
|
|
u16 blue, int regno)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
intel_crtc->lut_r[regno] = red >> 8;
|
|
intel_crtc->lut_g[regno] = green >> 8;
|
|
intel_crtc->lut_b[regno] = blue >> 8;
|
|
}
|
|
|
|
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
|
|
u16 *blue, int regno)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
*red = intel_crtc->lut_r[regno] << 8;
|
|
*green = intel_crtc->lut_g[regno] << 8;
|
|
*blue = intel_crtc->lut_b[regno] << 8;
|
|
}
|
|
|
|
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
|
|
u16 *blue, uint32_t size)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int i;
|
|
|
|
if (size != 256)
|
|
return;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
intel_crtc->lut_r[i] = red[i] >> 8;
|
|
intel_crtc->lut_g[i] = green[i] >> 8;
|
|
intel_crtc->lut_b[i] = blue[i] >> 8;
|
|
}
|
|
|
|
intel_crtc_load_lut(crtc);
|
|
}
|
|
|
|
/**
|
|
* Get a pipe with a simple mode set on it for doing load-based monitor
|
|
* detection.
|
|
*
|
|
* It will be up to the load-detect code to adjust the pipe as appropriate for
|
|
* its requirements. The pipe will be connected to no other outputs.
|
|
*
|
|
* Currently this code will only succeed if there is a pipe with no outputs
|
|
* configured for it. In the future, it could choose to temporarily disable
|
|
* some outputs to free up a pipe for its use.
|
|
*
|
|
* \return crtc, or NULL if no pipes are available.
|
|
*/
|
|
|
|
/* VESA 640x480x72Hz mode to set on the pipe */
|
|
static struct drm_display_mode load_detect_mode = {
|
|
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
|
|
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
|
|
};
|
|
|
|
struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
|
|
struct drm_display_mode *mode,
|
|
int *dpms_mode)
|
|
{
|
|
struct intel_crtc *intel_crtc;
|
|
struct drm_crtc *possible_crtc;
|
|
struct drm_crtc *supported_crtc =NULL;
|
|
struct drm_encoder *encoder = &intel_output->enc;
|
|
struct drm_crtc *crtc = NULL;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
|
|
struct drm_crtc_helper_funcs *crtc_funcs;
|
|
int i = -1;
|
|
|
|
/*
|
|
* Algorithm gets a little messy:
|
|
* - if the connector already has an assigned crtc, use it (but make
|
|
* sure it's on first)
|
|
* - try to find the first unused crtc that can drive this connector,
|
|
* and use that if we find one
|
|
* - if there are no unused crtcs available, try to use the first
|
|
* one we found that supports the connector
|
|
*/
|
|
|
|
/* See if we already have a CRTC for this connector */
|
|
if (encoder->crtc) {
|
|
crtc = encoder->crtc;
|
|
/* Make sure the crtc and connector are running */
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
*dpms_mode = intel_crtc->dpms_mode;
|
|
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
|
|
crtc_funcs = crtc->helper_private;
|
|
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
|
|
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
|
|
}
|
|
return crtc;
|
|
}
|
|
|
|
/* Find an unused one (if possible) */
|
|
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
|
|
i++;
|
|
if (!(encoder->possible_crtcs & (1 << i)))
|
|
continue;
|
|
if (!possible_crtc->enabled) {
|
|
crtc = possible_crtc;
|
|
break;
|
|
}
|
|
if (!supported_crtc)
|
|
supported_crtc = possible_crtc;
|
|
}
|
|
|
|
/*
|
|
* If we didn't find an unused CRTC, don't use any.
