linux_old1/kernel/sched.c

7563 lines
185 KiB
C

/*
* kernel/sched.c
*
* Kernel scheduler and related syscalls
*
* Copyright (C) 1991-2002 Linus Torvalds
*
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
* 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
* hybrid priority-list and round-robin design with
* an array-switch method of distributing timeslices
* and per-CPU runqueues. Cleanups and useful suggestions
* by Davide Libenzi, preemptible kernel bits by Robert Love.
* 2003-09-03 Interactivity tuning by Con Kolivas.
* 2004-04-02 Scheduler domains code by Nick Piggin
* 2007-04-15 Work begun on replacing all interactivity tuning with a
* fair scheduling design by Con Kolivas.
* 2007-05-05 Load balancing (smp-nice) and other improvements
* by Peter Williams
* 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
* 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <linux/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/completion.h>
#include <linux/kernel_stat.h>
#include <linux/debug_locks.h>
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
#include <linux/freezer.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/pid_namespace.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/syscalls.h>
#include <linux/times.h>
#include <linux/tsacct_kern.h>
#include <linux/kprobes.h>
#include <linux/delayacct.h>
#include <linux/reciprocal_div.h>
#include <linux/unistd.h>
#include <linux/pagemap.h>
#include <asm/tlb.h>
#include <asm/irq_regs.h>
/*
* Scheduler clock - returns current time in nanosec units.
* This is default implementation.
* Architectures and sub-architectures can override this.
*/
unsigned long long __attribute__((weak)) sched_clock(void)
{
return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
}
/*
* Convert user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
* and back.
*/
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [ 0 ... 39 ] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
/*
* Some helpers for converting nanosecond timing to jiffy resolution
*/
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
#define NICE_0_LOAD SCHED_LOAD_SCALE
#define NICE_0_SHIFT SCHED_LOAD_SHIFT
/*
* These are the 'tuning knobs' of the scheduler:
*
* default timeslice is 100 msecs (used only for SCHED_RR tasks).
* Timeslices get refilled after they expire.
*/
#define DEF_TIMESLICE (100 * HZ / 1000)
#ifdef CONFIG_SMP
/*
* Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
* Since cpu_power is a 'constant', we can use a reciprocal divide.
*/
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
return reciprocal_divide(load, sg->reciprocal_cpu_power);
}
/*
* Each time a sched group cpu_power is changed,
* we must compute its reciprocal value
*/
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
sg->__cpu_power += val;
sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif
static inline int rt_policy(int policy)
{
if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
return 1;
return 0;
}
static inline int task_has_rt_policy(struct task_struct *p)
{
return rt_policy(p->policy);
}
/*
* This is the priority-queue data structure of the RT scheduling class:
*/
struct rt_prio_array {
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
struct list_head queue[MAX_RT_PRIO];
};
#ifdef CONFIG_FAIR_GROUP_SCHED
#include <linux/cgroup.h>
struct cfs_rq;
/* task group related information */
struct task_group {
#ifdef CONFIG_FAIR_CGROUP_SCHED
struct cgroup_subsys_state css;
#endif
/* schedulable entities of this group on each cpu */
struct sched_entity **se;
/* runqueue "owned" by this group on each cpu */
struct cfs_rq **cfs_rq;
/*
* shares assigned to a task group governs how much of cpu bandwidth
* is allocated to the group. The more shares a group has, the more is
* the cpu bandwidth allocated to it.
*
* For ex, lets say that there are three task groups, A, B and C which
* have been assigned shares 1000, 2000 and 3000 respectively. Then,
* cpu bandwidth allocated by the scheduler to task groups A, B and C
* should be:
*
* Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
* Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
* Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
*
* The weight assigned to a task group's schedulable entities on every
* cpu (task_group.se[a_cpu]->load.weight) is derived from the task
* group's shares. For ex: lets say that task group A has been
* assigned shares of 1000 and there are two CPUs in a system. Then,
*
* tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
*
* Note: It's not necessary that each of a task's group schedulable
* entity have the same weight on all CPUs. If the group
* has 2 of its tasks on CPU0 and 1 task on CPU1, then a
* better distribution of weight could be:
*
* tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
* tg_A->se[1]->load.weight = 1/2 * 2000 = 667
*
* rebalance_shares() is responsible for distributing the shares of a
* task groups like this among the group's schedulable entities across
* cpus.
*
*/
unsigned long shares;
struct rcu_head rcu;
};
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
/* task_group_mutex serializes add/remove of task groups and also changes to
* a task group's cpu shares.
*/
static DEFINE_MUTEX(task_group_mutex);
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif
static void set_se_shares(struct sched_entity *se, unsigned long shares);
/* Default task group.
* Every task in system belong to this group at bootup.
*/
struct task_group init_task_group = {
.se = init_sched_entity_p,
.cfs_rq = init_cfs_rq_p,
};
#ifdef CONFIG_FAIR_USER_SCHED
# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
#else
# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
#endif
#define MIN_GROUP_SHARES 2
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
/* return group to which a task belongs */
static inline struct task_group *task_group(struct task_struct *p)
{
struct task_group *tg;
#ifdef CONFIG_FAIR_USER_SCHED
tg = p->user->tg;
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
struct task_group, css);
#else
tg = &init_task_group;
#endif
return tg;
}
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
{
p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
p->se.parent = task_group(p)->se[cpu];
}
static inline void lock_task_group_list(void)
{
mutex_lock(&task_group_mutex);
}
static inline void unlock_task_group_list(void)
{
mutex_unlock(&task_group_mutex);
}
static inline void lock_doms_cur(void)
{
mutex_lock(&doms_cur_mutex);
}
static inline void unlock_doms_cur(void)
{
mutex_unlock(&doms_cur_mutex);
}
#else
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
#endif /* CONFIG_FAIR_GROUP_SCHED */
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
unsigned long nr_running;
u64 exec_clock;
u64 min_vruntime;
struct rb_root tasks_timeline;
struct rb_node *rb_leftmost;
struct rb_node *rb_load_balance_curr;
/* 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running).
