linux_old1/arch/x86/kernel/tsc.c

1537 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/timer.h>
#include <linux/acpi_pmtmr.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/percpu.h>
#include <linux/timex.h>
#include <linux/static_key.h>
#include <asm/hpet.h>
#include <asm/timer.h>
#include <asm/vgtod.h>
#include <asm/time.h>
#include <asm/delay.h>
#include <asm/hypervisor.h>
#include <asm/nmi.h>
#include <asm/x86_init.h>
#include <asm/geode.h>
#include <asm/apic.h>
#include <asm/intel-family.h>
#include <asm/i8259.h>
#include <asm/uv/uv.h>
unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
unsigned int __read_mostly tsc_khz;
EXPORT_SYMBOL(tsc_khz);
#define KHZ 1000
/*
* TSC can be unstable due to cpufreq or due to unsynced TSCs
*/
static int __read_mostly tsc_unstable;
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
int tsc_clocksource_reliable;
static u32 art_to_tsc_numerator;
static u32 art_to_tsc_denominator;
static u64 art_to_tsc_offset;
struct clocksource *art_related_clocksource;
struct cyc2ns {
struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
seqcount_t seq; /* 32 + 4 = 36 */
}; /* fits one cacheline */
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
{
int seq, idx;
preempt_disable_notrace();
do {
seq = this_cpu_read(cyc2ns.seq.sequence);
idx = seq & 1;
data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
}
__always_inline void cyc2ns_read_end(void)
{
preempt_enable_notrace();
}
/*
* Accelerators for sched_clock()
* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_khz * 10^3))
* ns = cycles * (10^6 / cpu_khz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^6 * SC / cpu_khz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift. The larger SC is, the more accurate the conversion, but
* cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
* (64-bit result) can be used.
*
* We can use khz divisor instead of mhz to keep a better precision.
* (mathieu.desnoyers@polymtl.ca)
*
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*/
static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
struct cyc2ns_data data;
unsigned long long ns;
cyc2ns_read_begin(&data);
ns = data.cyc2ns_offset;
ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
cyc2ns_read_end();
return ns;
}
static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
{
unsigned long long ns_now;
struct cyc2ns_data data;
struct cyc2ns *c2n;
ns_now = cycles_2_ns(tsc_now);
/*
* Compute a new multiplier as per the above comment and ensure our
* time function is continuous; see the comment near struct
* cyc2ns_data.
*/
clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
NSEC_PER_MSEC, 0);
/*
* cyc2ns_shift is exported via arch_perf_update_userpage() where it is
* not expected to be greater than 31 due to the original published
* conversion algorithm shifting a 32-bit value (now specifies a 64-bit
* value) - refer perf_event_mmap_page documentation in perf_event.h.
*/
if (data.cyc2ns_shift == 32) {
data.cyc2ns_shift = 31;
data.cyc2ns_mul >>= 1;
}
data.cyc2ns_offset = ns_now -
mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
c2n = per_cpu_ptr(&cyc2ns, cpu);
raw_write_seqcount_latch(&c2n->seq);
c2n->data[0] = data;
raw_write_seqcount_latch(&c2n->seq);
c2n->data[1] = data;
}
static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
{
unsigned long flags;
local_irq_save(flags);
sched_clock_idle_sleep_event();
if (khz)
__set_cyc2ns_scale(khz, cpu, tsc_now);
sched_clock_idle_wakeup_event();
local_irq_restore(flags);
}
/*
* Initialize cyc2ns for boot cpu
*/
static void __init cyc2ns_init_boot_cpu(void)
{
struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
seqcount_init(&c2n->seq);
__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
}
/*
* Secondary CPUs do not run through tsc_init(), so set up
* all the scale factors for all CPUs, assuming the same
* speed as the bootup CPU.
*/
static void __init cyc2ns_init_secondary_cpus(void)
{
unsigned int cpu, this_cpu = smp_processor_id();
struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
struct cyc2ns_data *data = c2n->data;
for_each_possible_cpu(cpu) {
if (cpu != this_cpu) {
seqcount_init(&c2n->seq);
c2n = per_cpu_ptr(&cyc2ns, cpu);
c2n->data[0] = data[0];
c2n->data[1] = data[1];
}
}
}
/*
* Scheduler clock - returns current time in nanosec units.
*/
u64 native_sched_clock(void)
{
if (static_branch_likely(&__use_tsc)) {
u64 tsc_now = rdtsc();
/* return the value in ns */
return cycles_2_ns(tsc_now);
}
/*
* Fall back to jiffies if there's no TSC available:
* ( But note that we still use it if the TSC is marked
* unstable. We do this because unlike Time Of Day,
* the scheduler clock tolerates small errors and it's
* very important for it to be as fast as the platform
* can achieve it. )
*/
/* No locking but a rare wrong value is not a big deal: */
return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
}
/*
* Generate a sched_clock if you already have a TSC value.