|
|
*/
|
|
if (!crtc) {
|
|
return NULL;
|
|
}
|
|
|
|
encoder->crtc = crtc;
|
|
intel_output->base.encoder = encoder;
|
|
intel_output->load_detect_temp = true;
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
*dpms_mode = intel_crtc->dpms_mode;
|
|
|
|
if (!crtc->enabled) {
|
|
if (!mode)
|
|
mode = &load_detect_mode;
|
|
drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
|
|
} else {
|
|
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
|
|
crtc_funcs = crtc->helper_private;
|
|
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
|
|
}
|
|
|
|
/* Add this connector to the crtc */
|
|
encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
|
|
encoder_funcs->commit(encoder);
|
|
}
|
|
/* let the connector get through one full cycle before testing */
|
|
intel_wait_for_vblank(dev);
|
|
|
|
return crtc;
|
|
}
|
|
|
|
void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
|
|
{
|
|
struct drm_encoder *encoder = &intel_output->enc;
|
|
struct drm_device *dev = encoder->dev;
|
|
struct drm_crtc *crtc = encoder->crtc;
|
|
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
|
|
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
|
|
|
|
if (intel_output->load_detect_temp) {
|
|
encoder->crtc = NULL;
|
|
intel_output->base.encoder = NULL;
|
|
intel_output->load_detect_temp = false;
|
|
crtc->enabled = drm_helper_crtc_in_use(crtc);
|
|
drm_helper_disable_unused_functions(dev);
|
|
}
|
|
|
|
/* Switch crtc and output back off if necessary */
|
|
if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
|
|
if (encoder->crtc == crtc)
|
|
encoder_funcs->dpms(encoder, dpms_mode);
|
|
crtc_funcs->dpms(crtc, dpms_mode);
|
|
}
|
|
}
|
|
|
|
/* Returns the clock of the currently programmed mode of the given pipe. */
|
|
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
|
|
u32 fp;
|
|
intel_clock_t clock;
|
|
|
|
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
|
|
fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
|
|
else
|
|
fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
|
|
|
|
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
|
|
if (IS_PINEVIEW(dev)) {
|
|
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
|
|
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
} else {
|
|
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
|
|
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
|
|
}
|
|
|
|
if (IS_I9XX(dev)) {
|
|
if (IS_PINEVIEW(dev))
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
|
|
else
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
|
|
switch (dpll & DPLL_MODE_MASK) {
|
|
case DPLLB_MODE_DAC_SERIAL:
|
|
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
|
|
5 : 10;
|
|
break;
|
|
case DPLLB_MODE_LVDS:
|
|
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
|
|
7 : 14;
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
|
|
"mode\n", (int)(dpll & DPLL_MODE_MASK));
|
|
return 0;
|
|
}
|
|
|
|
/* XXX: Handle the 100Mhz refclk */
|
|
intel_clock(dev, 96000, &clock);
|
|
} else {
|
|
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
|
|
|
|
if (is_lvds) {
|
|
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT);
|
|
clock.p2 = 14;
|
|
|
|
if ((dpll & PLL_REF_INPUT_MASK) ==
|
|
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
|
|
/* XXX: might not be 66MHz */
|
|
intel_clock(dev, 66000, &clock);
|
|
} else
|
|
intel_clock(dev, 48000, &clock);
|
|
} else {
|
|
if (dpll & PLL_P1_DIVIDE_BY_TWO)
|
|
clock.p1 = 2;
|
|
else {
|
|
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
|
|
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
|
|
}
|
|
if (dpll & PLL_P2_DIVIDE_BY_4)
|
|
clock.p2 = 4;
|
|
else
|
|
clock.p2 = 2;
|
|
|
|
intel_clock(dev, 48000, &clock);
|
|
}
|
|
}
|
|
|
|
/* XXX: It would be nice to validate the clocks, but we can't reuse
|
|
* i830PllIsValid() because it relies on the xf86_config connector
|
|
* configuration being accurate, which it isn't necessarily.
|
|
*/
|
|
|
|
return clock.dot;
|
|
}
|
|
|
|
/** Returns the currently programmed mode of the given pipe. */
|
|
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
struct drm_display_mode *mode;
|
|
int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
|
|
int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
|
|
int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
|
|
int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
|
|
|
|
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
|
|
if (!mode)
|
|
return NULL;
|
|
|
|
mode->clock = intel_crtc_clock_get(dev, crtc);
|
|
mode->hdisplay = (htot & 0xffff) + 1;
|
|
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
|
|
mode->hsync_start = (hsync & 0xffff) + 1;
|
|
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
|
|
mode->vdisplay = (vtot & 0xffff) + 1;
|
|
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
|
|
mode->vsync_start = (vsync & 0xffff) + 1;
|
|
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
|
|
|
|
drm_mode_set_name(mode);
|
|
drm_mode_set_crtcinfo(mode, 0);
|
|
|
|
return mode;
|
|
}
|
|
|
|
#define GPU_IDLE_TIMEOUT 500 /* ms */
|
|
|
|
/* When this timer fires, we've been idle for awhile */
|
|
static void intel_gpu_idle_timer(unsigned long arg)
|
|
{
|
|
struct drm_device *dev = (struct drm_device *)arg;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
|
|
|
|
dev_priv->busy = false;
|
|
|
|
queue_work(dev_priv->wq, &dev_priv->idle_work);
|
|
}
|
|
|
|
void intel_increase_renderclock(struct drm_device *dev, bool schedule)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
return;
|
|
|
|
if (!dev_priv->render_reclock_avail) {
|
|
DRM_DEBUG_DRIVER("not reclocking render clock\n");