*/
struct sched_entity *curr;
unsigned long nr_spread_over;
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
/*
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
* (like users, containers etc.)
*
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
* list is used during load balance.
*/
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
#endif
};
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
struct rt_prio_array active;
int rt_load_balance_idx;
struct list_head *rt_load_balance_head, *rt_load_balance_curr;
unsigned long rt_nr_running;
unsigned long rt_nr_migratory;
/* highest queued rt task prio */
int highest_prio;
};
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the thread migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct rq {
/* runqueue lock: */
spinlock_t lock;
/*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
unsigned long nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
unsigned char idle_at_tick;
#ifdef CONFIG_NO_HZ
unsigned char in_nohz_recently;
#endif
/* capture load from *all* tasks on this cpu: */
struct load_weight load;
unsigned long nr_load_updates;
u64 nr_switches;
struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
#endif
struct rt_rq rt;
/*
* This is part of a global counter where only the total sum
* over all CPUs matters. A task can increase this counter on
* one CPU and if it got migrated afterwards it may decrease
* it on another CPU. Always updated under the runqueue lock:
*/
unsigned long nr_uninterruptible;
struct task_struct *curr, *idle;
unsigned long next_balance;
struct mm_struct *prev_mm;
u64 clock, prev_clock_raw;
s64 clock_max_delta;
unsigned int clock_warps, clock_overflows;
u64 idle_clock;
unsigned int clock_deep_idle_events;
u64 tick_timestamp;
atomic_t nr_iowait;
#ifdef CONFIG_SMP
struct sched_domain *sd;
/* For active balancing */
int active_balance;
int push_cpu;
/* cpu of this runqueue: */
int cpu;
struct task_struct *migration_thread;
struct list_head migration_queue;
#endif
#ifdef CONFIG_SCHEDSTATS
/* latency stats */
struct sched_info rq_sched_info;
/* sys_sched_yield() stats */
unsigned int yld_exp_empty;
unsigned int yld_act_empty;
unsigned int yld_both_empty;
unsigned int yld_count;
/* schedule() stats */
unsigned int sched_switch;
unsigned int sched_count;
unsigned int sched_goidle;
/* try_to_wake_up() stats */
unsigned int ttwu_count;
unsigned int ttwu_local;
/* BKL stats */
unsigned int bkl_count;
#endif
struct lock_class_key rq_lock_key;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
rq->curr->sched_class->check_preempt_curr(rq, p);
}
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
return rq->cpu;
#else
return 0;
#endif
}
/*
* Update the per-runqueue clock, as finegrained as the platform can give
* us, but without assuming monotonicity, etc.:
*/
static void __update_rq_clock(struct rq *rq)
{
u64 prev_raw = rq->prev_clock_raw;
u64 now = sched_clock();
s64 delta = now - prev_raw;
u64 clock = rq->clock;
#ifdef CONFIG_SCHED_DEBUG
WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
/*
* Protect against sched_clock() occasionally going backwards:
*/
if (unlikely(delta < 0)) {
clock++;
rq->clock_warps++;
} else {
/*
* Catch too large forward jumps too:
*/
if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
if (clock < rq->tick_timestamp + TICK_NSEC)
clock = rq->tick_timestamp + TICK_NSEC;
else
clock++;
rq->clock_overflows++;
} else {
if (unlikely(delta > rq->clock_max_delta))
rq->clock_max_delta = delta;
clock += delta;
}
}
rq->prev_clock_raw = now;
rq->clock = clock;
}
static void update_rq_clock(struct rq *rq)
{
if (likely(smp_processor_id() == cpu_of(rq)))
__update_rq_clock(rq);
}
/*
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
* See detach_destroy_domains: synchronize_sched for details.
*
* The domain tree of any CPU may only be accessed from within
* preempt-disabled sections.
*/
#define for_each_domain(cpu, __sd) \
for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() (&__get_cpu_var(runqueues))
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
/*
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
*/
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif
/*
* Debugging: various feature bits
*/
enum {
SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
SCHED_FEAT_WAKEUP_PREEMPT = 2,
SCHED_FEAT_START_DEBIT = 4,
SCHED_FEAT_TREE_AVG = 8,
SCHED_FEAT_APPROX_AVG = 16,
};
const_debug unsigned int sysctl_sched_features =
SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
SCHED_FEAT_WAKEUP_PREEMPT * 1 |
SCHED_FEAT_START_DEBIT * 1 |
SCHED_FEAT_TREE_AVG * 0 |
SCHED_FEAT_APPROX_AVG * 0;
#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
/*
* Number of tasks to iterate in a single balance run.
* Limited because this is done with IRQs disabled.
*/
const_debug unsigned int sysctl_sched_nr_migrate = 32;
/*
* For kernel-internal use: high-speed (but slightly incorrect) per-cpu
* clock constructed from sched_clock():
*/
unsigned long long cpu_clock(int cpu)
{
unsigned long long now;
unsigned long flags;
struct rq *rq;
local_irq_save(flags);
rq = cpu_rq(cpu);
/*
* Only call sched_clock() if the scheduler has already been
* initialized (some code might call cpu_clock() very early):
*/
if (rq->idle)
update_rq_clock(rq);
now = rq->clock;
local_irq_restore(flags);
return now;
}
EXPORT_SYMBOL_GPL(cpu_clock);
#ifndef prepare_arch_switch
# define prepare_arch_switch(next) do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev) do { } while (0)
#endif
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
}
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
static inline int task_running(struct rq *rq, struct task_struct *p)
{
return task_current(rq, p);
}
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
}
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_DEBUG_SPINLOCK
/* this is a valid case when another task releases the spinlock */
rq->lock.owner = current;
#endif
/*
* If we are tracking spinlock dependencies then we have to
* fix up the runqueue lock - which gets 'carried over' from
* prev into current:
*/
spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
spin_unlock_irq(&rq->lock);
}
#else /* __ARCH_WANT_UNLOCKED_CTXSW */
static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
return p->oncpu;
#else
return task_current(rq, p);
#endif
}
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
#ifdef CONFIG_SMP
/*
* We can optimise this out completely for !SMP, because the
* SMP rebalancing from interrupt is the only thing that cares
* here.
