linux_old1/kernel/time/ntp.c

452 lines
12 KiB
C

/*
* linux/kernel/time/ntp.c
*
* NTP state machine interfaces and logic.
*
* This code was mainly moved from kernel/timer.c and kernel/time.c
* Please see those files for relevant copyright info and historical
* changelogs.
*/
#include <linux/mm.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/hrtimer.h>
#include <linux/capability.h>
#include <linux/math64.h>
#include <linux/clocksource.h>
#include <asm/timex.h>
/*
* Timekeeping variables
*/
unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
unsigned long tick_nsec; /* ACTHZ period (nsec) */
u64 tick_length;
static u64 tick_length_base;
static struct hrtimer leap_timer;
#define MAX_TICKADJ 500 /* microsecs */
#define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
/*
* phase-lock loop variables
*/
/* TIME_ERROR prevents overwriting the CMOS clock */
static int time_state = TIME_OK; /* clock synchronization status */
int time_status = STA_UNSYNC; /* clock status bits */
static long time_tai; /* TAI offset (s) */
static s64 time_offset; /* time adjustment (ns) */
static long time_constant = 2; /* pll time constant */
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
static s64 time_freq; /* frequency offset (scaled ns/s)*/
static long time_reftime; /* time at last adjustment (s) */
long time_adjust;
static long ntp_tick_adj;
static void ntp_update_frequency(void)
{
u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
<< NTP_SCALE_SHIFT;
second_length += (s64)ntp_tick_adj << NTP_SCALE_SHIFT;
second_length += time_freq;
tick_length_base = second_length;
tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
tick_length_base = div_u64(tick_length_base, NTP_INTERVAL_FREQ);
}
static void ntp_update_offset(long offset)
{
long mtemp;
s64 freq_adj;
if (!(time_status & STA_PLL))
return;
if (!(time_status & STA_NANO))
offset *= NSEC_PER_USEC;
/*
* Scale the phase adjustment and
* clamp to the operating range.
*/
offset = min(offset, MAXPHASE);
offset = max(offset, -MAXPHASE);
/*
* Select how the frequency is to be controlled
* and in which mode (PLL or FLL).
*/
if (time_status & STA_FREQHOLD || time_reftime == 0)
time_reftime = xtime.tv_sec;
mtemp = xtime.tv_sec - time_reftime;
time_reftime = xtime.tv_sec;
freq_adj = (s64)offset * mtemp;
freq_adj <<= NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant);
time_status &= ~STA_MODE;
if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
freq_adj += div_s64((s64)offset << (NTP_SCALE_SHIFT - SHIFT_FLL),
mtemp);
time_status |= STA_MODE;
}
freq_adj += time_freq;
freq_adj = min(freq_adj, MAXFREQ_SCALED);
time_freq = max(freq_adj, -MAXFREQ_SCALED);
time_offset = div_s64((s64)offset << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
}
/**
* ntp_clear - Clears the NTP state variables
*
* Must be called while holding a write on the xtime_lock
*/
void ntp_clear(void)
{
time_adjust = 0; /* stop active adjtime() */
time_status |= STA_UNSYNC;
time_maxerror = NTP_PHASE_LIMIT;
time_esterror = NTP_PHASE_LIMIT;
ntp_update_frequency();
tick_length = tick_length_base;
time_offset = 0;
}
/*
* Leap second processing. If in leap-insert state at the end of the
* day, the system clock is set back one second; if in leap-delete
* state, the system clock is set ahead one second.
*/
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
{
enum hrtimer_restart res = HRTIMER_NORESTART;
write_seqlock_irq(&xtime_lock);
switch (time_state) {
case TIME_OK:
break;
case TIME_INS:
xtime.tv_sec--;
wall_to_monotonic.tv_sec++;
time_state = TIME_OOP;
printk(KERN_NOTICE "Clock: "
"inserting leap second 23:59:60 UTC\n");
leap_timer.expires = ktime_add_ns(leap_timer.expires,
NSEC_PER_SEC);
res = HRTIMER_RESTART;
break;
case TIME_DEL:
xtime.tv_sec++;
time_tai--;
wall_to_monotonic.tv_sec--;
time_state = TIME_WAIT;
printk(KERN_NOTICE "Clock: "
"deleting leap second 23:59:59 UTC\n");
break;
case TIME_OOP:
time_tai++;
time_state = TIME_WAIT;
/* fall through */
case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK;
break;
}
update_vsyscall(&xtime, clock);
write_sequnlock_irq(&xtime_lock);
return res;
}
/*
* this routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
* They were originally developed for SUN and DEC kernels.