|
|
return;
|
|
}
|
|
|
|
/* Restore render clock frequency to original value */
|
|
if (IS_G4X(dev) || IS_I9XX(dev))
|
|
pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
|
|
else if (IS_I85X(dev))
|
|
pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
|
|
DRM_DEBUG_DRIVER("increasing render clock frequency\n");
|
|
|
|
/* Schedule downclock */
|
|
if (schedule)
|
|
mod_timer(&dev_priv->idle_timer, jiffies +
|
|
msecs_to_jiffies(GPU_IDLE_TIMEOUT));
|
|
}
|
|
|
|
void intel_decrease_renderclock(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
return;
|
|
|
|
if (!dev_priv->render_reclock_avail) {
|
|
DRM_DEBUG_DRIVER("not reclocking render clock\n");
|
|
return;
|
|
}
|
|
|
|
if (IS_G4X(dev)) {
|
|
u16 gcfgc;
|
|
|
|
/* Adjust render clock... */
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
/* Down to minimum... */
|
|
gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
|
|
gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
|
|
|
|
pci_write_config_word(dev->pdev, GCFGC, gcfgc);
|
|
} else if (IS_I965G(dev)) {
|
|
u16 gcfgc;
|
|
|
|
/* Adjust render clock... */
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
/* Down to minimum... */
|
|
gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
|
|
gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
|
|
|
|
pci_write_config_word(dev->pdev, GCFGC, gcfgc);
|
|
} else if (IS_I945G(dev) || IS_I945GM(dev)) {
|
|
u16 gcfgc;
|
|
|
|
/* Adjust render clock... */
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
/* Down to minimum... */
|
|
gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
|
|
gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
|
|
|
|
pci_write_config_word(dev->pdev, GCFGC, gcfgc);
|
|
} else if (IS_I915G(dev)) {
|
|
u16 gcfgc;
|
|
|
|
/* Adjust render clock... */
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
/* Down to minimum... */
|
|
gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
|
|
gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
|
|
|
|
pci_write_config_word(dev->pdev, GCFGC, gcfgc);
|
|
} else if (IS_I85X(dev)) {
|
|
u16 hpllcc;
|
|
|
|
/* Adjust render clock... */
|
|
pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
|
|
|
|
/* Up to maximum... */
|
|
hpllcc &= ~GC_CLOCK_CONTROL_MASK;
|
|
hpllcc |= GC_CLOCK_133_200;
|
|
|
|
pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
|
|
}
|
|
DRM_DEBUG_DRIVER("decreasing render clock frequency\n");
|
|
}
|
|
|
|
/* Note that no increase function is needed for this - increase_renderclock()
|
|
* will also rewrite these bits
|
|
*/
|
|
void intel_decrease_displayclock(struct drm_device *dev)
|
|
{
|
|
if (IS_IRONLAKE(dev))
|
|
return;
|
|
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
|
|
IS_I915GM(dev)) {
|
|
u16 gcfgc;
|
|
|
|
/* Adjust render clock... */
|
|
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
|
|
|
|
/* Down to minimum... */
|
|
gcfgc &= ~0xf0;
|
|
gcfgc |= 0x80;
|
|
|
|
pci_write_config_word(dev->pdev, GCFGC, gcfgc);
|
|
}
|
|
}
|
|
|
|
#define CRTC_IDLE_TIMEOUT 1000 /* ms */
|
|
|
|
static void intel_crtc_idle_timer(unsigned long arg)
|
|
{
|
|
struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
|
|
struct drm_crtc *crtc = &intel_crtc->base;
|
|
drm_i915_private_t *dev_priv = crtc->dev->dev_private;
|
|
|
|
DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
|
|
|
|
intel_crtc->busy = false;
|
|
|
|
queue_work(dev_priv->wq, &dev_priv->idle_work);
|
|
}
|
|
|
|
static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
|
|
int dpll = I915_READ(dpll_reg);
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
return;
|
|
|
|
if (!dev_priv->lvds_downclock_avail)
|
|
return;
|
|
|
|
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
|
|
DRM_DEBUG_DRIVER("upclocking LVDS\n");
|
|
|
|
/* Unlock panel regs */
|
|
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
|
|
|
|
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
|
|
I915_WRITE(dpll_reg, dpll);
|
|
dpll = I915_READ(dpll_reg);
|
|
intel_wait_for_vblank(dev);
|
|
dpll = I915_READ(dpll_reg);
|
|
if (dpll & DISPLAY_RATE_SELECT_FPA1)
|
|
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
|
|
|
|
/* ...and lock them again */
|
|
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
|
|
}
|
|
|
|
/* Schedule downclock */
|
|
if (schedule)
|
|
mod_timer(&intel_crtc->idle_timer, jiffies +
|
|
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
|
|
}
|
|
|
|
static void intel_decrease_pllclock(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int pipe = intel_crtc->pipe;
|
|
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
|
|
int dpll = I915_READ(dpll_reg);
|
|
|
|
if (IS_IRONLAKE(dev))
|
|
return;
|
|
|
|
if (!dev_priv->lvds_downclock_avail)
|
|
return;
|
|
|
|
/*
|
|
* Since this is called by a timer, we should never get here in
|
|
* the manual case.
|
|
*/
|
|
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
|
|
DRM_DEBUG_DRIVER("downclocking LVDS\n");
|
|
|
|
/* Unlock panel regs */
|
|
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
|
|
|
|
dpll |= DISPLAY_RATE_SELECT_FPA1;
|
|
I915_WRITE(dpll_reg, dpll);
|
|
dpll = I915_READ(dpll_reg);
|
|
intel_wait_for_vblank(dev);
|
|
dpll = I915_READ(dpll_reg);
|
|
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
|
|
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
|
|
|
|
/* ...and lock them again */
|
|
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* intel_idle_update - adjust clocks for idleness
|
|
* @work: work struct
|
|
*
|
|
* Either the GPU or display (or both) went idle. Check the busy status
|
|
* here and adjust the CRTC and GPU clocks as necessary.
