600 lines
14 KiB
C
600 lines
14 KiB
C
/*
|
|
* acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
|
|
*
|
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
|
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/sched.h> /* current */
|
|
#include <asm/io.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/acpi.h>
|
|
#include <acpi/processor.h>
|
|
|
|
#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
|
|
|
|
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
|
|
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
|
|
struct cpufreq_acpi_io {
|
|
struct acpi_processor_performance *acpi_data;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int resume;
|
|
};
|
|
|
|
static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
|
|
static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver;
|
|
|
|
static unsigned int acpi_pstate_strict;
|
|
|
|
static int
|
|
acpi_processor_write_port(
|
|
u16 port,
|
|
u8 bit_width,
|
|
u32 value)
|
|
{
|
|
if (bit_width <= 8) {
|
|
outb(value, port);
|
|
} else if (bit_width <= 16) {
|
|
outw(value, port);
|
|
} else if (bit_width <= 32) {
|
|
outl(value, port);
|
|
} else {
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
acpi_processor_read_port(
|
|
u16 port,
|
|
u8 bit_width,
|
|
u32 *ret)
|
|
{
|
|
*ret = 0;
|
|
if (bit_width <= 8) {
|
|
*ret = inb(port);
|
|
} else if (bit_width <= 16) {
|
|
*ret = inw(port);
|
|
} else if (bit_width <= 32) {
|
|
*ret = inl(port);
|
|
} else {
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
acpi_processor_set_performance (
|
|
struct cpufreq_acpi_io *data,
|
|
unsigned int cpu,
|
|
int state)
|
|
{
|
|
u16 port = 0;
|
|
u8 bit_width = 0;
|
|
int i = 0;
|
|
int ret = 0;
|
|
u32 value = 0;
|
|
int retval;
|
|
struct acpi_processor_performance *perf;
|
|
|
|
dprintk("acpi_processor_set_performance\n");
|
|
|
|
retval = 0;
|
|
perf = data->acpi_data;
|
|
if (state == perf->state) {
|
|
if (unlikely(data->resume)) {
|
|
dprintk("Called after resume, resetting to P%d\n", state);
|
|
data->resume = 0;
|
|
} else {
|
|
dprintk("Already at target state (P%d)\n", state);
|
|
return (retval);
|
|
}
|
|
}
|
|
|
|
dprintk("Transitioning from P%d to P%d\n", perf->state, state);
|
|
|
|
/*
|
|
* First we write the target state's 'control' value to the
|
|
* control_register.
|
|
*/
|
|
|
|
port = perf->control_register.address;
|
|
bit_width = perf->control_register.bit_width;
|
|
value = (u32) perf->states[state].control;
|
|
|
|
dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
|
|
|
|
ret = acpi_processor_write_port(port, bit_width, value);
|
|
if (ret) {
|
|
dprintk("Invalid port width 0x%04x\n", bit_width);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Assume the write went through when acpi_pstate_strict is not used.
|
|
* As read status_register is an expensive operation and there
|
|
* are no specific error cases where an IO port write will fail.
|
|
*/
|
|
if (acpi_pstate_strict) {
|
|
/* Then we read the 'status_register' and compare the value
|
|
* with the target state's 'status' to make sure the
|
|
* transition was successful.
|
|
* Note that we'll poll for up to 1ms (100 cycles of 10us)
|
|
* before giving up.
