linux_old1/drivers/net/wireless/ath/ath5k/eeprom.c

1797 lines
48 KiB
C

/*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*************************************\
* EEPROM access functions and helpers *
\*************************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include "ath5k.h"
#include "reg.h"
#include "debug.h"
/******************\
* Helper functions *
\******************/
/*
* Translate binary channel representation in EEPROM to frequency
*/
static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
unsigned int mode)
{
u16 val;
if (bin == AR5K_EEPROM_CHANNEL_DIS)
return bin;
if (mode == AR5K_EEPROM_MODE_11A) {
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = (5 * bin) + 4800;
else
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
(bin * 10) + 5100;
} else {
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = bin + 2300;
else
val = bin + 2400;
}
return val;
}
/*********\
* Parsers *
\*********/
/*
* Initialize eeprom & capabilities structs
*/
static int
ath5k_eeprom_init_header(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u16 val;
u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
/*
* Read values from EEPROM and store them in the capability structure
*/
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
/* Return if we have an old EEPROM */
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
return 0;
/*
* Validate the checksum of the EEPROM date. There are some
* devices with invalid EEPROMs.
*/
AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
if (val) {
eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
/*
* Fail safe check to prevent stupid loops due
* to busted EEPROMs. XXX: This value is likely too
* big still, waiting on a better value.
*/
if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
"%d (0x%04x) max expected: %d (0x%04x)\n",
eep_max, eep_max,
3 * AR5K_EEPROM_INFO_MAX,
3 * AR5K_EEPROM_INFO_MAX);
return -EIO;
}
}
for (cksum = 0, offset = 0; offset < eep_max; offset++) {
AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
cksum ^= val;
}
if (cksum != AR5K_EEPROM_INFO_CKSUM) {
ATH5K_ERR(ah, "Invalid EEPROM "
"checksum: 0x%04x eep_max: 0x%04x (%s)\n",
cksum, eep_max,
eep_max == AR5K_EEPROM_INFO_MAX ?
"default size" : "custom size");
return -EIO;
}
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
ee_ant_gain);
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
/* XXX: Don't know which versions include these two */
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
}
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
}
AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
ee->ee_is_hb63 = true;
else
ee->ee_is_hb63 = false;
AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
* and enable serdes programming if needed.
*
* XXX: Serdes values seem to be fixed so
* no need to read them here, we write them
* during ath5k_hw_init */
AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
true : false;
return 0;
}
/*
* Read antenna infos from eeprom
*/
static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 o = *offset;
u16 val;
int i = 0;
AR5K_EEPROM_READ(o++, val);
ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
ee->ee_ant_control[mode][i++] = val & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
ee->ee_ant_control[mode][i++] = val & 0x3f;
/* Get antenna switch tables */
ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
(ee->ee_ant_control[mode][0] << 4);
ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
ee->ee_ant_control[mode][1] |
(ee->ee_ant_control[mode][2] << 6) |
(ee->ee_ant_control[mode][3] << 12) |
(ee->ee_ant_control[mode][4] << 18) |
(ee->ee_ant_control[mode][5] << 24);
ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
ee->ee_ant_control[mode][6] |
(ee->ee_ant_control[mode][7] << 6) |
(ee->ee_ant_control[mode][8] << 12) |
(ee->ee_ant_control[mode][9] << 18) |
(ee->ee_ant_control[mode][10] << 24);
/* return new offset */
*offset = o;
return 0;
}
/*
* Read supported modes and some mode-specific calibration data
* from eeprom
*/
static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 o = *offset;
u16 val;
ee->ee_n_piers[mode] = 0;
AR5K_EEPROM_READ(o++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
switch (mode) {
case AR5K_EEPROM_MODE_11A:
ee->ee_ob[mode][3] = (val >> 5) & 0x7;
ee->ee_db[mode][3] = (val >> 2) & 0x7;
ee->ee_ob[mode][2] = (val << 1) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
ee->ee_db[mode][2] = (val >> 12) & 0x7;
ee->ee_ob[mode][1] = (val >> 9) & 0x7;
ee->ee_db[mode][1] = (val >> 6) & 0x7;
ee->ee_ob[mode][0] = (val >> 3) & 0x7;
ee->ee_db[mode][0] = val & 0x7;
break;
case AR5K_EEPROM_MODE_11G:
case AR5K_EEPROM_MODE_11B:
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
break;
}
AR5K_EEPROM_READ(o++, val);
ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
ee->ee_thr_62[mode] = val & 0xff;
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
AR5K_EEPROM_READ(o++, val);
ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
AR5K_EEPROM_READ(o++, val);
ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
if ((val & 0xff) & 0x80)
ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
else
ee->ee_noise_floor_thr[mode] = val & 0xff;
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
ee->ee_noise_floor_thr[mode] =
mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
AR5K_EEPROM_READ(o++, val);
ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
ee->ee_x_gain[mode] = (val >> 1) & 0xf;
ee->ee_xpd[mode] = val & 0x1;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
mode != AR5K_EEPROM_MODE_11B)
ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
AR5K_EEPROM_READ(o++, val);
ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
if (mode == AR5K_EEPROM_MODE_11A)
ee->ee_xr_power[mode] = val & 0x3f;
else {
/* b_DB_11[bg] and b_OB_11[bg] */
ee->ee_ob[mode][0] = val & 0x7;
ee->ee_db[mode][0] = (val >> 3) & 0x7;
}
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
} else {
ee->ee_i_gain[mode] = (val >> 13) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_i_gain[mode] |= (val << 3) & 0x38;
if (mode == AR5K_EEPROM_MODE_11G) {
ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
}
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
mode == AR5K_EEPROM_MODE_11A) {
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
goto done;
/* Note: >= v5 have bg freq piers on another location
* so these freq piers are ignored for >= v5 (should be 0xff
* anyway) */
switch (mode) {
case AR5K_EEPROM_MODE_11A:
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
break;
AR5K_EEPROM_READ(o++, val);
ee->ee_margin_tx_rx[mode] = val & 0x3f;
break;
case AR5K_EEPROM_MODE_11B:
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_b[0].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
ee->ee_pwr_cal_b[1].freq =
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_b[2].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
break;
case AR5K_EEPROM_MODE_11G:
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_g[0].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
ee->ee_pwr_cal_g[1].freq =
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
AR5K_EEPROM_READ(o++, val);
ee->ee_turbo_max_power[mode] = val & 0x7f;
ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_g[2].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
ee->ee_q_cal[mode] = val & 0x1f;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
AR5K_EEPROM_READ(o++, val);
ee->ee_cck_ofdm_gain_delta = val & 0xff;
}
break;
}
/*
* Read turbo mode information on newer EEPROM versions
*/
if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
goto done;
switch (mode) {
case AR5K_EEPROM_MODE_11A:
ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
AR5K_EEPROM_READ(o++, val);
ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
break;
case AR5K_EEPROM_MODE_11G:
ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
AR5K_EEPROM_READ(o++, val);
ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
break;
}
done:
/* return new offset */
*offset = o;
return 0;
}
/* Read mode-specific data (except power calibration data) */
static int
ath5k_eeprom_init_modes(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 mode_offset[3];
unsigned int mode;
u32 offset;
int ret;
/*
* Get values for all modes
*/
mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
offset = mode_offset[mode];
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
}
/* override for older eeprom versions for better performance */
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
}
return 0;
}
/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
* frequency mask) */
static inline int
ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
struct ath5k_chan_pcal_info *pc, unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
int o = *offset;
int i = 0;
u8 freq1, freq2;
u16 val;
ee->ee_n_piers[mode] = 0;
while (i < max) {
AR5K_EEPROM_READ(o++, val);
freq1 = val & 0xff;
if (!freq1)
break;
pc[i++].freq = ath5k_eeprom_bin2freq(ee,
freq1, mode);
ee->ee_n_piers[mode]++;
freq2 = (val >> 8) & 0xff;
if (!freq2)
break;
pc[i++].freq = ath5k_eeprom_bin2freq(ee,
freq2, mode);
ee->ee_n_piers[mode]++;
}
/* return new offset */
*offset = o;
return 0;
}
/* Read frequency piers for 802.11a */
static int
ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
int i;
u16 val;
u8 mask;
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
ath5k_eeprom_read_freq_list(ah, &offset,
AR5K_EEPROM_N_5GHZ_CHAN, pcal,
AR5K_EEPROM_MODE_11A);
} else {
mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
AR5K_EEPROM_READ(offset++, val);
pcal[0].freq = (val >> 9) & mask;
pcal[1].freq = (val >> 2) & mask;
pcal[2].freq = (val << 5) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[2].freq |= (val >> 11) & 0x1f;
pcal[3].freq = (val >> 4) & mask;
pcal[4].freq = (val << 3) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[4].freq |= (val >> 13) & 0x7;
pcal[5].freq = (val >> 6) & mask;
pcal[6].freq = (val << 1) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[6].freq |= (val >> 15) & 0x1;
pcal[7].freq = (val >> 8) & mask;
pcal[8].freq = (val >> 1) & mask;
pcal[9].freq = (val << 6) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[9].freq |= (val >> 10) & 0x3f;
/* Fixed number of piers */
ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
pcal[i].freq = ath5k_eeprom_bin2freq(ee,
pcal[i].freq, AR5K_EEPROM_MODE_11A);
}
}
return 0;
}
/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
static inline int
ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcal;
switch (mode) {
case AR5K_EEPROM_MODE_11B:
pcal = ee->ee_pwr_cal_b;
break;
case AR5K_EEPROM_MODE_11G:
pcal = ee->ee_pwr_cal_g;
break;
default:
return -EINVAL;
}
ath5k_eeprom_read_freq_list(ah, &offset,
AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
mode);
return 0;
}
/*
* Read power calibration for RF5111 chips
*
* For RF5111 we have an XPD -eXternal Power Detector- curve
* for each calibrated channel. Each curve has 0,5dB Power steps
* on x axis and PCDAC steps (offsets) on y axis and looks like an
* exponential function. To recreate the curve we read 11 points
* here and interpolate later.