|
|
*/
|
|
static void intel_idle_update(struct work_struct *work)
|
|
{
|
|
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
|
|
idle_work);
|
|
struct drm_device *dev = dev_priv->dev;
|
|
struct drm_crtc *crtc;
|
|
struct intel_crtc *intel_crtc;
|
|
|
|
if (!i915_powersave)
|
|
return;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
/* GPU isn't processing, downclock it. */
|
|
if (!dev_priv->busy) {
|
|
intel_decrease_renderclock(dev);
|
|
intel_decrease_displayclock(dev);
|
|
}
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
/* Skip inactive CRTCs */
|
|
if (!crtc->fb)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
if (!intel_crtc->busy)
|
|
intel_decrease_pllclock(crtc);
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_mark_busy - mark the GPU and possibly the display busy
|
|
* @dev: drm device
|
|
* @obj: object we're operating on
|
|
*
|
|
* Callers can use this function to indicate that the GPU is busy processing
|
|
* commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
|
|
* buffer), we'll also mark the display as busy, so we know to increase its
|
|
* clock frequency.
|
|
*/
|
|
void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc = NULL;
|
|
struct intel_framebuffer *intel_fb;
|
|
struct intel_crtc *intel_crtc;
|
|
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return;
|
|
|
|
if (!dev_priv->busy) {
|
|
dev_priv->busy = true;
|
|
intel_increase_renderclock(dev, true);
|
|
} else {
|
|
mod_timer(&dev_priv->idle_timer, jiffies +
|
|
msecs_to_jiffies(GPU_IDLE_TIMEOUT));
|
|
}
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
if (!crtc->fb)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
intel_fb = to_intel_framebuffer(crtc->fb);
|
|
if (intel_fb->obj == obj) {
|
|
if (!intel_crtc->busy) {
|
|
/* Non-busy -> busy, upclock */
|
|
intel_increase_pllclock(crtc, true);
|
|
intel_crtc->busy = true;
|
|
} else {
|
|
/* Busy -> busy, put off timer */
|
|
mod_timer(&intel_crtc->idle_timer, jiffies +
|
|
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void intel_crtc_destroy(struct drm_crtc *crtc)
|
|
{
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
drm_crtc_cleanup(crtc);
|
|
kfree(intel_crtc);
|
|
}
|
|
|
|
struct intel_unpin_work {
|
|
struct work_struct work;
|
|
struct drm_device *dev;
|
|
struct drm_gem_object *obj;
|
|
struct drm_pending_vblank_event *event;
|
|
int pending;
|
|
};
|
|
|
|
static void intel_unpin_work_fn(struct work_struct *__work)
|
|
{
|
|
struct intel_unpin_work *work =
|
|
container_of(__work, struct intel_unpin_work, work);
|
|
|
|
mutex_lock(&work->dev->struct_mutex);
|
|
i915_gem_object_unpin(work->obj);
|
|
drm_gem_object_unreference(work->obj);
|
|
mutex_unlock(&work->dev->struct_mutex);
|
|
kfree(work);
|
|
}
|
|
|
|
void intel_finish_page_flip(struct drm_device *dev, int pipe)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_unpin_work *work;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
struct drm_pending_vblank_event *e;
|
|
struct timeval now;
|
|
unsigned long flags;
|
|
|
|
/* Ignore early vblank irqs */
|
|
if (intel_crtc == NULL)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
work = intel_crtc->unpin_work;
|
|
if (work == NULL || !work->pending) {
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
return;
|
|
}
|
|
|
|
intel_crtc->unpin_work = NULL;
|
|
drm_vblank_put(dev, intel_crtc->pipe);
|
|
|
|
if (work->event) {
|
|
e = work->event;
|
|
do_gettimeofday(&now);
|
|
e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
|
|
e->event.tv_sec = now.tv_sec;
|
|
e->event.tv_usec = now.tv_usec;
|
|
list_add_tail(&e->base.link,
|
|
&e->base.file_priv->event_list);
|
|
wake_up_interruptible(&e->base.file_priv->event_wait);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
obj_priv = work->obj->driver_private;
|
|
if (atomic_dec_and_test(&obj_priv->pending_flip))
|
|
DRM_WAKEUP(&dev_priv->pending_flip_queue);
|
|
schedule_work(&work->work);
|
|
}
|
|
|
|
void intel_prepare_page_flip(struct drm_device *dev, int plane)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
if (intel_crtc->unpin_work)
|
|
intel_crtc->unpin_work->pending = 1;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
static int intel_crtc_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_framebuffer *intel_fb;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
struct drm_gem_object *obj;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
struct intel_unpin_work *work;
|
|
unsigned long flags;
|
|
int ret;
|
|
RING_LOCALS;