|
|
*/
|
|
|
|
port = perf->status_register.address;
|
|
bit_width = perf->status_register.bit_width;
|
|
|
|
dprintk("Looking for 0x%08x from port 0x%04x\n",
|
|
(u32) perf->states[state].status, port);
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
ret = acpi_processor_read_port(port, bit_width, &value);
|
|
if (ret) {
|
|
dprintk("Invalid port width 0x%04x\n", bit_width);
|
|
return (ret);
|
|
}
|
|
if (value == (u32) perf->states[state].status)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
} else {
|
|
value = (u32) perf->states[state].status;
|
|
}
|
|
|
|
if (unlikely(value != (u32) perf->states[state].status)) {
|
|
printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
|
|
retval = -ENODEV;
|
|
return (retval);
|
|
}
|
|
|
|
dprintk("Transition successful after %d microseconds\n", i * 10);
|
|
|
|
perf->state = state;
|
|
return (retval);
|
|
}
|
|
|
|
|
|
static int
|
|
acpi_cpufreq_target (
|
|
struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
{
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
struct acpi_processor_performance *perf;
|
|
struct cpufreq_freqs freqs;
|
|
cpumask_t online_policy_cpus;
|
|
cpumask_t saved_mask;
|
|
cpumask_t set_mask;
|
|
cpumask_t covered_cpus;
|
|
unsigned int cur_state = 0;
|
|
unsigned int next_state = 0;
|
|
unsigned int result = 0;
|
|
unsigned int j;
|
|
unsigned int tmp;
|
|
|
|
dprintk("acpi_cpufreq_setpolicy\n");
|
|
|
|
result = cpufreq_frequency_table_target(policy,
|
|
data->freq_table,
|
|
target_freq,
|
|
relation,
|
|
&next_state);
|
|
if (unlikely(result))
|
|
return (result);
|
|
|
|
perf = data->acpi_data;
|
|
cur_state = perf->state;
|
|
freqs.old = data->freq_table[cur_state].frequency;
|
|
freqs.new = data->freq_table[next_state].frequency;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/* cpufreq holds the hotplug lock, so we are safe from here on */
|
|
cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
|
|
#else
|
|
online_policy_cpus = policy->cpus;
|
|
#endif
|
|
|
|
for_each_cpu_mask(j, online_policy_cpus) {
|
|
freqs.cpu = j;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
|
|
}
|
|
|
|
/*
|
|
* We need to call driver->target() on all or any CPU in
|
|
* policy->cpus, depending on policy->shared_type.
|
|
*/
|
|
saved_mask = current->cpus_allowed;
|
|
cpus_clear(covered_cpus);
|
|
for_each_cpu_mask(j, online_policy_cpus) {
|
|
/*
|
|
* Support for SMP systems.
|
|
* Make sure we are running on CPU that wants to change freq
|
|
*/
|
|
cpus_clear(set_mask);
|
|
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
|
|
cpus_or(set_mask, set_mask, online_policy_cpus);
|
|
else
|
|
cpu_set(j, set_mask);
|
|
|
|
set_cpus_allowed(current, set_mask);
|
|
if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
|
|
dprintk("couldn't limit to CPUs in this domain\n");
|
|
result = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
result = acpi_processor_set_performance (data, j, next_state);
|
|
if (result) {
|
|
result = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
|
|
break;
|
|
|
|
cpu_set(j, covered_cpus);
|
|
}
|
|
|
|
for_each_cpu_mask(j, online_policy_cpus) {
|
|
freqs.cpu = j;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
|
|
}
|
|
|
|
if (unlikely(result)) {
|
|
/*
|
|
* We have failed halfway through the frequency change.
|
|
* We have sent callbacks to online_policy_cpus and
|
|
* acpi_processor_set_performance() has been called on
|
|
* coverd_cpus. Best effort undo..