*/
u64 native_sched_clock_from_tsc(u64 tsc)
{
return cycles_2_ns(tsc);
}
/* We need to define a real function for sched_clock, to override the
weak default version */
#ifdef CONFIG_PARAVIRT
unsigned long long sched_clock(void)
{
return paravirt_sched_clock();
}
bool using_native_sched_clock(void)
{
return pv_ops.time.sched_clock == native_sched_clock;
}
#else
unsigned long long
sched_clock(void) __attribute__((alias("native_sched_clock")));
bool using_native_sched_clock(void) { return true; }
#endif
int check_tsc_unstable(void)
{
return tsc_unstable;
}
EXPORT_SYMBOL_GPL(check_tsc_unstable);
#ifdef CONFIG_X86_TSC
int __init notsc_setup(char *str)
{
mark_tsc_unstable("boot parameter notsc");
return 1;
}
#else
/*
* disable flag for tsc. Takes effect by clearing the TSC cpu flag
* in cpu/common.c
*/
int __init notsc_setup(char *str)
{
setup_clear_cpu_cap(X86_FEATURE_TSC);
return 1;
}
#endif
__setup("notsc", notsc_setup);
static int no_sched_irq_time;
static int no_tsc_watchdog;
static int __init tsc_setup(char *str)
{
if (!strcmp(str, "reliable"))
tsc_clocksource_reliable = 1;
if (!strncmp(str, "noirqtime", 9))
no_sched_irq_time = 1;
if (!strcmp(str, "unstable"))
mark_tsc_unstable("boot parameter");
if (!strcmp(str, "nowatchdog"))
no_tsc_watchdog = 1;
return 1;
}
__setup("tsc=", tsc_setup);
#define MAX_RETRIES 5
#define TSC_DEFAULT_THRESHOLD 0x20000
/*
* Read TSC and the reference counters. Take care of any disturbances
*/
static u64 tsc_read_refs(u64 *p, int hpet)
{
u64 t1, t2;
u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
int i;
for (i = 0; i < MAX_RETRIES; i++) {
t1 = get_cycles();
if (hpet)
*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
else
*p = acpi_pm_read_early();
t2 = get_cycles();
if ((t2 - t1) < thresh)
return t2;
}
return ULLONG_MAX;
}
/*
* Calculate the TSC frequency from HPET reference
*/
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
{
u64 tmp;
if (hpet2 < hpet1)
hpet2 += 0x100000000ULL;
hpet2 -= hpet1;
tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
do_div(tmp, 1000000);
deltatsc = div64_u64(deltatsc, tmp);
return (unsigned long) deltatsc;
}
/*
* Calculate the TSC frequency from PMTimer reference
*/
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
{
u64 tmp;
if (!pm1 && !pm2)
return ULONG_MAX;
if (pm2 < pm1)
pm2 += (u64)ACPI_PM_OVRRUN;
pm2 -= pm1;
tmp = pm2 * 1000000000LL;
do_div(tmp, PMTMR_TICKS_PER_SEC);
do_div(deltatsc, tmp);
return (unsigned long) deltatsc;
}
#define CAL_MS 10
#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
#define CAL_PIT_LOOPS 1000
#define CAL2_MS 50
#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
#define CAL2_PIT_LOOPS 5000
/*
* Try to calibrate the TSC against the Programmable
* Interrupt Timer and return the frequency of the TSC
* in kHz.
*
* Return ULONG_MAX on failure to calibrate.
*/
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
{
u64 tsc, t1, t2, delta;
unsigned long tscmin, tscmax;
int pitcnt;
if (!has_legacy_pic()) {
/*
* Relies on tsc_early_delay_calibrate() to have given us semi
* usable udelay(), wait for the same 50ms we would have with
* the PIT loop below.
*/
udelay(10 * USEC_PER_MSEC);
udelay(10 * USEC_PER_MSEC);
udelay(10 * USEC_PER_MSEC);
udelay(10 * USEC_PER_MSEC);
udelay(10 * USEC_PER_MSEC);
return ULONG_MAX;
}
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Setup CTC channel 2* for mode 0, (interrupt on terminal
* count mode), binary count. Set the latch register to 50ms
* (LSB then MSB) to begin countdown.