|
|
|
|
work = kzalloc(sizeof *work, GFP_KERNEL);
|
|
if (work == NULL)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
work->event = event;
|
|
work->dev = crtc->dev;
|
|
intel_fb = to_intel_framebuffer(crtc->fb);
|
|
work->obj = intel_fb->obj;
|
|
INIT_WORK(&work->work, intel_unpin_work_fn);
|
|
|
|
/* We borrow the event spin lock for protecting unpin_work */
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
if (intel_crtc->unpin_work) {
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
kfree(work);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EBUSY;
|
|
}
|
|
intel_crtc->unpin_work = work;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
intel_fb = to_intel_framebuffer(fb);
|
|
obj = intel_fb->obj;
|
|
|
|
ret = intel_pin_and_fence_fb_obj(dev, obj);
|
|
if (ret != 0) {
|
|
kfree(work);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* Reference the old fb object for the scheduled work. */
|
|
drm_gem_object_reference(work->obj);
|
|
|
|
crtc->fb = fb;
|
|
i915_gem_object_flush_write_domain(obj);
|
|
drm_vblank_get(dev, intel_crtc->pipe);
|
|
obj_priv = obj->driver_private;
|
|
atomic_inc(&obj_priv->pending_flip);
|
|
|
|
BEGIN_LP_RING(4);
|
|
OUT_RING(MI_DISPLAY_FLIP |
|
|
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
|
|
OUT_RING(fb->pitch);
|
|
if (IS_I965G(dev)) {
|
|
OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
|
|
OUT_RING((fb->width << 16) | fb->height);
|
|
} else {
|
|
OUT_RING(obj_priv->gtt_offset);
|
|
OUT_RING(MI_NOOP);
|
|
}
|
|
ADVANCE_LP_RING();
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
|
|
.dpms = intel_crtc_dpms,
|
|
.mode_fixup = intel_crtc_mode_fixup,
|
|
.mode_set = intel_crtc_mode_set,
|
|
.mode_set_base = intel_pipe_set_base,
|
|
.prepare = intel_crtc_prepare,
|
|
.commit = intel_crtc_commit,
|
|
.load_lut = intel_crtc_load_lut,
|
|
};
|
|
|
|
static const struct drm_crtc_funcs intel_crtc_funcs = {
|
|
.cursor_set = intel_crtc_cursor_set,
|
|
.cursor_move = intel_crtc_cursor_move,
|
|
.gamma_set = intel_crtc_gamma_set,
|
|
.set_config = drm_crtc_helper_set_config,
|
|
.destroy = intel_crtc_destroy,
|
|
.page_flip = intel_crtc_page_flip,
|
|
};
|
|
|
|
|
|
static void intel_crtc_init(struct drm_device *dev, int pipe)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc;
|
|
int i;
|
|
|
|
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
|
|
if (intel_crtc == NULL)
|
|
return;
|
|
|
|
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
|
|
|
|
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
|
|
intel_crtc->pipe = pipe;
|
|
intel_crtc->plane = pipe;
|
|
for (i = 0; i < 256; i++) {
|
|
intel_crtc->lut_r[i] = i;
|
|
intel_crtc->lut_g[i] = i;
|
|
intel_crtc->lut_b[i] = i;
|
|
}
|
|
|
|
/* Swap pipes & planes for FBC on pre-965 */
|
|
intel_crtc->pipe = pipe;
|
|
intel_crtc->plane = pipe;
|
|
if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
|
|
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
|
|
intel_crtc->plane = ((pipe == 0) ? 1 : 0);
|
|
}
|
|
|
|
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
|
|
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
|
|
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
|
|
|
|
intel_crtc->cursor_addr = 0;
|
|
intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
|
|
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
|
|
|
|
intel_crtc->busy = false;
|
|
|
|
setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
|
|
(unsigned long)intel_crtc);
|
|
}
|
|
|
|
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
|
|
struct drm_mode_object *drmmode_obj;
|
|
struct intel_crtc *crtc;
|
|
|
|
if (!dev_priv) {
|
|
DRM_ERROR("called with no initialization\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
|
|
DRM_MODE_OBJECT_CRTC);
|
|
|
|
if (!drmmode_obj) {
|
|
DRM_ERROR("no such CRTC id\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
|
|
pipe_from_crtc_id->pipe = crtc->pipe;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
|
|
{
|
|
struct drm_crtc *crtc = NULL;
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
if (intel_crtc->pipe == pipe)
|
|
break;
|
|
}
|
|
return crtc;
|
|
}
|
|
|
|
static int intel_connector_clones(struct drm_device *dev, int type_mask)
|
|
{
|
|
int index_mask = 0;
|
|
struct drm_connector *connector;
|
|
int entry = 0;
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
if (type_mask & intel_output->clone_mask)
|
|
index_mask |= (1 << entry);
|
|
entry++;
|
|
}
|
|
return index_mask;
|
|
}
|
|
|
|
|
|