|
|
*/
|
|
|
|
if (!cpus_empty(covered_cpus)) {
|
|
for_each_cpu_mask(j, covered_cpus) {
|
|
policy->cpu = j;
|
|
acpi_processor_set_performance (data,
|
|
j,
|
|
cur_state);
|
|
}
|
|
}
|
|
|
|
tmp = freqs.new;
|
|
freqs.new = freqs.old;
|
|
freqs.old = tmp;
|
|
for_each_cpu_mask(j, online_policy_cpus) {
|
|
freqs.cpu = j;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
|
|
}
|
|
}
|
|
|
|
set_cpus_allowed(current, saved_mask);
|
|
return (result);
|
|
}
|
|
|
|
|
|
static int
|
|
acpi_cpufreq_verify (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int result = 0;
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
|
|
dprintk("acpi_cpufreq_verify\n");
|
|
|
|
result = cpufreq_frequency_table_verify(policy,
|
|
data->freq_table);
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
static unsigned long
|
|
acpi_cpufreq_guess_freq (
|
|
struct cpufreq_acpi_io *data,
|
|
unsigned int cpu)
|
|
{
|
|
struct acpi_processor_performance *perf = data->acpi_data;
|
|
|
|
if (cpu_khz) {
|
|
/* search the closest match to cpu_khz */
|
|
unsigned int i;
|
|
unsigned long freq;
|
|
unsigned long freqn = perf->states[0].core_frequency * 1000;
|
|
|
|
for (i = 0; i < (perf->state_count - 1); i++) {
|
|
freq = freqn;
|
|
freqn = perf->states[i+1].core_frequency * 1000;
|
|
if ((2 * cpu_khz) > (freqn + freq)) {
|
|
perf->state = i;
|
|
return (freq);
|
|
}
|
|
}
|
|
perf->state = perf->state_count - 1;
|
|
return (freqn);
|
|
} else {
|
|
/* assume CPU is at P0... */
|
|
perf->state = 0;
|
|
return perf->states[0].core_frequency * 1000;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* acpi_cpufreq_early_init - initialize ACPI P-States library
|
|
*
|
|
* Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
|
|
* in order to determine correct frequency and voltage pairings. We can
|
|
* do _PDC and _PSD and find out the processor dependency for the
|
|
* actual init that will happen later...
|
|
*/
|
|
static int acpi_cpufreq_early_init_acpi(void)
|
|
{
|
|
struct acpi_processor_performance *data;
|
|
unsigned int i, j;
|
|
|
|
dprintk("acpi_cpufreq_early_init\n");
|
|
|
|
for_each_possible_cpu(i) {
|
|
data = kzalloc(sizeof(struct acpi_processor_performance),
|
|
GFP_KERNEL);
|
|
if (!data) {
|
|
for_each_possible_cpu(j) {
|
|
kfree(acpi_perf_data[j]);
|
|
acpi_perf_data[j] = NULL;
|
|
}
|
|
return (-ENOMEM);
|
|
}
|
|
acpi_perf_data[i] = data;
|
|
}
|
|
|
|
/* Do initialization in ACPI core */
|
|
return acpi_processor_preregister_performance(acpi_perf_data);
|
|
}
|
|
|
|
static int
|
|
acpi_cpufreq_cpu_init (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int i;
|
|
unsigned int cpu = policy->cpu;
|
|
struct cpufreq_acpi_io *data;
|
|
unsigned int result = 0;
|
|
struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
|
|
struct acpi_processor_performance *perf;
|
|
|
|
dprintk("acpi_cpufreq_cpu_init\n");
|
|
|
|
if (!acpi_perf_data[cpu])
|
|
return (-ENODEV);
|
|
|
|
data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
|
|
if (!data)
|
|
return (-ENOMEM);
|
|
|
|
data->acpi_data = acpi_perf_data[cpu];
|
|
acpi_io_data[cpu] = data;
|
|
|
|
result = acpi_processor_register_performance(data->acpi_data, cpu);
|
|
|
|
if (result)
|
|
goto err_free;
|
|
|
|
perf = data->acpi_data;
|
|
policy->shared_type = perf->shared_type;
|
|
/*
|
|
* Will let policy->cpus know about dependency only when software
|
|
* coordination is required.