*/
next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
spin_unlock_irq(&rq->lock);
#else
spin_unlock(&rq->lock);
#endif
}
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_SMP
/*
* After ->oncpu is cleared, the task can be moved to a different CPU.
* We must ensure this doesn't happen until the switch is completely
* finished.
*/
smp_wmb();
prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
local_irq_enable();
#endif
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
/*
* __task_rq_lock - lock the runqueue a given task resides on.
* Must be called interrupts disabled.
*/
static inline struct rq *__task_rq_lock(struct task_struct *p)
__acquires(rq->lock)
{
for (;;) {
struct rq *rq = task_rq(p);
spin_lock(&rq->lock);
if (likely(rq == task_rq(p)))
return rq;
spin_unlock(&rq->lock);
}
}
/*
* task_rq_lock - lock the runqueue a given task resides on and disable
* interrupts. Note the ordering: we can safely lookup the task_rq without
* explicitly disabling preemption.
*/
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
__acquires(rq->lock)
{
struct rq *rq;
for (;;) {
local_irq_save(*flags);
rq = task_rq(p);
spin_lock(&rq->lock);
if (likely(rq == task_rq(p)))
return rq;
spin_unlock_irqrestore(&rq->lock, *flags);
}
}
static void __task_rq_unlock(struct rq *rq)
__releases(rq->lock)
{
spin_unlock(&rq->lock);
}
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
__releases(rq->lock)
{
spin_unlock_irqrestore(&rq->lock, *flags);
}
/*
* this_rq_lock - lock this runqueue and disable interrupts.
*/
static struct rq *this_rq_lock(void)
__acquires(rq->lock)
{
struct rq *rq;
local_irq_disable();
rq = this_rq();
spin_lock(&rq->lock);
return rq;
}
/*
* We are going deep-idle (irqs are disabled):
*/
void sched_clock_idle_sleep_event(void)
{
struct rq *rq = cpu_rq(smp_processor_id());
spin_lock(&rq->lock);
__update_rq_clock(rq);
spin_unlock(&rq->lock);
rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
/*
* We just idled delta nanoseconds (called with irqs disabled):
*/
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
struct rq *rq = cpu_rq(smp_processor_id());
u64 now = sched_clock();
touch_softlockup_watchdog();
rq->idle_clock += delta_ns;
/*
* Override the previous timestamp and ignore all
* sched_clock() deltas that occured while we idled,
* and use the PM-provided delta_ns to advance the
* rq clock:
*/
spin_lock(&rq->lock);
rq->prev_clock_raw = now;
rq->clock += delta_ns;
spin_unlock(&rq->lock);
}
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
/*
* resched_task - mark a task 'to be rescheduled now'.
*
* On UP this means the setting of the need_resched flag, on SMP it
* might also involve a cross-CPU call to trigger the scheduler on
* the target CPU.
*/
#ifdef CONFIG_SMP
#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif
static void resched_task(struct task_struct *p)
{
int cpu;
assert_spin_locked(&task_rq(p)->lock);
if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
return;
set_tsk_thread_flag(p, TIF_NEED_RESCHED);
cpu = task_cpu(p);
if (cpu == smp_processor_id())
return;
/* NEED_RESCHED must be visible before we test polling */
smp_mb();
if (!tsk_is_polling(p))
smp_send_reschedule(cpu);
}
static void resched_cpu(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
if (!spin_trylock_irqsave(&rq->lock, flags))
return;
resched_task(cpu_curr(cpu));
spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
assert_spin_locked(&task_rq(p)->lock);
set_tsk_need_resched(p);
}
#endif
#if BITS_PER_LONG == 32
# define WMULT_CONST (~0UL)
#else
# define WMULT_CONST (1UL << 32)
#endif
#define WMULT_SHIFT 32
/*
* Shift right and round:
*/
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
struct load_weight *lw)
{
u64 tmp;
if (unlikely(!lw->inv_weight))
lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
tmp = (u64)delta_exec * weight;
/*
* Check whether we'd overflow the 64-bit multiplication:
*/
if (unlikely(tmp > WMULT_CONST))
tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
WMULT_SHIFT/2);
else
tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}
static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
lw->weight += inc;
}
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
lw->weight -= dec;
}
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
* of tasks with abnormal "nice" values across CPUs the contribution that
* each task makes to its run queue's load is weighted according to its
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
* scaled version of the new time slice allocation that they receive on time
* slice expiry etc.
*/
#define WEIGHT_IDLEPRIO 2
#define WMULT_IDLEPRIO (1 << 31)
/*
* Nice levels are multiplicative, with a gentle 10% change for every
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
* nice 1, it will get ~10% less CPU time than another CPU-bound task
* that remained on nice 0.
*
* The "10% effect" is relative and cumulative: from _any_ nice level,
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
* If a task goes up by ~10% and another task goes down by ~10% then
* the relative distance between them is ~25%.)