static void intel_setup_outputs(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_connector *connector;
|
|
|
|
intel_crt_init(dev);
|
|
|
|
/* Set up integrated LVDS */
|
|
if (IS_MOBILE(dev) && !IS_I830(dev))
|
|
intel_lvds_init(dev);
|
|
|
|
if (IS_IRONLAKE(dev)) {
|
|
int found;
|
|
|
|
if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
|
|
intel_dp_init(dev, DP_A);
|
|
|
|
if (I915_READ(HDMIB) & PORT_DETECTED) {
|
|
/* check SDVOB */
|
|
/* found = intel_sdvo_init(dev, HDMIB); */
|
|
found = 0;
|
|
if (!found)
|
|
intel_hdmi_init(dev, HDMIB);
|
|
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
|
|
intel_dp_init(dev, PCH_DP_B);
|
|
}
|
|
|
|
if (I915_READ(HDMIC) & PORT_DETECTED)
|
|
intel_hdmi_init(dev, HDMIC);
|
|
|
|
if (I915_READ(HDMID) & PORT_DETECTED)
|
|
intel_hdmi_init(dev, HDMID);
|
|
|
|
if (I915_READ(PCH_DP_C) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_C);
|
|
|
|
if (I915_READ(PCH_DP_D) & DP_DETECTED)
|
|
intel_dp_init(dev, PCH_DP_D);
|
|
|
|
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
|
|
bool found = false;
|
|
|
|
if (I915_READ(SDVOB) & SDVO_DETECTED) {
|
|
found = intel_sdvo_init(dev, SDVOB);
|
|
if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
|
|
intel_hdmi_init(dev, SDVOB);
|
|
|
|
if (!found && SUPPORTS_INTEGRATED_DP(dev))
|
|
intel_dp_init(dev, DP_B);
|
|
}
|
|
|
|
/* Before G4X SDVOC doesn't have its own detect register */
|
|
|
|
if (I915_READ(SDVOB) & SDVO_DETECTED)
|
|
found = intel_sdvo_init(dev, SDVOC);
|
|
|
|
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
|
|
|
|
if (SUPPORTS_INTEGRATED_HDMI(dev))
|
|
intel_hdmi_init(dev, SDVOC);
|
|
if (SUPPORTS_INTEGRATED_DP(dev))
|
|
intel_dp_init(dev, DP_C);
|
|
}
|
|
|
|
if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
|
|
intel_dp_init(dev, DP_D);
|
|
} else if (IS_I8XX(dev))
|
|
intel_dvo_init(dev);
|
|
|
|
if (SUPPORTS_TV(dev))
|
|
intel_tv_init(dev);
|
|
|
|
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
struct drm_encoder *encoder = &intel_output->enc;
|
|
|
|
encoder->possible_crtcs = intel_output->crtc_mask;
|
|
encoder->possible_clones = intel_connector_clones(dev,
|
|
intel_output->clone_mask);
|
|
}
|
|
}
|
|
|
|
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
|
|
{
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_device *dev = fb->dev;
|
|
|
|
if (fb->fbdev)
|
|
intelfb_remove(dev, fb);
|
|
|
|
drm_framebuffer_cleanup(fb);
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_gem_object_unreference(intel_fb->obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
kfree(intel_fb);
|
|
}
|
|
|
|
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
|
|
struct drm_file *file_priv,
|
|
unsigned int *handle)
|
|
{
|
|
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
|
|
struct drm_gem_object *object = intel_fb->obj;
|
|
|
|
return drm_gem_handle_create(file_priv, object, handle);
|
|
}
|
|
|
|
static const struct drm_framebuffer_funcs intel_fb_funcs = {
|
|
.destroy = intel_user_framebuffer_destroy,
|
|
.create_handle = intel_user_framebuffer_create_handle,
|
|
};
|
|
|
|
int intel_framebuffer_create(struct drm_device *dev,
|
|
struct drm_mode_fb_cmd *mode_cmd,
|
|
struct drm_framebuffer **fb,
|
|
struct drm_gem_object *obj)
|
|
{
|
|
struct intel_framebuffer *intel_fb;
|
|
int ret;
|
|
|
|
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
|
|
if (!intel_fb)
|
|
return -ENOMEM;
|
|
|
|
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
|
|
if (ret) {
|
|
DRM_ERROR("framebuffer init failed %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
|
|
|
|
intel_fb->obj = obj;
|
|
|
|
*fb = &intel_fb->base;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct drm_framebuffer *
|
|
intel_user_framebuffer_create(struct drm_device *dev,
|
|
struct drm_file *filp,
|
|
struct drm_mode_fb_cmd *mode_cmd)
|
|
{
|
|
struct drm_gem_object *obj;
|
|
struct drm_framebuffer *fb;
|
|
int ret;
|
|
|
|
obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
|
|
if (!obj)
|
|
return NULL;
|
|
|
|
ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
|
|
if (ret) {
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
return fb;
|
|
}
|
|
|
|
static const struct drm_mode_config_funcs intel_mode_funcs = {
|
|
.fb_create = intel_user_framebuffer_create,
|
|
.fb_changed = intelfb_probe,
|
|
};
|
|
|
|
void intel_init_clock_gating(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/*
|
|
* Disable clock gating reported to work incorrectly according to the
|
|
* specs, but enable as much else as we can.