* All the kudos should go to Dave for this stuff.
*/
void second_overflow(void)
{
s64 time_adj;
/* Bump the maxerror field */
time_maxerror += MAXFREQ / NSEC_PER_USEC;
if (time_maxerror > NTP_PHASE_LIMIT) {
time_maxerror = NTP_PHASE_LIMIT;
time_status |= STA_UNSYNC;
}
/*
* Compute the phase adjustment for the next second. The offset is
* reduced by a fixed factor times the time constant.
*/
tick_length = tick_length_base;
time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
time_offset -= time_adj;
tick_length += time_adj;
if (unlikely(time_adjust)) {
if (time_adjust > MAX_TICKADJ) {
time_adjust -= MAX_TICKADJ;
tick_length += MAX_TICKADJ_SCALED;
} else if (time_adjust < -MAX_TICKADJ) {
time_adjust += MAX_TICKADJ;
tick_length -= MAX_TICKADJ_SCALED;
} else {
tick_length += (s64)(time_adjust * NSEC_PER_USEC /
NTP_INTERVAL_FREQ) << NTP_SCALE_SHIFT;
time_adjust = 0;
}
}
}
#ifdef CONFIG_GENERIC_CMOS_UPDATE
/* Disable the cmos update - used by virtualization and embedded */
int no_sync_cmos_clock __read_mostly;
static void sync_cmos_clock(unsigned long dummy);
static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
static void sync_cmos_clock(unsigned long dummy)
{
struct timespec now, next;
int fail = 1;
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
* This code is run on a timer. If the clock is set, that timer
* may not expire at the correct time. Thus, we adjust...
*/
if (!ntp_synced())
/*
* Not synced, exit, do not restart a timer (if one is
* running, let it run out).
*/
return;
getnstimeofday(&now);
if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
fail = update_persistent_clock(now);
next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
if (next.tv_nsec <= 0)
next.tv_nsec += NSEC_PER_SEC;
if (!fail)
next.tv_sec = 659;
else
next.tv_sec = 0;
if (next.tv_nsec >= NSEC_PER_SEC) {
next.tv_sec++;
next.tv_nsec -= NSEC_PER_SEC;
}
mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
}
static void notify_cmos_timer(void)
{
if (!no_sync_cmos_clock)
mod_timer(&sync_cmos_timer, jiffies + 1);
}
#else
static inline void notify_cmos_timer(void) { }
#endif
/* adjtimex mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
int do_adjtimex(struct timex *txc)
{
struct timespec ts;
long save_adjust, sec;
int result;
/* In order to modify anything, you gotta be super-user! */
if (txc->modes && !capable(CAP_SYS_TIME))
return -EPERM;
/* Now we validate the data before disabling interrupts */
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
/* singleshot must not be used with any other mode bits */
if (txc->modes & ~ADJ_OFFSET_SS_READ)
return -EINVAL;
}
/* if the quartz is off by more than 10% something is VERY wrong ! */
if (txc->modes & ADJ_TICK)
if (txc->tick < 900000/USER_HZ ||
txc->tick > 1100000/USER_HZ)
return -EINVAL;
if (time_state != TIME_OK && txc->modes & ADJ_STATUS)
hrtimer_cancel(&leap_timer);
getnstimeofday(&ts);
write_seqlock_irq(&xtime_lock);
/* Save for later - semantics of adjtime is to return old value */
save_adjust = time_adjust;
/* If there are input parameters, then process them */
if (txc->modes) {
if (txc->modes & ADJ_STATUS) {
if ((time_status & STA_PLL) &&