*/
static const int prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,
};
/*
* Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
*
* In cases where the weight does not change often, we can use the
* precalculated inverse to speed up arithmetics by turning divisions
* into multiplications:
*/
static const u32 prio_to_wmult[40] = {
/* -20 */ 48388, 59856, 76040, 92818, 118348,
/* -15 */ 147320, 184698, 229616, 287308, 360437,
/* -10 */ 449829, 563644, 704093, 875809, 1099582,
/* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
/* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
/* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
/* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
/*
* runqueue iterator, to support SMP load-balancing between different
* scheduling classes, without having to expose their internal data
* structures to the load-balancing proper:
*/
struct rq_iterator {
void *arg;
struct task_struct *(*start)(void *);
struct task_struct *(*next)(void *);
};
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move, struct sched_domain *sd,
enum cpu_idle_type idle, int *all_pinned,
int *this_best_prio, struct rq_iterator *iterator);
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle,
struct rq_iterator *iterator);
#endif
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
update_load_add(&rq->load, load);
}
static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
update_load_sub(&rq->load, load);
}
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */
#include "sched_stats.h"
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif
#define sched_class_highest (&rt_sched_class)
static void inc_nr_running(struct task_struct *p, struct rq *rq)
{
rq->nr_running++;
}
static void dec_nr_running(struct task_struct *p, struct rq *rq)
{
rq->nr_running--;
}
static void set_load_weight(struct task_struct *p)
{
if (task_has_rt_policy(p)) {
p->se.load.weight = prio_to_weight[0] * 2;
p->se.load.inv_weight = prio_to_wmult[0] >> 1;
return;
}
/*
* SCHED_IDLE tasks get minimal weight:
*/
if (p->policy == SCHED_IDLE) {
p->se.load.weight = WEIGHT_IDLEPRIO;
p->se.load.inv_weight = WMULT_IDLEPRIO;
return;
}
p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
}
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
{
sched_info_queued(p);
p->sched_class->enqueue_task(rq, p, wakeup);
p->se.on_rq = 1;
}
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
{
p->sched_class->dequeue_task(rq, p, sleep);
p->se.on_rq = 0;
}
/*
* __normal_prio - return the priority that is based on the static prio
*/
static inline int __normal_prio(struct task_struct *p)
{
return p->static_prio;
}
/*
* Calculate the expected normal priority: i.e. priority
* without taking RT-inheritance into account. Might be
* boosted by interactivity modifiers. Changes upon fork,
* setprio syscalls, and whenever the interactivity
* estimator recalculates.
*/
static inline int normal_prio(struct task_struct *p)
{
int prio;
if (task_has_rt_policy(p))
prio = MAX_RT_PRIO-1 - p->rt_priority;
else
prio = __normal_prio(p);
return prio;
}
/*
* Calculate the current priority, i.e. the priority
* taken into account by the scheduler. This value might
* be boosted by RT tasks, or might be boosted by
* interactivity modifiers. Will be RT if the task got
* RT-boosted. If not then it returns p->normal_prio.
*/
static int effective_prio(struct task_struct *p)
{
p->normal_prio = normal_prio(p);
/*
* If we are RT tasks or we were boosted to RT priority,
* keep the priority unchanged. Otherwise, update priority
* to the normal priority:
*/
if (!rt_prio(p->prio))
return p->normal_prio;
return p->prio;
}
/*
* activate_task - move a task to the runqueue.
*/
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
if (p->state == TASK_UNINTERRUPTIBLE)
rq->nr_uninterruptible--;
enqueue_task(rq, p, wakeup);
inc_nr_running(p, rq);
}
/*
* deactivate_task - remove a task from the runqueue.
*/
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
if (p->state == TASK_UNINTERRUPTIBLE)
rq->nr_uninterruptible++;
dequeue_task(rq, p, sleep);
dec_nr_running(p, rq);
}
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
*/
inline int task_curr(const struct task_struct *p)
{
return cpu_curr(task_cpu(p)) == p;
}
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
return cpu_rq(cpu)->load.weight;
}
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
set_task_cfs_rq(p, cpu);
#ifdef CONFIG_SMP
/*
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
* successfuly executed on another CPU. We must ensure that updates of
* per-task data have been completed by this moment.
*/
smp_wmb();
task_thread_info(p)->cpu = cpu;
#endif
}
#ifdef CONFIG_SMP
/*
* Is this task likely cache-hot:
*/
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
s64 delta;
if (p->sched_class != &fair_sched_class)
return 0;
if (sysctl_sched_migration_cost == -1)
return 1;
if (sysctl_sched_migration_cost == 0)
return 0;
delta = now - p->se.exec_start;
return delta < (s64)sysctl_sched_migration_cost;
}
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
{
int old_cpu = task_cpu(p);
struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
struct cfs_rq *old_cfsrq = task_cfs_rq(p),
*new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
u64 clock_offset;
clock_offset = old_rq->clock - new_rq->clock;
#ifdef CONFIG_SCHEDSTATS
if (p->se.wait_start)
p->se.wait_start -= clock_offset;
if (p->se.sleep_start)
p->se.sleep_start -= clock_offset;
if (p->se.block_start)
p->se.block_start -= clock_offset;
if (old_cpu != new_cpu) {
schedstat_inc(p, se.nr_migrations);
if (task_hot(p, old_rq->clock, NULL))
schedstat_inc(p, se.nr_forced2_migrations);
}
#endif
p->se.vruntime -= old_cfsrq->min_vruntime -
new_cfsrq->min_vruntime;
__set_task_cpu(p, new_cpu);
}
struct migration_req {
struct list_head list;
struct task_struct *task;
int dest_cpu;
struct completion done;
};
/*
* The task's runqueue lock must be held.
* Returns true if you have to wait for migration thread.
*/
static int
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
{
struct rq *rq = task_rq(p);
/*
* If the task is not on a runqueue (and not running), then
* it is sufficient to simply update the task's cpu field.
*/
if (!p->se.on_rq && !task_running(rq, p)) {
set_task_cpu(p, dest_cpu);
return 0;
}
init_completion(&req->done);
req->task = p;
req->dest_cpu = dest_cpu;
list_add(&req->list, &rq->migration_queue);
return 1;
}
/*
* wait_task_inactive - wait for a thread to unschedule.
*
* The caller must ensure that the task *will* unschedule sometime soon,
* else this function might spin for a *long* time. This function can't
* be called with interrupts off, or it may introduce deadlock with
* smp_call_function() if an IPI is sent by the same process we are
* waiting to become inactive.