|
|
*/
|
|
if (IS_IRONLAKE(dev)) {
|
|
return;
|
|
} else if (IS_G4X(dev)) {
|
|
uint32_t dspclk_gate;
|
|
I915_WRITE(RENCLK_GATE_D1, 0);
|
|
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
|
|
GS_UNIT_CLOCK_GATE_DISABLE |
|
|
CL_UNIT_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(RAMCLK_GATE_D, 0);
|
|
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
|
|
OVRUNIT_CLOCK_GATE_DISABLE |
|
|
OVCUNIT_CLOCK_GATE_DISABLE;
|
|
if (IS_GM45(dev))
|
|
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
|
|
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
|
|
} else if (IS_I965GM(dev)) {
|
|
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(RENCLK_GATE_D2, 0);
|
|
I915_WRITE(DSPCLK_GATE_D, 0);
|
|
I915_WRITE(RAMCLK_GATE_D, 0);
|
|
I915_WRITE16(DEUC, 0);
|
|
} else if (IS_I965G(dev)) {
|
|
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
|
|
I965_RCC_CLOCK_GATE_DISABLE |
|
|
I965_RCPB_CLOCK_GATE_DISABLE |
|
|
I965_ISC_CLOCK_GATE_DISABLE |
|
|
I965_FBC_CLOCK_GATE_DISABLE);
|
|
I915_WRITE(RENCLK_GATE_D2, 0);
|
|
} else if (IS_I9XX(dev)) {
|
|
u32 dstate = I915_READ(D_STATE);
|
|
|
|
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
|
|
DSTATE_DOT_CLOCK_GATING;
|
|
I915_WRITE(D_STATE, dstate);
|
|
} else if (IS_I85X(dev) || IS_I865G(dev)) {
|
|
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
|
|
} else if (IS_I830(dev)) {
|
|
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
|
|
}
|
|
|
|
/*
|
|
* GPU can automatically power down the render unit if given a page
|
|
* to save state.
|
|
*/
|
|
if (I915_HAS_RC6(dev)) {
|
|
struct drm_gem_object *pwrctx;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
if (dev_priv->pwrctx) {
|
|
obj_priv = dev_priv->pwrctx->driver_private;
|
|
} else {
|
|
pwrctx = drm_gem_object_alloc(dev, 4096);
|
|
if (!pwrctx) {
|
|
DRM_DEBUG("failed to alloc power context, "
|
|
"RC6 disabled\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = i915_gem_object_pin(pwrctx, 4096);
|
|
if (ret) {
|
|
DRM_ERROR("failed to pin power context: %d\n",
|
|
ret);
|
|
drm_gem_object_unreference(pwrctx);
|
|
goto out;
|
|
}
|
|
|
|
i915_gem_object_set_to_gtt_domain(pwrctx, 1);
|
|
|
|
dev_priv->pwrctx = pwrctx;
|
|
obj_priv = pwrctx->driver_private;
|
|
}
|
|
|
|
I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
|
|
I915_WRITE(MCHBAR_RENDER_STANDBY,
|
|
I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
|
|
}
|
|
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/* Set up chip specific display functions */
|
|
static void intel_init_display(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* We always want a DPMS function */
|
|
if (IS_IRONLAKE(dev))
|
|
dev_priv->display.dpms = ironlake_crtc_dpms;
|
|
else
|
|
dev_priv->display.dpms = i9xx_crtc_dpms;
|
|
|
|
/* Only mobile has FBC, leave pointers NULL for other chips */
|
|
if (IS_MOBILE(dev)) {
|
|
if (IS_GM45(dev)) {
|
|
dev_priv->display.fbc_enabled = g4x_fbc_enabled;
|
|
dev_priv->display.enable_fbc = g4x_enable_fbc;
|
|
dev_priv->display.disable_fbc = g4x_disable_fbc;
|
|
} else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
|
|
dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
|
|
dev_priv->display.enable_fbc = i8xx_enable_fbc;
|
|
dev_priv->display.disable_fbc = i8xx_disable_fbc;
|
|
}
|
|
/* 855GM needs testing */
|
|
}
|
|
|
|
/* Returns the core display clock speed */
|
|
if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i945_get_display_clock_speed;
|
|
else if (IS_I915G(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915_get_display_clock_speed;
|
|
else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i9xx_misc_get_display_clock_speed;
|
|
else if (IS_I915GM(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i915gm_get_display_clock_speed;
|
|
else if (IS_I865G(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i865_get_display_clock_speed;
|
|
else if (IS_I85X(dev))
|
|
dev_priv->display.get_display_clock_speed =
|
|
i855_get_display_clock_speed;
|
|
else /* 852, 830 */
|
|
dev_priv->display.get_display_clock_speed =
|
|
i830_get_display_clock_speed;
|
|
|
|