*/
/* Used to match PCDAC steps with power values on RF5111 chips
* (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
* steps that match with the power values we read from eeprom. On
* older eeprom versions (< 3.2) these steps are equally spaced at
* 10% of the pcdac curve -until the curve reaches its maximum-
* (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
* these 11 steps are spaced in a different way. This function returns
* the pcdac steps based on eeprom version and curve min/max so that we
* can have pcdac/pwr points.
*/
static inline void
ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
{
static const u16 intercepts3[] = {
0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
};
static const u16 intercepts3_2[] = {
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
};
const u16 *ip;
int i;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
ip = intercepts3_2;
else
ip = intercepts3;
for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
}
static int
ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *chinfo;
u8 pier, pdg;
switch (mode) {
case AR5K_EEPROM_MODE_11A:
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
return 0;
chinfo = ee->ee_pwr_cal_a;
break;
case AR5K_EEPROM_MODE_11B:
if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
return 0;
chinfo = ee->ee_pwr_cal_b;
break;
case AR5K_EEPROM_MODE_11G:
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
return 0;
chinfo = ee->ee_pwr_cal_g;
break;
default:
return -EINVAL;
}
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
if (!chinfo[pier].pd_curves)
continue;
for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
struct ath5k_pdgain_info *pd =
&chinfo[pier].pd_curves[pdg];
kfree(pd->pd_step);
kfree(pd->pd_pwr);
}
kfree(chinfo[pier].pd_curves);
}
return 0;
}
/* Convert RF5111 specific data to generic raw data
* used by interpolation code */
static int
ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
struct ath5k_chan_pcal_info *chinfo)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info_rf5111 *pcinfo;
struct ath5k_pdgain_info *pd;
u8 pier, point, idx;
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
/* Fill raw data for each calibration pier */
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
pcinfo = &chinfo[pier].rf5111_info;
/* Allocate pd_curves for this cal pier */
chinfo[pier].pd_curves =
kcalloc(AR5K_EEPROM_N_PD_CURVES,
sizeof(struct ath5k_pdgain_info),
GFP_KERNEL);
if (!chinfo[pier].pd_curves)
goto err_out;
/* Only one curve for RF5111
* find out which one and place
* in pd_curves.
* Note: ee_x_gain is reversed here */
for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
pdgain_idx[0] = idx;
break;
}
}
ee->ee_pd_gains[mode] = 1;
pd = &chinfo[pier].pd_curves[idx];
pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
/* Allocate pd points for this curve */
pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
sizeof(u8), GFP_KERNEL);
if (!pd->pd_step)
goto err_out;
pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
sizeof(s16), GFP_KERNEL);
if (!pd->pd_pwr)
goto err_out;
/* Fill raw dataset
* (convert power to 0.25dB units
* for RF5112 compatibility) */
for (point = 0; point < pd->pd_points; point++) {
/* Absolute values */
pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
/* Already sorted */
pd->pd_step[point] = pcinfo->pcdac[point];
}
/* Set min/max pwr */
chinfo[pier].min_pwr = pd->pd_pwr[0];
chinfo[pier].max_pwr = pd->pd_pwr[10];
}
return 0;
err_out:
ath5k_eeprom_free_pcal_info(ah, mode);
return -ENOMEM;
}
/* Parse EEPROM data */
static int
ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcal;
int offset, ret;
int i;
u16 val;
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
switch (mode) {
case AR5K_EEPROM_MODE_11A:
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
return 0;
ret = ath5k_eeprom_init_11a_pcal_freq(ah,
offset + AR5K_EEPROM_GROUP1_OFFSET);
if (ret < 0)
return ret;
offset += AR5K_EEPROM_GROUP2_OFFSET;
pcal = ee->ee_pwr_cal_a;
break;
case AR5K_EEPROM_MODE_11B:
if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
!AR5K_EEPROM_HDR_11G(ee->ee_header))
return 0;
pcal = ee->ee_pwr_cal_b;
offset += AR5K_EEPROM_GROUP3_OFFSET;
/* fixed piers */
pcal[0].freq = 2412;
pcal[1].freq = 2447;