*/
void wait_task_inactive(struct task_struct *p)
{
unsigned long flags;
int running, on_rq;
struct rq *rq;
for (;;) {
/*
* We do the initial early heuristics without holding
* any task-queue locks at all. We'll only try to get
* the runqueue lock when things look like they will
* work out!
*/
rq = task_rq(p);
/*
* If the task is actively running on another CPU
* still, just relax and busy-wait without holding
* any locks.
*
* NOTE! Since we don't hold any locks, it's not
* even sure that "rq" stays as the right runqueue!
* But we don't care, since "task_running()" will
* return false if the runqueue has changed and p
* is actually now running somewhere else!
*/
while (task_running(rq, p))
cpu_relax();
/*
* Ok, time to look more closely! We need the rq
* lock now, to be *sure*. If we're wrong, we'll
* just go back and repeat.
*/
rq = task_rq_lock(p, &flags);
running = task_running(rq, p);
on_rq = p->se.on_rq;
task_rq_unlock(rq, &flags);
/*
* Was it really running after all now that we
* checked with the proper locks actually held?
*
* Oops. Go back and try again..
*/
if (unlikely(running)) {
cpu_relax();
continue;
}
/*
* It's not enough that it's not actively running,
* it must be off the runqueue _entirely_, and not
* preempted!
*
* So if it wa still runnable (but just not actively
* running right now), it's preempted, and we should
* yield - it could be a while.
*/
if (unlikely(on_rq)) {
schedule_timeout_uninterruptible(1);
continue;
}
/*
* Ahh, all good. It wasn't running, and it wasn't
* runnable, which means that it will never become
* running in the future either. We're all done!
*/
break;
}
}
/***
* kick_process - kick a running thread to enter/exit the kernel
* @p: the to-be-kicked thread
*
* Cause a process which is running on another CPU to enter
* kernel-mode, without any delay. (to get signals handled.)
*
* NOTE: this function doesnt have to take the runqueue lock,
* because all it wants to ensure is that the remote task enters
* the kernel. If the IPI races and the task has been migrated
* to another CPU then no harm is done and the purpose has been
* achieved as well.
*/
void kick_process(struct task_struct *p)
{
int cpu;
preempt_disable();
cpu = task_cpu(p);
if ((cpu != smp_processor_id()) && task_curr(p))
smp_send_reschedule(cpu);
preempt_enable();
}
/*
* Return a low guess at the load of a migration-source cpu weighted
* according to the scheduling class and "nice" value.
*
* We want to under-estimate the load of migration sources, to
* balance conservatively.
*/
static unsigned long source_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
if (type == 0)
return total;
return min(rq->cpu_load[type-1], total);
}
/*
* Return a high guess at the load of a migration-target cpu weighted
* according to the scheduling class and "nice" value.
*/
static unsigned long target_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
if (type == 0)
return total;
return max(rq->cpu_load[type-1], total);
}
/*
* Return the average load per task on the cpu's run queue
*/
static unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
unsigned long n = rq->nr_running;
return n ? total / n : SCHED_LOAD_SCALE;
}
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
*/
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
unsigned long min_load = ULONG_MAX, this_load = 0;
int load_idx = sd->forkexec_idx;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
do {
unsigned long load, avg_load;
int local_group;
int i;
/* Skip over this group if it has no CPUs allowed */
if (!cpus_intersects(group->cpumask, p->cpus_allowed))
continue;
local_group = cpu_isset(this_cpu, group->cpumask);
/* Tally up the load of all CPUs in the group */
avg_load = 0;
for_each_cpu_mask(i, group->cpumask) {
/* Bias balancing toward cpus of our domain */
if (local_group)
load = source_load(i, load_idx);
else
load = target_load(i, load_idx);
avg_load += load;
}
/* Adjust by relative CPU power of the group */
avg_load = sg_div_cpu_power(group,
avg_load * SCHED_LOAD_SCALE);
if (local_group) {
this_load = avg_load;
this = group;
} else if (avg_load < min_load) {
min_load = avg_load;
idlest = group;
}
} while (group = group->next, group != sd->groups);
if (!idlest || 100*this_load < imbalance*min_load)
return NULL;
return idlest;
}
/*
* find_idlest_cpu - find the idlest cpu among the cpus in group.
*/
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
cpumask_t tmp;
unsigned long load, min_load = ULONG_MAX;
int idlest = -1;
int i;
/* Traverse only the allowed CPUs */
cpus_and(tmp, group->cpumask, p->cpus_allowed);
for_each_cpu_mask(i, tmp) {
load = weighted_cpuload(i);
if (load < min_load || (load == min_load && i == this_cpu)) {
min_load = load;
idlest = i;
}
}
return idlest;
}
/*
* sched_balance_self: balance the current task (running on cpu) in domains
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
* SD_BALANCE_EXEC.
*
* Balance, ie. select the least loaded group.
*
* Returns the target CPU number, or the same CPU if no balancing is needed.
*
* preempt must be disabled.
*/
static int sched_balance_self(int cpu, int flag)
{
struct task_struct *t = current;
struct sched_domain *tmp, *sd = NULL;
for_each_domain(cpu, tmp) {
/*
* If power savings logic is enabled for a domain, stop there.
*/
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
break;
if (tmp->flags & flag)
sd = tmp;
}
while (sd) {
cpumask_t span;
struct sched_group *group;
int new_cpu, weight;
if (!(sd->flags & flag)) {
sd = sd->child;
continue;
}
span = sd->span;
group = find_idlest_group(sd, t, cpu);
if (!group) {
sd = sd->child;
continue;
}
new_cpu = find_idlest_cpu(group, t, cpu);
if (new_cpu == -1 || new_cpu == cpu) {
/* Now try balancing at a lower domain level of cpu */
sd = sd->child;
continue;
}
/* Now try balancing at a lower domain level of new_cpu */
cpu = new_cpu;
sd = NULL;
weight = cpus_weight(span);
for_each_domain(cpu, tmp) {
if (weight <= cpus_weight(tmp->span))
break;
if (tmp->flags & flag)
sd = tmp;
}
/* while loop will break here if sd == NULL */
}
return cpu;
}
#endif /* CONFIG_SMP */
/***
* try_to_wake_up - wake up a thread
* @p: the to-be-woken-up thread
* @state: the mask of task states that can be woken
* @sync: do a synchronous wakeup?