/* For FIFO watermark updates */
|
|
if (IS_IRONLAKE(dev))
|
|
dev_priv->display.update_wm = NULL;
|
|
else if (IS_G4X(dev))
|
|
dev_priv->display.update_wm = g4x_update_wm;
|
|
else if (IS_I965G(dev))
|
|
dev_priv->display.update_wm = i965_update_wm;
|
|
else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
|
|
dev_priv->display.update_wm = i9xx_update_wm;
|
|
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
|
|
} else {
|
|
if (IS_I85X(dev))
|
|
dev_priv->display.get_fifo_size = i85x_get_fifo_size;
|
|
else if (IS_845G(dev))
|
|
dev_priv->display.get_fifo_size = i845_get_fifo_size;
|
|
else
|
|
dev_priv->display.get_fifo_size = i830_get_fifo_size;
|
|
dev_priv->display.update_wm = i830_update_wm;
|
|
}
|
|
}
|
|
|
|
void intel_modeset_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int num_pipe;
|
|
int i;
|
|
|
|
drm_mode_config_init(dev);
|
|
|
|
dev->mode_config.min_width = 0;
|
|
dev->mode_config.min_height = 0;
|
|
|
|
dev->mode_config.funcs = (void *)&intel_mode_funcs;
|
|
|
|
intel_init_display(dev);
|
|
|
|
if (IS_I965G(dev)) {
|
|
dev->mode_config.max_width = 8192;
|
|
dev->mode_config.max_height = 8192;
|
|
} else if (IS_I9XX(dev)) {
|
|
dev->mode_config.max_width = 4096;
|
|
dev->mode_config.max_height = 4096;
|
|
} else {
|
|
dev->mode_config.max_width = 2048;
|
|
dev->mode_config.max_height = 2048;
|
|
}
|
|
|
|
/* set memory base */
|
|
if (IS_I9XX(dev))
|
|
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
|
|
else
|
|
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
|
|
|
|
if (IS_MOBILE(dev) || IS_I9XX(dev))
|
|
num_pipe = 2;
|
|
else
|
|
num_pipe = 1;
|
|
DRM_DEBUG_KMS("%d display pipe%s available.\n",
|
|
num_pipe, num_pipe > 1 ? "s" : "");
|
|
|
|
if (IS_I85X(dev))
|
|
pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
|
|
else if (IS_I9XX(dev) || IS_G4X(dev))
|
|
pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
|
|
|
|
for (i = 0; i < num_pipe; i++) {
|
|
intel_crtc_init(dev, i);
|
|
}
|
|
|
|
intel_setup_outputs(dev);
|
|
|
|
intel_init_clock_gating(dev);
|
|
|
|
INIT_WORK(&dev_priv->idle_work, intel_idle_update);
|
|
setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
|
|
(unsigned long)dev);
|
|
|
|
intel_setup_overlay(dev);
|
|
|
|
if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
|
|
dev_priv->fsb_freq,
|
|
dev_priv->mem_freq))
|
|
DRM_INFO("failed to find known CxSR latency "
|
|
"(found fsb freq %d, mem freq %d), disabling CxSR\n",
|
|
dev_priv->fsb_freq, dev_priv->mem_freq);
|
|
}
|
|
|
|
void intel_modeset_cleanup(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_crtc *crtc;
|
|
struct intel_crtc *intel_crtc;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
/* Skip inactive CRTCs */
|
|
if (!crtc->fb)
|
|
continue;
|
|
|
|
intel_crtc = to_intel_crtc(crtc);
|
|
intel_increase_pllclock(crtc, false);
|
|
del_timer_sync(&intel_crtc->idle_timer);
|
|
}
|
|
|
|
intel_increase_renderclock(dev, false);
|
|
del_timer_sync(&dev_priv->idle_timer);
|
|
|
|
if (dev_priv->display.disable_fbc)
|
|
dev_priv->display.disable_fbc(dev);
|
|
|
|
if (dev_priv->pwrctx) {
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj_priv = dev_priv->pwrctx->driver_private;
|
|
I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
|
|
I915_READ(PWRCTXA);
|
|
i915_gem_object_unpin(dev_priv->pwrctx);
|
|
drm_gem_object_unreference(dev_priv->pwrctx);
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
drm_mode_config_cleanup(dev);
|
|
}
|
|
|
|
|
|
/* current intel driver doesn't take advantage of encoders
|
|
always give back the encoder for the connector
|
|
*/
|
|
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
|
|
return &intel_output->enc;
|
|
}
|
|
|
|
/*
|
|
* set vga decode state - true == enable VGA decode
|
|
*/
|
|
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u16 gmch_ctrl;
|
|
|
|
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
|
|
if (state)
|
|
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
|
|
else
|
|
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
|
|
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
|
|
return 0;
|
|
}
|