pcal[2].freq = 2484;
ee->ee_n_piers[mode] = 3;
break;
case AR5K_EEPROM_MODE_11G:
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
return 0;
pcal = ee->ee_pwr_cal_g;
offset += AR5K_EEPROM_GROUP4_OFFSET;
/* fixed piers */
pcal[0].freq = 2312;
pcal[1].freq = 2412;
pcal[2].freq = 2484;
ee->ee_n_piers[mode] = 3;
break;
default:
return -EINVAL;
}
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
struct ath5k_chan_pcal_info_rf5111 *cdata =
&pcal[i].rf5111_info;
AR5K_EEPROM_READ(offset++, val);
cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[0] |= ((val >> 14) & 0x3);
cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[3] |= ((val >> 12) & 0xf);
cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[8] |= ((val >> 14) & 0x3);
cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
cdata->pcdac_max, cdata->pcdac);
}
return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
}
/*
* Read power calibration for RF5112 chips
*
* For RF5112 we have 4 XPD -eXternal Power Detector- curves
* for each calibrated channel on 0, -6, -12 and -18dBm but we only
* use the higher (3) and the lower (0) curves. Each curve has 0.5dB
* power steps on x axis and PCDAC steps on y axis and looks like a
* linear function. To recreate the curve and pass the power values
* on hw, we read 4 points for xpd 0 (lower gain -> max power)
* and 3 points for xpd 3 (higher gain -> lower power) here and
* interpolate later.
*
* Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
*/
/* Convert RF5112 specific data to generic raw data
* used by interpolation code */
static int
ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
struct ath5k_chan_pcal_info *chinfo)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info_rf5112 *pcinfo;
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
unsigned int pier, pdg, point;
/* Fill raw data for each calibration pier */
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
pcinfo = &chinfo[pier].rf5112_info;
/* Allocate pd_curves for this cal pier */
chinfo[pier].pd_curves =
kcalloc(AR5K_EEPROM_N_PD_CURVES,
sizeof(struct ath5k_pdgain_info),
GFP_KERNEL);
if (!chinfo[pier].pd_curves)
goto err_out;
/* Fill pd_curves */
for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
u8 idx = pdgain_idx[pdg];
struct ath5k_pdgain_info *pd =
&chinfo[pier].pd_curves[idx];
/* Lowest gain curve (max power) */
if (pdg == 0) {
/* One more point for better accuracy */
pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
/* Allocate pd points for this curve */
pd->pd_step = kcalloc(pd->pd_points,
sizeof(u8), GFP_KERNEL);
if (!pd->pd_step)
goto err_out;
pd->pd_pwr = kcalloc(pd->pd_points,
sizeof(s16), GFP_KERNEL);
if (!pd->pd_pwr)
goto err_out;
/* Fill raw dataset
* (all power levels are in 0.25dB units) */
pd->pd_step[0] = pcinfo->pcdac_x0[0];
pd->pd_pwr[0] = pcinfo->pwr_x0[0];
for (point = 1; point < pd->pd_points;
point++) {
/* Absolute values */
pd->pd_pwr[point] =
pcinfo->pwr_x0[point];
/* Deltas */
pd->pd_step[point] =
pd->pd_step[point - 1] +
pcinfo->pcdac_x0[point];
}
/* Set min power for this frequency */
chinfo[pier].min_pwr = pd->pd_pwr[0];
/* Highest gain curve (min power) */
} else if (pdg == 1) {
pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
/* Allocate pd points for this curve */
pd->pd_step = kcalloc(pd->pd_points,
sizeof(u8), GFP_KERNEL);
if (!pd->pd_step)
goto err_out;
pd->pd_pwr = kcalloc(pd->pd_points,
sizeof(s16), GFP_KERNEL);
if (!pd->pd_pwr)
goto err_out;
/* Fill raw dataset
* (all power levels are in 0.25dB units) */
for (point = 0; point < pd->pd_points;
point++) {
/* Absolute values */
pd->pd_pwr[point] =
pcinfo->pwr_x3[point];
/* Fixed points */
pd->pd_step[point] =
pcinfo->pcdac_x3[point];
}
/* Since we have a higher gain curve
* override min power */
chinfo[pier].min_pwr = pd->pd_pwr[0];
}
}
}
return 0;
err_out:
ath5k_eeprom_free_pcal_info(ah, mode);
return -ENOMEM;
}
/* Parse EEPROM data */
static int
ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
struct ath5k_chan_pcal_info *gen_chan_info;
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
u32 offset;
u8 i, c;
u16 val;
u8 pd_gains = 0;
/* Count how many curves we have and
* identify them (which one of the 4
* available curves we have on each count).