!(txc->status & STA_PLL)) {
time_state = TIME_OK;
time_status = STA_UNSYNC;
}
/* only set allowed bits */
time_status &= STA_RONLY;
time_status |= txc->status & ~STA_RONLY;
switch (time_state) {
case TIME_OK:
start_timer:
sec = ts.tv_sec;
if (time_status & STA_INS) {
time_state = TIME_INS;
sec += 86400 - sec % 86400;
hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
} else if (time_status & STA_DEL) {
time_state = TIME_DEL;
sec += 86400 - (sec + 1) % 86400;
hrtimer_start(&leap_timer, ktime_set(sec, 0), HRTIMER_MODE_ABS);
}
break;
case TIME_INS:
case TIME_DEL:
time_state = TIME_OK;
goto start_timer;
break;
case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK;
break;
case TIME_OOP:
hrtimer_restart(&leap_timer);
break;
}
}
if (txc->modes & ADJ_NANO)
time_status |= STA_NANO;
if (txc->modes & ADJ_MICRO)
time_status &= ~STA_NANO;
if (txc->modes & ADJ_FREQUENCY) {
time_freq = (s64)txc->freq * PPM_SCALE;
time_freq = min(time_freq, MAXFREQ_SCALED);
time_freq = max(time_freq, -MAXFREQ_SCALED);
}
if (txc->modes & ADJ_MAXERROR)
time_maxerror = txc->maxerror;
if (txc->modes & ADJ_ESTERROR)
time_esterror = txc->esterror;
if (txc->modes & ADJ_TIMECONST) {
time_constant = txc->constant;
if (!(time_status & STA_NANO))
time_constant += 4;
time_constant = min(time_constant, (long)MAXTC);
time_constant = max(time_constant, 0l);
}
if (txc->modes & ADJ_TAI && txc->constant > 0)
time_tai = txc->constant;
if (txc->modes & ADJ_OFFSET) {
if (txc->modes == ADJ_OFFSET_SINGLESHOT)
/* adjtime() is independent from ntp_adjtime() */
time_adjust = txc->offset;
else
ntp_update_offset(txc->offset);
}
if (txc->modes & ADJ_TICK)
tick_usec = txc->tick;
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
ntp_update_frequency();
}
result = time_state; /* mostly `TIME_OK' */
if (time_status & (STA_UNSYNC|STA_CLOCKERR))
result = TIME_ERROR;
if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
(txc->modes == ADJ_OFFSET_SS_READ))
txc->offset = save_adjust;
else {
txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
NTP_SCALE_SHIFT);
if (!(time_status & STA_NANO))
txc->offset /= NSEC_PER_USEC;
}
txc->freq = shift_right((s32)(time_freq >> PPM_SCALE_INV_SHIFT) *
(s64)PPM_SCALE_INV,
NTP_SCALE_SHIFT);
txc->maxerror = time_maxerror;
txc->esterror = time_esterror;
txc->status = time_status;
txc->constant = time_constant;
txc->precision = 1;
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
txc->tick = tick_usec;
txc->tai = time_tai;
/* PPS is not implemented, so these are zero */
txc->ppsfreq = 0;
txc->jitter = 0;
txc->shift = 0;
txc->stabil = 0;
txc->jitcnt = 0;
txc->calcnt = 0;
txc->errcnt = 0;
txc->stbcnt = 0;
write_sequnlock_irq(&xtime_lock);
txc->time.tv_sec = ts.tv_sec;
txc->time.tv_usec = ts.tv_nsec;
if (!(time_status & STA_NANO))
txc->time.tv_usec /= NSEC_PER_USEC;
notify_cmos_timer();
return result;
}
static int __init ntp_tick_adj_setup(char *str)
{
ntp_tick_adj = simple_strtol(str, NULL, 0);
return 1;
}
__setup("ntp_tick_adj=", ntp_tick_adj_setup);
void __init ntp_init(void)
{
ntp_clear();
hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
leap_timer.function = ntp_leap_second;
}