*/
outb(0xb0, 0x43);
outb(latch & 0xff, 0x42);
outb(latch >> 8, 0x42);
tsc = t1 = t2 = get_cycles();
pitcnt = 0;
tscmax = 0;
tscmin = ULONG_MAX;
while ((inb(0x61) & 0x20) == 0) {
t2 = get_cycles();
delta = t2 - tsc;
tsc = t2;
if ((unsigned long) delta < tscmin)
tscmin = (unsigned int) delta;
if ((unsigned long) delta > tscmax)
tscmax = (unsigned int) delta;
pitcnt++;
}
/*
* Sanity checks:
*
* If we were not able to read the PIT more than loopmin
* times, then we have been hit by a massive SMI
*
* If the maximum is 10 times larger than the minimum,
* then we got hit by an SMI as well.
*/
if (pitcnt < loopmin || tscmax > 10 * tscmin)
return ULONG_MAX;
/* Calculate the PIT value */
delta = t2 - t1;
do_div(delta, ms);
return delta;
}
/*
* This reads the current MSB of the PIT counter, and
* checks if we are running on sufficiently fast and
* non-virtualized hardware.
*
* Our expectations are:
*
* - the PIT is running at roughly 1.19MHz
*
* - each IO is going to take about 1us on real hardware,
* but we allow it to be much faster (by a factor of 10) or
* _slightly_ slower (ie we allow up to a 2us read+counter
* update - anything else implies a unacceptably slow CPU
* or PIT for the fast calibration to work.
*
* - with 256 PIT ticks to read the value, we have 214us to
* see the same MSB (and overhead like doing a single TSC
* read per MSB value etc).
*
* - We're doing 2 reads per loop (LSB, MSB), and we expect
* them each to take about a microsecond on real hardware.
* So we expect a count value of around 100. But we'll be
* generous, and accept anything over 50.
*
* - if the PIT is stuck, and we see *many* more reads, we
* return early (and the next caller of pit_expect_msb()
* then consider it a failure when they don't see the
* next expected value).
*
* These expectations mean that we know that we have seen the
* transition from one expected value to another with a fairly
* high accuracy, and we didn't miss any events. We can thus
* use the TSC value at the transitions to calculate a pretty
* good value for the TSC frequencty.
*/
static inline int pit_verify_msb(unsigned char val)
{
/* Ignore LSB */
inb(0x42);
return inb(0x42) == val;
}
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
{
int count;
u64 tsc = 0, prev_tsc = 0;
for (count = 0; count < 50000; count++) {
if (!pit_verify_msb(val))
break;
prev_tsc = tsc;
tsc = get_cycles();
}
*deltap = get_cycles() - prev_tsc;
*tscp = tsc;
/*
* We require _some_ success, but the quality control
* will be based on the error terms on the TSC values.
*/
return count > 5;
}
/*
* How many MSB values do we want to see? We aim for
* a maximum error rate of 500ppm (in practice the
* real error is much smaller), but refuse to spend
* more than 50ms on it.
*/
#define MAX_QUICK_PIT_MS 50
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
static unsigned long quick_pit_calibrate(void)
{
int i;
u64 tsc, delta;
unsigned long d1, d2;
if (!has_legacy_pic())
return 0;
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Counter 2, mode 0 (one-shot), binary count
*
* NOTE! Mode 2 decrements by two (and then the
* output is flipped each time, giving the same
* final output frequency as a decrement-by-one),
* so mode 0 is much better when looking at the
* individual counts.
*/
outb(0xb0, 0x43);
/* Start at 0xffff */
outb(0xff, 0x42);
outb(0xff, 0x42);
/*
* The PIT starts counting at the next edge, so we
* need to delay for a microsecond. The easiest way
* to do that is to just read back the 16-bit counter
* once from the PIT.
*/
pit_verify_msb(0);
if (pit_expect_msb(0xff, &tsc, &d1)) {
for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
if (!pit_expect_msb(0xff-i, &delta, &d2))
break;
delta -= tsc;
/*
* Extrapolate the error and fail fast if the error will
* never be below 500 ppm.
*/
if (i == 1 &&
d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
return 0;
/*
* Iterate until the error is less than 500 ppm
*/
if (d1+d2 >= delta >> 11)
continue;
/*
* Check the PIT one more time to verify that
* all TSC reads were stable wrt the PIT.
*
* This also guarantees serialization of the
* last cycle read ('d2') in pit_expect_msb.
*/
if (!pit_verify_msb(0xfe - i))
break;
goto success;
}
}
pr_info("Fast TSC calibration failed\n");
return 0;
success:
/*
* Ok, if we get here, then we've seen the
* MSB of the PIT decrement 'i' times, and the
* error has shrunk to less than 500 ppm.