* Curves are stored from lower (x0) to
* higher (x3) gain */
for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
/* ee_x_gain[mode] is x gain mask */
if ((ee->ee_x_gain[mode] >> i) & 0x1)
pdgain_idx[pd_gains++] = i;
}
ee->ee_pd_gains[mode] = pd_gains;
if (pd_gains == 0 || pd_gains > 2)
return -EINVAL;
switch (mode) {
case AR5K_EEPROM_MODE_11A:
/*
* Read 5GHz EEPROM channels
*/
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
ath5k_eeprom_init_11a_pcal_freq(ah, offset);
offset += AR5K_EEPROM_GROUP2_OFFSET;
gen_chan_info = ee->ee_pwr_cal_a;
break;
case AR5K_EEPROM_MODE_11B:
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
offset += AR5K_EEPROM_GROUP3_OFFSET;
/* NB: frequency piers parsed during mode init */
gen_chan_info = ee->ee_pwr_cal_b;
break;
case AR5K_EEPROM_MODE_11G:
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
offset += AR5K_EEPROM_GROUP4_OFFSET;
else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
offset += AR5K_EEPROM_GROUP2_OFFSET;
/* NB: frequency piers parsed during mode init */
gen_chan_info = ee->ee_pwr_cal_g;
break;
default:
return -EINVAL;
}
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
chan_pcal_info = &gen_chan_info[i].rf5112_info;
/* Power values in quarter dB
* for the lower xpd gain curve
* (0 dBm -> higher output power) */
for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
}
/* PCDAC steps
* corresponding to the above power
* measurements */
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
/* Power values in quarter dB
* for the higher xpd gain curve
* (18 dBm -> lower output power) */
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr_x3[2] = (val & 0xff);
/* PCDAC steps
* corresponding to the above power
* measurements (fixed) */
chan_pcal_info->pcdac_x3[0] = 20;
chan_pcal_info->pcdac_x3[1] = 35;
chan_pcal_info->pcdac_x3[2] = 63;
if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
/* Last xpd0 power level is also channel maximum */
gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
} else {
chan_pcal_info->pcdac_x0[0] = 1;
gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
}
}
return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
}
/*
* Read power calibration for RF2413 chips
*
* For RF2413 we have a Power to PDDAC table (Power Detector)
* instead of a PCDAC and 4 pd gain curves for each calibrated channel.
* Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
* axis and looks like an exponential function like the RF5111 curve.
*
* To recreate the curves we read here the points and interpolate
* later. Note that in most cases only 2 (higher and lower) curves are
* used (like RF5112) but vendors have the opportunity to include all
* 4 curves on eeprom. The final curve (higher power) has an extra
* point for better accuracy like RF5112.
*/
/* For RF2413 power calibration data doesn't start on a fixed location and
* if a mode is not supported, its section is missing -not zeroed-.