*
* Put it on the run-queue if it's not already there. The "current"
* thread is always on the run-queue (except when the actual
* re-schedule is in progress), and as such you're allowed to do
* the simpler "current->state = TASK_RUNNING" to mark yourself
* runnable without the overhead of this.
*
* returns failure only if the task is already active.
*/
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
{
int cpu, orig_cpu, this_cpu, success = 0;
unsigned long flags;
long old_state;
struct rq *rq;
#ifdef CONFIG_SMP
int new_cpu;
#endif
rq = task_rq_lock(p, &flags);
old_state = p->state;
if (!(old_state & state))
goto out;
if (p->se.on_rq)
goto out_running;
cpu = task_cpu(p);
orig_cpu = cpu;
this_cpu = smp_processor_id();
#ifdef CONFIG_SMP
if (unlikely(task_running(rq, p)))
goto out_activate;
new_cpu = p->sched_class->select_task_rq(p, sync);
if (new_cpu != cpu) {
set_task_cpu(p, new_cpu);
task_rq_unlock(rq, &flags);
/* might preempt at this point */
rq = task_rq_lock(p, &flags);
old_state = p->state;
if (!(old_state & state))
goto out;
if (p->se.on_rq)
goto out_running;
this_cpu = smp_processor_id();
cpu = task_cpu(p);
}
#ifdef CONFIG_SCHEDSTATS
schedstat_inc(rq, ttwu_count);
if (cpu == this_cpu)
schedstat_inc(rq, ttwu_local);
else {
struct sched_domain *sd;
for_each_domain(this_cpu, sd) {
if (cpu_isset(cpu, sd->span)) {
schedstat_inc(sd, ttwu_wake_remote);
break;
}
}
}
#endif
out_activate:
#endif /* CONFIG_SMP */
schedstat_inc(p, se.nr_wakeups);
if (sync)
schedstat_inc(p, se.nr_wakeups_sync);
if (orig_cpu != cpu)
schedstat_inc(p, se.nr_wakeups_migrate);
if (cpu == this_cpu)
schedstat_inc(p, se.nr_wakeups_local);
else
schedstat_inc(p, se.nr_wakeups_remote);
update_rq_clock(rq);
activate_task(rq, p, 1);
check_preempt_curr(rq, p);
success = 1;
out_running:
p->state = TASK_RUNNING;
wakeup_balance_rt(rq, p);
out:
task_rq_unlock(rq, &flags);
return success;
}
int fastcall wake_up_process(struct task_struct *p)
{
return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
{
return try_to_wake_up(p, state, 0);
}
/*
* Perform scheduler related setup for a newly forked process p.
* p is forked by current.
*
* __sched_fork() is basic setup used by init_idle() too:
*/
static void __sched_fork(struct task_struct *p)
{
p->se.exec_start = 0;
p->se.sum_exec_runtime = 0;
p->se.prev_sum_exec_runtime = 0;
#ifdef CONFIG_SCHEDSTATS
p->se.wait_start = 0;
p->se.sum_sleep_runtime = 0;
p->se.sleep_start = 0;
p->se.block_start = 0;
p->se.sleep_max = 0;
p->se.block_max = 0;
p->se.exec_max = 0;
p->se.slice_max = 0;
p->se.wait_max = 0;
#endif
INIT_LIST_HEAD(&p->run_list);
p->se.on_rq = 0;
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
/*
* We mark the process as running here, but have not actually
* inserted it onto the runqueue yet. This guarantees that
* nobody will actually run it, and a signal or other external
* event cannot wake it up and insert it on the runqueue either.
*/
p->state = TASK_RUNNING;
}
/*
* fork()/clone()-time setup:
*/
void sched_fork(struct task_struct *p, int clone_flags)
{
int cpu = get_cpu();
__sched_fork(p);
#ifdef CONFIG_SMP
cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
set_task_cpu(p, cpu);
/*
* Make sure we do not leak PI boosting priority to the child:
*/
p->prio = current->normal_prio;
if (!rt_prio(p->prio))
p->sched_class = &fair_sched_class;
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
if (likely(sched_info_on()))
memset(&p->sched_info, 0, sizeof(p->sched_info));
#endif
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
p->oncpu = 0;
#endif
#ifdef CONFIG_PREEMPT
/* Want to start with kernel preemption disabled. */
task_thread_info(p)->preempt_count = 1;
#endif
put_cpu();
}
/*
* wake_up_new_task - wake up a newly created task for the first time.
*
* This function will do some initial scheduler statistics housekeeping
* that must be done for every newly created context, then puts the task
* on the runqueue and wakes it.
*/
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
{
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(p, &flags);
BUG_ON(p->state != TASK_RUNNING);
update_rq_clock(rq);
p->prio = effective_prio(p);
if (!p->sched_class->task_new || !current->se.on_rq) {
activate_task(rq, p, 0);
} else {
/*
* Let the scheduling class do new task startup
* management (if any):
*/
p->sched_class->task_new(rq, p);
inc_nr_running(p, rq);
}
check_preempt_curr(rq, p);
task_rq_unlock(rq, &flags);
}
#ifdef CONFIG_PREEMPT_NOTIFIERS
/**
* preempt_notifier_register - tell me when current is being being preempted & rescheduled
* @notifier: notifier struct to register
*/
void preempt_notifier_register(struct preempt_notifier *notifier)
{
hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);
/**
* preempt_notifier_unregister - no longer interested in preemption notifications
* @notifier: notifier struct to unregister
*
* This is safe to call from within a preemption notifier.