*
* As a result, we can depend on there not being
* any odd delays anywhere, and the TSC reads are
* reliable (within the error).
*
* kHz = ticks / time-in-seconds / 1000;
* kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
* kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
*/
delta *= PIT_TICK_RATE;
do_div(delta, i*256*1000);
pr_info("Fast TSC calibration using PIT\n");
return delta;
}
/**
* native_calibrate_tsc
* Determine TSC frequency via CPUID, else return 0.
*/
unsigned long native_calibrate_tsc(void)
{
unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
unsigned int crystal_khz;
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return 0;
if (boot_cpu_data.cpuid_level < 0x15)
return 0;
eax_denominator = ebx_numerator = ecx_hz = edx = 0;
/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
if (ebx_numerator == 0 || eax_denominator == 0)
return 0;
crystal_khz = ecx_hz / 1000;
/*
* Denverton SoCs don't report crystal clock, and also don't support
* CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
* clock.
*/
if (crystal_khz == 0 &&
boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
crystal_khz = 25000;
/*
* TSC frequency reported directly by CPUID is a "hardware reported"
* frequency and is the most accurate one so far we have. This
* is considered a known frequency.
*/
if (crystal_khz != 0)
setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
/*
* Some Intel SoCs like Skylake and Kabylake don't report the crystal
* clock, but we can easily calculate it to a high degree of accuracy
* by considering the crystal ratio and the CPU speed.
*/
if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
unsigned int eax_base_mhz, ebx, ecx, edx;
cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
crystal_khz = eax_base_mhz * 1000 *
eax_denominator / ebx_numerator;
}
if (crystal_khz == 0)
return 0;
/*
* For Atom SoCs TSC is the only reliable clocksource.
* Mark TSC reliable so no watchdog on it.
*/
if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
#ifdef CONFIG_X86_LOCAL_APIC
/*
* The local APIC appears to be fed by the core crystal clock
* (which sounds entirely sensible). We can set the global
* lapic_timer_period here to avoid having to calibrate the APIC
* timer later.
*/
lapic_timer_period = crystal_khz * 1000 / HZ;
#endif
return crystal_khz * ebx_numerator / eax_denominator;
}
static unsigned long cpu_khz_from_cpuid(void)
{
unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
return 0;
if (boot_cpu_data.cpuid_level < 0x16)
return 0;
eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
return eax_base_mhz * 1000;
}
/*
* calibrate cpu using pit, hpet, and ptimer methods. They are available
* later in boot after acpi is initialized.
*/
static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
{
u64 tsc1, tsc2, delta, ref1, ref2;
unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
unsigned long flags, latch, ms;
int hpet = is_hpet_enabled(), i, loopmin;
/*
* Run 5 calibration loops to get the lowest frequency value
* (the best estimate). We use two different calibration modes
* here:
*
* 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
* load a timeout of 50ms. We read the time right after we
* started the timer and wait until the PIT count down reaches
* zero. In each wait loop iteration we read the TSC and check
* the delta to the previous read. We keep track of the min
* and max values of that delta. The delta is mostly defined
* by the IO time of the PIT access, so we can detect when
* any disturbance happened between the two reads. If the
* maximum time is significantly larger than the minimum time,
* then we discard the result and have another try.
*
* 2) Reference counter. If available we use the HPET or the
* PMTIMER as a reference to check the sanity of that value.
* We use separate TSC readouts and check inside of the
* reference read for any possible disturbance. We dicard
* disturbed values here as well. We do that around the PIT
* calibration delay loop as we have to wait for a certain
* amount of time anyway.
*/
/* Preset PIT loop values */
latch = CAL_LATCH;
ms = CAL_MS;
loopmin = CAL_PIT_LOOPS;
for (i = 0; i < 3; i++) {
unsigned long tsc_pit_khz;
/*
* Read the start value and the reference count of
* hpet/pmtimer when available. Then do the PIT
* calibration, which will take at least 50ms, and
* read the end value.
*/
local_irq_save(flags);
tsc1 = tsc_read_refs(&ref1, hpet);
tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
tsc2 = tsc_read_refs(&ref2, hpet);
local_irq_restore(flags);
/* Pick the lowest PIT TSC calibration so far */
tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
/* hpet or pmtimer available ? */
if (ref1 == ref2)
continue;
/* Check, whether the sampling was disturbed */
if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
continue;
tsc2 = (tsc2 - tsc1) * 1000000LL;
if (hpet)
tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
else
tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
/* Check the reference deviation */
delta = ((u64) tsc_pit_min) * 100;
do_div(delta, tsc_ref_min);
/*
* If both calibration results are inside a 10% window
* then we can be sure, that the calibration
* succeeded. We break out of the loop right away. We
* use the reference value, as it is more precise.