* So we need to calculate the starting offset for each section by using
* these two functions */
/* Return the size of each section based on the mode and the number of pd
* gains available (maximum 4). */
static inline unsigned int
ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
{
static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
unsigned int sz;
sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
sz *= ee->ee_n_piers[mode];
return sz;
}
/* Return the starting offset for a section based on the modes supported
* and each section's size. */
static unsigned int
ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
{
u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
switch (mode) {
case AR5K_EEPROM_MODE_11G:
if (AR5K_EEPROM_HDR_11B(ee->ee_header))
offset += ath5k_pdgains_size_2413(ee,
AR5K_EEPROM_MODE_11B) +
AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
/* fall through */
case AR5K_EEPROM_MODE_11B:
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
offset += ath5k_pdgains_size_2413(ee,
AR5K_EEPROM_MODE_11A) +
AR5K_EEPROM_N_5GHZ_CHAN / 2;
/* fall through */
case AR5K_EEPROM_MODE_11A:
break;
default:
break;
}
return offset;
}
/* Convert RF2413 specific data to generic raw data
* used by interpolation code */
static int
ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
struct ath5k_chan_pcal_info *chinfo)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info_rf2413 *pcinfo;
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
unsigned int pier, pdg, point;
/* Fill raw data for each calibration pier */
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
pcinfo = &chinfo[pier].rf2413_info;
/* Allocate pd_curves for this cal pier */
chinfo[pier].pd_curves =
kcalloc(AR5K_EEPROM_N_PD_CURVES,
sizeof(struct ath5k_pdgain_info),
GFP_KERNEL);
if (!chinfo[pier].pd_curves)
goto err_out;
/* Fill pd_curves */
for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
u8 idx = pdgain_idx[pdg];
struct ath5k_pdgain_info *pd =
&chinfo[pier].pd_curves[idx];
/* One more point for the highest power
* curve (lowest gain) */
if (pdg == ee->ee_pd_gains[mode] - 1)
pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
else
pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
/* Allocate pd points for this curve */
pd->pd_step = kcalloc(pd->pd_points,
sizeof(u8), GFP_KERNEL);
if (!pd->pd_step)
goto err_out;
pd->pd_pwr = kcalloc(pd->pd_points,
sizeof(s16), GFP_KERNEL);
if (!pd->pd_pwr)
goto err_out;
/* Fill raw dataset
* convert all pwr levels to
* quarter dB for RF5112 compatibility */
pd->pd_step[0] = pcinfo->pddac_i[pdg];
pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
for (point = 1; point < pd->pd_points; point++) {
pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
2 * pcinfo->pwr[pdg][point - 1];
pd->pd_step[point] = pd->pd_step[point - 1] +
pcinfo->pddac[pdg][point - 1];
}
/* Highest gain curve -> min power */
if (pdg == 0)
chinfo[pier].min_pwr = pd->pd_pwr[0];
/* Lowest gain curve -> max power */
if (pdg == ee->ee_pd_gains[mode] - 1)
chinfo[pier].max_pwr =
pd->pd_pwr[pd->pd_points - 1];
}
}
return 0;
err_out:
ath5k_eeprom_free_pcal_info(ah, mode);
return -ENOMEM;
}
/* Parse EEPROM data */
static int
ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info_rf2413 *pcinfo;
struct ath5k_chan_pcal_info *chinfo;
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
u32 offset;
int idx, i;
u16 val;
u8 pd_gains = 0;
/* Count how many curves we have and
* identify them (which one of the 4
* available curves we have on each count).
* Curves are stored from higher to
* lower gain so we go backwards */
for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
/* ee_x_gain[mode] is x gain mask */
if ((ee->ee_x_gain[mode] >> idx) & 0x1)
pdgain_idx[pd_gains++] = idx;
}
ee->ee_pd_gains[mode] = pd_gains;
if (pd_gains == 0)
return -EINVAL;
offset = ath5k_cal_data_offset_2413(ee, mode);
switch (mode) {
case AR5K_EEPROM_MODE_11A:
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
return 0;
ath5k_eeprom_init_11a_pcal_freq(ah, offset);
offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
chinfo = ee->ee_pwr_cal_a;
break;
case AR5K_EEPROM_MODE_11B:
if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
return 0;
ath5k_eeprom_init_11bg_2413(ah, mode, offset);
offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
chinfo = ee->ee_pwr_cal_b;
break;
case AR5K_EEPROM_MODE_11G:
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
return 0;
ath5k_eeprom_init_11bg_2413(ah, mode, offset);
offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
chinfo = ee->ee_pwr_cal_g;
break;
default:
return -EINVAL;
}
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
pcinfo = &chinfo[i].rf2413_info;
/*
* Read pwr_i, pddac_i and the first
* 2 pd points (pwr, pddac)
*/
AR5K_EEPROM_READ(offset++, val);
pcinfo->pwr_i[0] = val & 0x1f;
pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
pcinfo->pwr[0][0] = (val >> 12) & 0xf;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pddac[0][0] = val & 0x3f;
pcinfo->pwr[0][1] = (val >> 6) & 0xf;
pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pwr[0][2] = val & 0xf;
pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
pcinfo->pwr[0][3] = 0;
pcinfo->pddac[0][3] = 0;
if (pd_gains > 1) {
/*
* Pd gain 0 is not the last pd gain
* so it only has 2 pd points.
* Continue with pd gain 1.
*/
pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
pcinfo->pddac_i[1] = (val >> 15) & 0x1;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
pcinfo->pwr[1][0] = (val >> 6) & 0xf;
pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pwr[1][1] = val & 0xf;
pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
pcinfo->pwr[1][2] = (val >> 10) & 0xf;
pcinfo->pddac[1][2] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pddac[1][2] |= (val & 0xF) << 2;
pcinfo->pwr[1][3] = 0;
pcinfo->pddac[1][3] = 0;
} else if (pd_gains == 1) {
/*
* Pd gain 0 is the last one so
* read the extra point.