*/
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
struct preempt_notifier *notifier;
struct hlist_node *node;
hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
notifier->ops->sched_in(notifier, raw_smp_processor_id());
}
static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
struct task_struct *next)
{
struct preempt_notifier *notifier;
struct hlist_node *node;
hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
notifier->ops->sched_out(notifier, next);
}
#else
static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}
static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
struct task_struct *next)
{
}
#endif
/**
* prepare_task_switch - prepare to switch tasks
* @rq: the runqueue preparing to switch
* @prev: the current task that is being switched out
* @next: the task we are going to switch to.
*
* This is called with the rq lock held and interrupts off. It must
* be paired with a subsequent finish_task_switch after the context
* switch.
*
* prepare_task_switch sets up locking and calls architecture specific
* hooks.
*/
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
fire_sched_out_preempt_notifiers(prev, next);
prepare_lock_switch(rq, next);
prepare_arch_switch(next);
}
/**
* finish_task_switch - clean up after a task-switch
* @rq: runqueue associated with task-switch
* @prev: the thread we just switched away from.
*
* finish_task_switch must be called after the context switch, paired
* with a prepare_task_switch call before the context switch.
* finish_task_switch will reconcile locking set up by prepare_task_switch,
* and do any other architecture-specific cleanup actions.
*
* Note that we may have delayed dropping an mm in context_switch(). If
* so, we finish that here outside of the runqueue lock. (Doing it
* with the lock held can cause deadlocks; see schedule() for
* details.)
*/
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
__releases(rq->lock)
{
struct mm_struct *mm = rq->prev_mm;
long prev_state;
rq->prev_mm = NULL;
/*
* A task struct has one reference for the use as "current".
* If a task dies, then it sets TASK_DEAD in tsk->state and calls
* schedule one last time. The schedule call will never return, and
* the scheduled task must drop that reference.
* The test for TASK_DEAD must occur while the runqueue locks are
* still held, otherwise prev could be scheduled on another cpu, die
* there before we look at prev->state, and then the reference would
* be dropped twice.
* Manfred Spraul <manfred@colorfullife.com>
*/
prev_state = prev->state;
finish_arch_switch(prev);
finish_lock_switch(rq, prev);
schedule_tail_balance_rt(rq);
fire_sched_in_preempt_notifiers(current);
if (mm)
mmdrop(mm);
if (unlikely(prev_state == TASK_DEAD)) {
/*
* Remove function-return probe instances associated with this
* task and put them back on the free list.
*/
kprobe_flush_task(prev);
put_task_struct(prev);
}
}
/**
* schedule_tail - first thing a freshly forked thread must call.
* @prev: the thread we just switched away from.
*/
asmlinkage void schedule_tail(struct task_struct *prev)
__releases(rq->lock)
{
struct rq *rq = this_rq();
finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
/* In this case, finish_task_switch does not reenable preemption */
preempt_enable();
#endif
if (current->set_child_tid)
put_user(task_pid_vnr(current), current->set_child_tid);
}
/*
* context_switch - switch to the new MM and the new
* thread's register state.
*/
static inline void
context_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
struct mm_struct *mm, *oldmm;
prepare_task_switch(rq, prev, next);
mm = next->mm;
oldmm = prev->active_mm;
/*
* For paravirt, this is coupled with an exit in switch_to to
* combine the page table reload and the switch backend into
* one hypercall.
*/
arch_enter_lazy_cpu_mode();
if (unlikely(!mm)) {
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next);
} else
switch_mm(oldmm, mm, next);
if (unlikely(!prev->mm)) {
prev->active_mm = NULL;
rq->prev_mm = oldmm;
}
/*
* Since the runqueue lock will be released by the next
* task (which is an invalid locking op but in the case
* of the scheduler it's an obvious special-case), so we
* do an early lockdep release here:
*/
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
#endif
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev);
barrier();
/*
* this_rq must be evaluated again because prev may have moved
* CPUs since it called schedule(), thus the 'rq' on its stack
* frame will be invalid.
*/
finish_task_switch(this_rq(), prev);
}
/*
* nr_running, nr_uninterruptible and nr_context_switches:
*
* externally visible scheduler statistics: current number of runnable
* threads, current number of uninterruptible-sleeping threads, total
* number of context switches performed since bootup.
*/
unsigned long nr_running(void)
{
unsigned long i, sum = 0;
for_each_online_cpu(i)
sum += cpu_rq(i)->nr_running;
return sum;
}
unsigned long nr_uninterruptible(void)
{
unsigned long i, sum = 0;
for_each_possible_cpu(i)
sum += cpu_rq(i)->nr_uninterruptible;
/*
* Since we read the counters lockless, it might be slightly
* inaccurate. Do not allow it to go below zero though:
*/
if (unlikely((long)sum < 0))
sum = 0;
return sum;
}
unsigned long long nr_context_switches(void)
{
int i;
unsigned long long sum = 0;
for_each_possible_cpu(i)
sum += cpu_rq(i)->nr_switches;
return sum;
}
unsigned long nr_iowait(void)
{
unsigned long i, sum = 0;
for_each_possible_cpu(i)
sum += atomic_read(&cpu_rq(i)->nr_iowait);
return sum;
}
unsigned long nr_active(void)
{
unsigned long i, running = 0, uninterruptible = 0;
for_each_online_cpu(i) {
running += cpu_rq(i)->nr_running;
uninterruptible += cpu_rq(i)->nr_uninterruptible;
}
if (unlikely((long)uninterruptible < 0))
uninterruptible = 0;
return running + uninterruptible;
}
/*
* Update rq->cpu_load[] statistics. This function is usually called every
* scheduler tick (TICK_NSEC).
*/
static void update_cpu_load(struct rq *this_rq)
{
unsigned long this_load = this_rq->load.weight;
int i, scale;
this_rq->nr_load_updates++;
/* Update our load: */
for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
unsigned long old_load, new_load;
/* scale is effectively 1 << i now, and >> i divides by scale */
old_load = this_rq->cpu_load[i];
new_load = this_load;
/*
* Round up the averaging division if load is increasing. This
* prevents us from getting stuck on 9 if the load is 10, for
* example.