*/
if (delta >= 90 && delta <= 110) {
pr_info("PIT calibration matches %s. %d loops\n",
hpet ? "HPET" : "PMTIMER", i + 1);
return tsc_ref_min;
}
/*
* Check whether PIT failed more than once. This
* happens in virtualized environments. We need to
* give the virtual PC a slightly longer timeframe for
* the HPET/PMTIMER to make the result precise.
*/
if (i == 1 && tsc_pit_min == ULONG_MAX) {
latch = CAL2_LATCH;
ms = CAL2_MS;
loopmin = CAL2_PIT_LOOPS;
}
}
/*
* Now check the results.
*/
if (tsc_pit_min == ULONG_MAX) {
/* PIT gave no useful value */
pr_warn("Unable to calibrate against PIT\n");
/* We don't have an alternative source, disable TSC */
if (!hpet && !ref1 && !ref2) {
pr_notice("No reference (HPET/PMTIMER) available\n");
return 0;
}
/* The alternative source failed as well, disable TSC */
if (tsc_ref_min == ULONG_MAX) {
pr_warn("HPET/PMTIMER calibration failed\n");
return 0;
}
/* Use the alternative source */
pr_info("using %s reference calibration\n",
hpet ? "HPET" : "PMTIMER");
return tsc_ref_min;
}
/* We don't have an alternative source, use the PIT calibration value */
if (!hpet && !ref1 && !ref2) {
pr_info("Using PIT calibration value\n");
return tsc_pit_min;
}
/* The alternative source failed, use the PIT calibration value */
if (tsc_ref_min == ULONG_MAX) {
pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
return tsc_pit_min;
}
/*
* The calibration values differ too much. In doubt, we use
* the PIT value as we know that there are PMTIMERs around
* running at double speed. At least we let the user know:
*/
pr_warn("PIT calibration deviates from %s: %lu %lu\n",
hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
pr_info("Using PIT calibration value\n");
return tsc_pit_min;
}
/**
* native_calibrate_cpu_early - can calibrate the cpu early in boot
*/
unsigned long native_calibrate_cpu_early(void)
{
unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
if (!fast_calibrate)
fast_calibrate = cpu_khz_from_msr();
if (!fast_calibrate) {
local_irq_save(flags);
fast_calibrate = quick_pit_calibrate();
local_irq_restore(flags);
}
return fast_calibrate;
}
/**
* native_calibrate_cpu - calibrate the cpu
*/
static unsigned long native_calibrate_cpu(void)
{
unsigned long tsc_freq = native_calibrate_cpu_early();
if (!tsc_freq)
tsc_freq = pit_hpet_ptimer_calibrate_cpu();
return tsc_freq;
}
void recalibrate_cpu_khz(void)
{
#ifndef CONFIG_SMP
unsigned long cpu_khz_old = cpu_khz;
if (!boot_cpu_has(X86_FEATURE_TSC))
return;
cpu_khz = x86_platform.calibrate_cpu();
tsc_khz = x86_platform.calibrate_tsc();
if (tsc_khz == 0)
tsc_khz = cpu_khz;
else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
cpu_khz = tsc_khz;
cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
cpu_khz_old, cpu_khz);
#endif
}
EXPORT_SYMBOL(recalibrate_cpu_khz);
static unsigned long long cyc2ns_suspend;
void tsc_save_sched_clock_state(void)
{
if (!sched_clock_stable())
return;
cyc2ns_suspend = sched_clock();
}
/*
* Even on processors with invariant TSC, TSC gets reset in some the
* ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
* arbitrary value (still sync'd across cpu's) during resume from such sleep
* states. To cope up with this, recompute the cyc2ns_offset for each cpu so
* that sched_clock() continues from the point where it was left off during
* suspend.
*/
void tsc_restore_sched_clock_state(void)
{
unsigned long long offset;
unsigned long flags;
int cpu;
if (!sched_clock_stable())
return;
local_irq_save(flags);
/*
* We're coming out of suspend, there's no concurrency yet; don't
* bother being nice about the RCU stuff, just write to both
* data fields.
*/
this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
offset = cyc2ns_suspend - sched_clock();
for_each_possible_cpu(cpu) {
per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
}
local_irq_restore(flags);
}
#ifdef CONFIG_CPU_FREQ
/*
* Frequency scaling support. Adjust the TSC based timer when the CPU frequency
* changes.
*
* NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
* as unstable and give up in those cases.
*
* Should fix up last_tsc too. Currently gettimeofday in the
* first tick after the change will be slightly wrong.