*/
pcinfo->pwr[0][3] = (val >> 10) & 0xf;
pcinfo->pddac[0][3] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pddac[0][3] |= (val & 0xF) << 2;
}
/*
* Proceed with the other pd_gains
* as above.
*/
if (pd_gains > 2) {
pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pwr[2][0] = (val >> 0) & 0xf;
pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
pcinfo->pwr[2][1] = (val >> 10) & 0xf;
pcinfo->pddac[2][1] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pddac[2][1] |= (val & 0xF) << 2;
pcinfo->pwr[2][2] = (val >> 4) & 0xf;
pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
pcinfo->pwr[2][3] = 0;
pcinfo->pddac[2][3] = 0;
} else if (pd_gains == 2) {
pcinfo->pwr[1][3] = (val >> 4) & 0xf;
pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
}
if (pd_gains > 3) {
pcinfo->pwr_i[3] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
pcinfo->pwr[3][0] = (val >> 10) & 0xf;
pcinfo->pddac[3][0] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pddac[3][0] |= (val & 0xF) << 2;
pcinfo->pwr[3][1] = (val >> 4) & 0xf;
pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
pcinfo->pwr[3][2] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
pcinfo->pwr[3][3] = (val >> 8) & 0xf;
pcinfo->pddac[3][3] = (val >> 12) & 0xF;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
} else if (pd_gains == 3) {
pcinfo->pwr[2][3] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
}
}
return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
}
/*
* Read per rate target power (this is the maximum tx power
* supported by the card). This info is used when setting
* tx power, no matter the channel.
*
* This also works for v5 EEPROMs.
*/
static int
ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_rate_pcal_info *rate_pcal_info;
u8 *rate_target_pwr_num;
u32 offset;
u16 val;
int i;
offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
switch (mode) {
case AR5K_EEPROM_MODE_11A:
offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
rate_pcal_info = ee->ee_rate_tpwr_a;
ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
break;
case AR5K_EEPROM_MODE_11B:
offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
rate_pcal_info = ee->ee_rate_tpwr_b;
ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
break;
case AR5K_EEPROM_MODE_11G:
offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
rate_pcal_info = ee->ee_rate_tpwr_g;
ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
break;
default:
return -EINVAL;
}
/* Different freq mask for older eeproms (<= v3.2) */
if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
for (i = 0; i < (*rate_target_pwr_num); i++) {
AR5K_EEPROM_READ(offset++, val);
rate_pcal_info[i].freq =
ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
val == 0) {
(*rate_target_pwr_num) = i;
break;
}
rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
}
} else {
for (i = 0; i < (*rate_target_pwr_num); i++) {
AR5K_EEPROM_READ(offset++, val);
rate_pcal_info[i].freq =
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
AR5K_EEPROM_READ(offset++, val);
if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
val == 0) {
(*rate_target_pwr_num) = i;
break;
}
rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
rate_pcal_info[i].target_power_54 = (val & 0x3f);
}
}
return 0;
}
/*
* Read per channel calibration info from EEPROM
*
* This info is used to calibrate the baseband power table. Imagine
* that for each channel there is a power curve that's hw specific
* (depends on amplifier etc) and we try to "correct" this curve using
* offsets we pass on to phy chip (baseband -> before amplifier) so that
* it can use accurate power values when setting tx power (takes amplifier's
* performance on each channel into account).
*
* EEPROM provides us with the offsets for some pre-calibrated channels
* and we have to interpolate to create the full table for these channels and
* also the table for any channel.