|
|
*/
|
|
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
|
|
policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
|
|
policy->cpus = perf->shared_cpu_map;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
|
|
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
|
|
}
|
|
|
|
/* capability check */
|
|
if (perf->state_count <= 1) {
|
|
dprintk("No P-States\n");
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
|
|
(perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
|
|
dprintk("Unsupported address space [%d, %d]\n",
|
|
(u32) (perf->control_register.space_id),
|
|
(u32) (perf->status_register.space_id));
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
/* alloc freq_table */
|
|
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
|
|
if (!data->freq_table) {
|
|
result = -ENOMEM;
|
|
goto err_unreg;
|
|
}
|
|
|
|
/* detect transition latency */
|
|
policy->cpuinfo.transition_latency = 0;
|
|
for (i=0; i<perf->state_count; i++) {
|
|
if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
|
|
policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
|
|
}
|
|
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
|
|
|
|
/* The current speed is unknown and not detectable by ACPI... */
|
|
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
|
|
|
|
/* table init */
|
|
for (i=0; i<=perf->state_count; i++)
|
|
{
|
|
data->freq_table[i].index = i;
|
|
if (i<perf->state_count)
|
|
data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
|
|
else
|
|
data->freq_table[i].frequency = CPUFREQ_TABLE_END;
|
|
}
|
|
|
|
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
|
|
if (result) {
|
|
goto err_freqfree;
|
|
}
|
|
|
|
/* notify BIOS that we exist */
|
|
acpi_processor_notify_smm(THIS_MODULE);
|
|
|
|
printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
|
|
cpu);
|
|
for (i = 0; i < perf->state_count; i++)
|
|
dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
|
|
(i == perf->state?'*':' '), i,
|
|
(u32) perf->states[i].core_frequency,
|
|
(u32) perf->states[i].power,
|
|
(u32) perf->states[i].transition_latency);
|
|
|
|
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
|
|
|
|
/*
|
|
* the first call to ->target() should result in us actually
|
|
* writing something to the appropriate registers.
|
|
*/
|
|
data->resume = 1;
|
|
|
|
return (result);
|
|
|
|
err_freqfree:
|
|
kfree(data->freq_table);
|
|
err_unreg:
|
|
acpi_processor_unregister_performance(perf, cpu);
|
|
err_free:
|
|
kfree(data);
|
|
acpi_io_data[cpu] = NULL;
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
static int
|
|
acpi_cpufreq_cpu_exit (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
|
|
|
|
dprintk("acpi_cpufreq_cpu_exit\n");
|
|
|
|
if (data) {
|
|
cpufreq_frequency_table_put_attr(policy->cpu);
|
|
acpi_io_data[policy->cpu] = NULL;
|
|
acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
|
|
kfree(data);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
acpi_cpufreq_resume (
|
|
struct cpufreq_policy *policy)
|
|
{
|
|
struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
|
|
|
|
|
|
dprintk("acpi_cpufreq_resume\n");
|
|
|
|
data->resume = 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static struct freq_attr* acpi_cpufreq_attr[] = {
|
|
&cpufreq_freq_attr_scaling_available_freqs,
|
|
NULL,
|
|
};
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver = {
|
|
.verify = acpi_cpufreq_verify,
|
|
.target = acpi_cpufreq_target,
|
|
.init = acpi_cpufreq_cpu_init,
|
|
.exit = acpi_cpufreq_cpu_exit,
|
|
.resume = acpi_cpufreq_resume,
|
|
.name = "acpi-cpufreq",
|
|
.owner = THIS_MODULE,
|
|
.attr = acpi_cpufreq_attr,
|
|
.flags = CPUFREQ_STICKY,
|
|
};
|
|
|
|
|
|
static int __init
|
|
acpi_cpufreq_init (void)
|
|
{
|
|
dprintk("acpi_cpufreq_init\n");
|
|
|
|
acpi_cpufreq_early_init_acpi();
|
|
|
|
return cpufreq_register_driver(&acpi_cpufreq_driver);
|
|
}
|
|
|
|
|
|
static void __exit
|
|
acpi_cpufreq_exit (void)
|
|
{
|
|
unsigned int i;
|
|
dprintk("acpi_cpufreq_exit\n");
|
|
|
|
cpufreq_unregister_driver(&acpi_cpufreq_driver);
|
|
|
|
for_each_possible_cpu(i) {
|
|
kfree(acpi_perf_data[i]);
|
|
acpi_perf_data[i] = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
module_param(acpi_pstate_strict, uint, 0644);
|
|
MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
|
|
|
|
late_initcall(acpi_cpufreq_init);
|
|
module_exit(acpi_cpufreq_exit);
|
|
|
|
MODULE_ALIAS("acpi");
|