*/
static unsigned int ref_freq;
static unsigned long loops_per_jiffy_ref;
static unsigned long tsc_khz_ref;
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
if (num_online_cpus() > 1) {
mark_tsc_unstable("cpufreq changes on SMP");
return 0;
}
if (!ref_freq) {
ref_freq = freq->old;
loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
tsc_khz_ref = tsc_khz;
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
boot_cpu_data.loops_per_jiffy =
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
mark_tsc_unstable("cpufreq changes");
set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
}
return 0;
}
static struct notifier_block time_cpufreq_notifier_block = {
.notifier_call = time_cpufreq_notifier
};
static int __init cpufreq_register_tsc_scaling(void)
{
if (!boot_cpu_has(X86_FEATURE_TSC))
return 0;
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
return 0;
cpufreq_register_notifier(&time_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
core_initcall(cpufreq_register_tsc_scaling);
#endif /* CONFIG_CPU_FREQ */
#define ART_CPUID_LEAF (0x15)
#define ART_MIN_DENOMINATOR (1)
/*
* If ART is present detect the numerator:denominator to convert to TSC
*/
static void __init detect_art(void)
{
unsigned int unused[2];
if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
return;
/*
* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
* and the TSC counter resets must not occur asynchronously.
*/
if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
!boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
tsc_async_resets)
return;
cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
&art_to_tsc_numerator, unused, unused+1);
if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
return;
rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
/* Make this sticky over multiple CPU init calls */
setup_force_cpu_cap(X86_FEATURE_ART);
}
/* clocksource code */
static void tsc_resume(struct clocksource *cs)
{
tsc_verify_tsc_adjust(true);
}
/*
* We used to compare the TSC to the cycle_last value in the clocksource
* structure to avoid a nasty time-warp. This can be observed in a
* very small window right after one CPU updated cycle_last under
* xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
* is smaller than the cycle_last reference value due to a TSC which
* is slighty behind. This delta is nowhere else observable, but in
* that case it results in a forward time jump in the range of hours
* due to the unsigned delta calculation of the time keeping core
* code, which is necessary to support wrapping clocksources like pm
* timer.
*
* This sanity check is now done in the core timekeeping code.
* checking the result of read_tsc() - cycle_last for being negative.
* That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
*/
static u64 read_tsc(struct clocksource *cs)
{
return (u64)rdtsc_ordered();
}
static void tsc_cs_mark_unstable(struct clocksource *cs)
{
if (tsc_unstable)
return;
tsc_unstable = 1;
if (using_native_sched_clock())
clear_sched_clock_stable();
disable_sched_clock_irqtime();
pr_info("Marking TSC unstable due to clocksource watchdog\n");
}
static void tsc_cs_tick_stable(struct clocksource *cs)
{
if (tsc_unstable)
return;
if (using_native_sched_clock())
sched_clock_tick_stable();
}
/*
* .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
*/
static struct clocksource clocksource_tsc_early = {
.name = "tsc-early",
.rating = 299,
.read = read_tsc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_MUST_VERIFY,
.archdata = { .vclock_mode = VCLOCK_TSC },
.resume = tsc_resume,
.mark_unstable = tsc_cs_mark_unstable,
.tick_stable = tsc_cs_tick_stable,
.list = LIST_HEAD_INIT(clocksource_tsc_early.list),
};
/*
* Must mark VALID_FOR_HRES early such that when we unregister tsc_early
* this one will immediately take over. We will only register if TSC has
* been found good.
*/
static struct clocksource clocksource_tsc = {
.name = "tsc",
.rating = 300,
.read = read_tsc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_VALID_FOR_HRES |
CLOCK_SOURCE_MUST_VERIFY,
.archdata = { .vclock_mode = VCLOCK_TSC },
.resume = tsc_resume,
.mark_unstable = tsc_cs_mark_unstable,
.tick_stable = tsc_cs_tick_stable,
.list = LIST_HEAD_INIT(clocksource_tsc.list),
};
void mark_tsc_unstable(char *reason)
{
if (tsc_unstable)
return;
tsc_unstable = 1;
if (using_native_sched_clock())
clear_sched_clock_stable();
disable_sched_clock_irqtime();
pr_info("Marking TSC unstable due to %s\n", reason);
clocksource_mark_unstable(&clocksource_tsc_early);
clocksource_mark_unstable(&clocksource_tsc);
}
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
static void __init check_system_tsc_reliable(void)
{
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
if (is_geode_lx()) {
/* RTSC counts during suspend */
#define RTSC_SUSP 0x100
unsigned long res_low, res_high;
rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
/* Geode_LX - the OLPC CPU has a very reliable TSC */
if (res_low & RTSC_SUSP)
tsc_clocksource_reliable = 1;
}
#endif
if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
tsc_clocksource_reliable = 1;
}
/*
* Make an educated guess if the TSC is trustworthy and synchronized
* over all CPUs.