*/
static int
ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
int (*read_pcal)(struct ath5k_hw *hw, int mode);
int mode;
int err;
if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
read_pcal = ath5k_eeprom_read_pcal_info_5112;
else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
read_pcal = ath5k_eeprom_read_pcal_info_2413;
else
read_pcal = ath5k_eeprom_read_pcal_info_5111;
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
mode++) {
err = read_pcal(ah, mode);
if (err)
return err;
err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
if (err < 0)
return err;
}
return 0;
}
/* Read conformance test limits used for regulatory control */
static int
ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_edge_power *rep;
unsigned int fmask, pmask;
unsigned int ctl_mode;
int i, j;
u32 offset;
u16 val;
pmask = AR5K_EEPROM_POWER_M;
fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
offset = AR5K_EEPROM_CTL(ee->ee_version);
ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
for (i = 0; i < ee->ee_ctls; i += 2) {
AR5K_EEPROM_READ(offset++, val);
ee->ee_ctl[i] = (val >> 8) & 0xff;
ee->ee_ctl[i + 1] = val & 0xff;
}
offset = AR5K_EEPROM_GROUP8_OFFSET;
if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
AR5K_EEPROM_GROUP5_OFFSET;
else
offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
rep = ee->ee_ctl_pwr;
for (i = 0; i < ee->ee_ctls; i++) {
switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
case AR5K_CTL_11A:
case AR5K_CTL_TURBO:
ctl_mode = AR5K_EEPROM_MODE_11A;
break;
default:
ctl_mode = AR5K_EEPROM_MODE_11G;
break;
}
if (ee->ee_ctl[i] == 0) {
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
offset += 8;
else
offset += 7;
rep += AR5K_EEPROM_N_EDGES;
continue;
}
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
AR5K_EEPROM_READ(offset++, val);
rep[j].freq = (val >> 8) & fmask;
rep[j + 1].freq = val & fmask;
}
for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
AR5K_EEPROM_READ(offset++, val);
rep[j].edge = (val >> 8) & pmask;
rep[j].flag = (val >> 14) & 1;
rep[j + 1].edge = val & pmask;
rep[j + 1].flag = (val >> 6) & 1;
}
} else {
AR5K_EEPROM_READ(offset++, val);
rep[0].freq = (val >> 9) & fmask;
rep[1].freq = (val >> 2) & fmask;
rep[2].freq = (val << 5) & fmask;
AR5K_EEPROM_READ(offset++, val);
rep[2].freq |= (val >> 11) & 0x1f;
rep[3].freq = (val >> 4) & fmask;
rep[4].freq = (val << 3) & fmask;
AR5K_EEPROM_READ(offset++, val);
rep[4].freq |= (val >> 13) & 0x7;
rep[5].freq = (val >> 6) & fmask;
rep[6].freq = (val << 1) & fmask;
AR5K_EEPROM_READ(offset++, val);
rep[6].freq |= (val >> 15) & 0x1;
rep[7].freq = (val >> 8) & fmask;
rep[0].edge = (val >> 2) & pmask;
rep[1].edge = (val << 4) & pmask;
AR5K_EEPROM_READ(offset++, val);
rep[1].edge |= (val >> 12) & 0xf;
rep[2].edge = (val >> 6) & pmask;
rep[3].edge = val & pmask;
AR5K_EEPROM_READ(offset++, val);
rep[4].edge = (val >> 10) & pmask;
rep[5].edge = (val >> 4) & pmask;
rep[6].edge = (val << 2) & pmask;
AR5K_EEPROM_READ(offset++, val);
rep[6].edge |= (val >> 14) & 0x3;
rep[7].edge = (val >> 8) & pmask;
}
for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
rep[j].freq = ath5k_eeprom_bin2freq(ee,
rep[j].freq, ctl_mode);
}
rep += AR5K_EEPROM_N_EDGES;
}
return 0;
}
static int
ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 offset;
u16 val;
int ret = 0, i;
offset = AR5K_EEPROM_CTL(ee->ee_version) +
AR5K_EEPROM_N_CTLS(ee->ee_version);
if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
/* No spur info for 5GHz */
ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
/* 2 channels for 2GHz (2464/2420) */
ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
AR5K_EEPROM_READ(offset, val);
ee->ee_spur_chans[i][0] = val;
AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
val);
ee->ee_spur_chans[i][1] = val;
offset++;
}
}
return ret;
}
/***********************\
* Init/Detach functions *
\***********************/
/*
* Initialize eeprom data structure
*/
int
ath5k_eeprom_init(struct ath5k_hw *ah)
{
int err;
err = ath5k_eeprom_init_header(ah);
if (err < 0)
return err;
err = ath5k_eeprom_init_modes(ah);
if (err < 0)
return err;
err = ath5k_eeprom_read_pcal_info(ah);
if (err < 0)
return err;
err = ath5k_eeprom_read_ctl_info(ah);
if (err < 0)
return err;
err = ath5k_eeprom_read_spur_chans(ah);
if (err < 0)
return err;
return 0;
}
void
ath5k_eeprom_detach(struct ath5k_hw *ah)
{
u8 mode;
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
ath5k_eeprom_free_pcal_info(ah, mode);
}
int
ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
switch (channel->hw_value) {
case AR5K_MODE_11A:
return AR5K_EEPROM_MODE_11A;
case AR5K_MODE_11G:
return AR5K_EEPROM_MODE_11G;
case AR5K_MODE_11B:
return AR5K_EEPROM_MODE_11B;
default:
ATH5K_WARN(ah, "channel is not A/B/G!");
return AR5K_EEPROM_MODE_11A;
}
}