*/
int unsynchronized_tsc(void)
{
if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
return 1;
#ifdef CONFIG_SMP
if (apic_is_clustered_box())
return 1;
#endif
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
return 0;
if (tsc_clocksource_reliable)
return 0;
/*
* Intel systems are normally all synchronized.
* Exceptions must mark TSC as unstable:
*/
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
/* assume multi socket systems are not synchronized: */
if (num_possible_cpus() > 1)
return 1;
}
return 0;
}
/*
* Convert ART to TSC given numerator/denominator found in detect_art()
*/
struct system_counterval_t convert_art_to_tsc(u64 art)
{
u64 tmp, res, rem;
rem = do_div(art, art_to_tsc_denominator);
res = art * art_to_tsc_numerator;
tmp = rem * art_to_tsc_numerator;
do_div(tmp, art_to_tsc_denominator);
res += tmp + art_to_tsc_offset;
return (struct system_counterval_t) {.cs = art_related_clocksource,
.cycles = res};
}
EXPORT_SYMBOL(convert_art_to_tsc);
/**
* convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
* @art_ns: ART (Always Running Timer) in unit of nanoseconds
*
* PTM requires all timestamps to be in units of nanoseconds. When user
* software requests a cross-timestamp, this function converts system timestamp
* to TSC.
*
* This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
* indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
* that this flag is set before conversion to TSC is attempted.
*
* Return:
* struct system_counterval_t - system counter value with the pointer to the
* corresponding clocksource
* @cycles: System counter value
* @cs: Clocksource corresponding to system counter value. Used
* by timekeeping code to verify comparibility of two cycle
* values.
*/
struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
{
u64 tmp, res, rem;
rem = do_div(art_ns, USEC_PER_SEC);
res = art_ns * tsc_khz;
tmp = rem * tsc_khz;
do_div(tmp, USEC_PER_SEC);
res += tmp;
return (struct system_counterval_t) { .cs = art_related_clocksource,
.cycles = res};
}
EXPORT_SYMBOL(convert_art_ns_to_tsc);
static void tsc_refine_calibration_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
/**
* tsc_refine_calibration_work - Further refine tsc freq calibration
* @work - ignored.
*
* This functions uses delayed work over a period of a
* second to further refine the TSC freq value. Since this is
* timer based, instead of loop based, we don't block the boot
* process while this longer calibration is done.
*
* If there are any calibration anomalies (too many SMIs, etc),
* or the refined calibration is off by 1% of the fast early
* calibration, we throw out the new calibration and use the
* early calibration.
*/
static void tsc_refine_calibration_work(struct work_struct *work)
{
static u64 tsc_start = ULLONG_MAX, ref_start;
static int hpet;
u64 tsc_stop, ref_stop, delta;
unsigned long freq;
int cpu;
/* Don't bother refining TSC on unstable systems */
if (tsc_unstable)
goto unreg;
/*
* Since the work is started early in boot, we may be
* delayed the first time we expire. So set the workqueue
* again once we know timers are working.
*/
if (tsc_start == ULLONG_MAX) {
restart:
/*
* Only set hpet once, to avoid mixing hardware
* if the hpet becomes enabled later.
*/
hpet = is_hpet_enabled();
tsc_start = tsc_read_refs(&ref_start, hpet);
schedule_delayed_work(&tsc_irqwork, HZ);
return;
}
tsc_stop = tsc_read_refs(&ref_stop, hpet);
/* hpet or pmtimer available ? */
if (ref_start == ref_stop)
goto out;
/* Check, whether the sampling was disturbed */
if (tsc_stop == ULLONG_MAX)
goto restart;
delta = tsc_stop - tsc_start;
delta *= 1000000LL;
if (hpet)
freq = calc_hpet_ref(delta, ref_start, ref_stop);
else
freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
/* Make sure we're within 1% */
if (abs(tsc_khz - freq) > tsc_khz/100)
goto out;
tsc_khz = freq;
pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
(unsigned long)tsc_khz / 1000,
(unsigned long)tsc_khz % 1000);
/* Inform the TSC deadline clockevent devices about the recalibration */
lapic_update_tsc_freq();
/* Update the sched_clock() rate to match the clocksource one */
for_each_possible_cpu(cpu)
set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
out:
if (tsc_unstable)
goto unreg;
if (boot_cpu_has(X86_FEATURE_ART))
art_related_clocksource = &clocksource_tsc;
clocksource_register_khz(&clocksource_tsc, tsc_khz);
unreg:
clocksource_unregister(&clocksource_tsc_early);
}
static int __init init_tsc_clocksource(void)
{
if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
return 0;
if (tsc_unstable)
goto unreg;
if (tsc_clocksource_reliable || no_tsc_watchdog)
clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
/*
* When TSC frequency is known (retrieved via MSR or CPUID), we skip
* the refined calibration and directly register it as a clocksource.
*/
if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
if (boot_cpu_has(X86_FEATURE_ART))
art_related_clocksource = &clocksource_tsc;
clocksource_register_khz(&clocksource_tsc, tsc_khz);
unreg:
clocksource_unregister(&clocksource_tsc_early);
return 0;
}
schedule_delayed_work(&tsc_irqwork, 0);
return 0;
}
/*
* We use device_initcall here, to ensure we run after the hpet
* is fully initialized, which may occur at fs_initcall time.
*/
device_initcall(init_tsc_clocksource);
static bool __init determine_cpu_tsc_frequencies(bool early)
{
/* Make sure that cpu and tsc are not already calibrated */
WARN_ON(cpu_khz || tsc_khz);
if (early) {
cpu_khz = x86_platform.calibrate_cpu();
tsc_khz = x86_platform.calibrate_tsc();
} else {
/* We should not be here with non-native cpu calibration */
WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
cpu_khz = pit_hpet_ptimer_calibrate_cpu();
}
/*
* Trust non-zero tsc_khz as authoritative,
* and use it to sanity check cpu_khz,
* which will be off if system timer is off.
*/
if (tsc_khz == 0)
tsc_khz = cpu_khz;
else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
cpu_khz = tsc_khz;
if (tsc_khz == 0)
return false;
pr_info("Detected %lu.%03lu MHz processor\n",
(unsigned long)cpu_khz / KHZ,
(unsigned long)cpu_khz % KHZ);
if (cpu_khz != tsc_khz) {
pr_info("Detected %lu.%03lu MHz TSC",
(unsigned long)tsc_khz / KHZ,
(unsigned long)tsc_khz % KHZ);
}
return true;
}
static unsigned long __init get_loops_per_jiffy(void)
{
u64 lpj = (u64)tsc_khz * KHZ;
do_div(lpj, HZ);
return lpj;
}
static void __init tsc_enable_sched_clock(void)
{
/* Sanitize TSC ADJUST before cyc2ns gets initialized */
tsc_store_and_check_tsc_adjust(true);
cyc2ns_init_boot_cpu();
static_branch_enable(&__use_tsc);
}
void __init tsc_early_init(void)
{
if (!boot_cpu_has(X86_FEATURE_TSC))
return;
/* Don't change UV TSC multi-chassis synchronization */
if (is_early_uv_system())
return;
if (!determine_cpu_tsc_frequencies(true))
return;
loops_per_jiffy = get_loops_per_jiffy();
tsc_enable_sched_clock();
}
void __init tsc_init(void)
{
/*
* native_calibrate_cpu_early can only calibrate using methods that are
* available early in boot.
*/
if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
x86_platform.calibrate_cpu = native_calibrate_cpu;
if (!boot_cpu_has(X86_FEATURE_TSC)) {
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
return;
}
if (!tsc_khz) {
/* We failed to determine frequencies earlier, try again */
if (!determine_cpu_tsc_frequencies(false)) {
mark_tsc_unstable("could not calculate TSC khz");
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
return;
}
tsc_enable_sched_clock();
}
cyc2ns_init_secondary_cpus();
if (!no_sched_irq_time)
enable_sched_clock_irqtime();
lpj_fine = get_loops_per_jiffy();
use_tsc_delay();
check_system_tsc_reliable();
if (unsynchronized_tsc()) {
mark_tsc_unstable("TSCs unsynchronized");
return;
}
if (tsc_clocksource_reliable || no_tsc_watchdog)
clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
detect_art();
}
#ifdef CONFIG_SMP
/*
* If we have a constant TSC and are using the TSC for the delay loop,
* we can skip clock calibration if another cpu in the same socket has already
* been calibrated. This assumes that CONSTANT_TSC applies to all
* cpus in the socket - this should be a safe assumption.
*/
unsigned long calibrate_delay_is_known(void)
{
int sibling, cpu = smp_processor_id();
int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
const struct cpumask *mask = topology_core_cpumask(cpu);
if (!constant_tsc || !mask)
return 0;
sibling = cpumask_any_but(mask, cpu);
if (sibling < nr_cpu_ids)
return cpu_data(sibling).loops_per_jiffy;
return 0;
}
#endif