*/
if (new_load > old_load)
new_load += scale-1;
this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
}
}
#ifdef CONFIG_SMP
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
__acquires(rq1->lock)
__acquires(rq2->lock)
{
BUG_ON(!irqs_disabled());
if (rq1 == rq2) {
spin_lock(&rq1->lock);
__acquire(rq2->lock); /* Fake it out ;) */
} else {
if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock(&rq2->lock);
} else {
spin_lock(&rq2->lock);
spin_lock(&rq1->lock);
}
}
update_rq_clock(rq1);
update_rq_clock(rq2);
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
spin_unlock(&rq1->lock);
if (rq1 != rq2)
spin_unlock(&rq2->lock);
else
__release(rq2->lock);
}
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
*/
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
int ret = 0;
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work good under rq->lock */
spin_unlock(&this_rq->lock);
BUG_ON(1);
}
if (unlikely(!spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
spin_unlock(&this_rq->lock);
spin_lock(&busiest->lock);
spin_lock(&this_rq->lock);
ret = 1;
} else
spin_lock(&busiest->lock);
}
return ret;
}
/*
* If dest_cpu is allowed for this process, migrate the task to it.
* This is accomplished by forcing the cpu_allowed mask to only
* allow dest_cpu, which will force the cpu onto dest_cpu. Then
* the cpu_allowed mask is restored.
*/
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
{
struct migration_req req;
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(p, &flags);
if (!cpu_isset(dest_cpu, p->cpus_allowed)
|| unlikely(cpu_is_offline(dest_cpu)))
goto out;
/* force the process onto the specified CPU */
if (migrate_task(p, dest_cpu, &req)) {
/* Need to wait for migration thread (might exit: take ref). */
struct task_struct *mt = rq->migration_thread;
get_task_struct(mt);
task_rq_unlock(rq, &flags);
wake_up_process(mt);
put_task_struct(mt);
wait_for_completion(&req.done);
return;
}
out:
task_rq_unlock(rq, &flags);
}
/*
* sched_exec - execve() is a valuable balancing opportunity, because at
* this point the task has the smallest effective memory and cache footprint.
*/
void sched_exec(void)
{
int new_cpu, this_cpu = get_cpu();
new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
put_cpu();
if (new_cpu != this_cpu)
sched_migrate_task(current, new_cpu);
}
/*
* pull_task - move a task from a remote runqueue to the local runqueue.
* Both runqueues must be locked.
*/
static void pull_task(struct rq *src_rq, struct task_struct *p,
struct rq *this_rq, int this_cpu)
{
deactivate_task(src_rq, p, 0);
set_task_cpu(p, this_cpu);
activate_task(this_rq, p, 0);
/*
* Note that idle threads have a prio of MAX_PRIO, for this test
* to be always true for them.
*/
check_preempt_curr(this_rq, p);
}
/*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
*/
static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned)
{
/*
* We do not migrate tasks that are:
* 1) running (obviously), or
* 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) are cache-hot on their current CPU.
*/
if (!cpu_isset(this_cpu, p->cpus_allowed)) {
schedstat_inc(p, se.nr_failed_migrations_affine);
return 0;
}
*all_pinned = 0;
if (task_running(rq, p)) {
schedstat_inc(p, se.nr_failed_migrations_running);
return 0;
}
/*
* Aggressive migration if:
* 1) task is cache cold, or
* 2) too many balance attempts have failed.
*/
if (!task_hot(p, rq->clock, sd) ||
sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
if (task_hot(p, rq->clock, sd)) {
schedstat_inc(sd, lb_hot_gained[idle]);
schedstat_inc(p, se.nr_forced_migrations);
}
#endif
return 1;
}
if (task_hot(p, rq->clock, sd)) {
schedstat_inc(p, se.nr_failed_migrations_hot);
return 0;
}
return 1;
}
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move, struct sched_domain *sd,
enum cpu_idle_type idle, int *all_pinned,
int *this_best_prio, struct rq_iterator *iterator)
{
int loops = 0, pulled = 0, pinned = 0, skip_for_load;
struct task_struct *p;
long rem_load_move = max_load_move;
if (max_load_move == 0)
goto out;
pinned = 1;
/*
* Start the load-balancing iterator:
*/
p = iterator->start(iterator->arg);
next:
if (!p || loops++ > sysctl_sched_nr_migrate)
goto out;
/*
* To help distribute high priority tasks across CPUs we don't
* skip a task if it will be the highest priority task (i.e. smallest
* prio value) on its new queue regardless of its load weight
*/
skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
SCHED_LOAD_SCALE_FUZZ;
if ((skip_for_load && p->prio >= *this_best_prio) ||
!can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
p = iterator->next(iterator->arg);
goto next;
}
pull_task(busiest, p, this_rq, this_cpu);
pulled++;
rem_load_move -= p->se.load.weight;
/*
* We only want to steal up to the prescribed amount of weighted load.
*/
if (rem_load_move > 0) {
if (p->prio < *this_best_prio)
*this_best_prio = p->prio;
p = iterator->next(iterator->arg);
goto next;
}
out:
/*
* Right now, this is one of only two places pull_task() is called,
* so we can safely collect pull_task() stats here rather than
* inside pull_task().
*/
schedstat_add(sd, lb_gained[idle], pulled);
if (all_pinned)
*all_pinned = pinned;
return max_load_move - rem_load_move;
}
/*
* move_tasks tries to move up to max_load_move weighted load from busiest to
* this_rq, as part of a balancing operation within domain "sd".
* Returns 1 if successful and 0 otherwise.
*
* Called with both runqueues locked.
*/
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned)
{
const struct sched_class *class = sched_class_highest;
unsigned long total_load_moved = 0;
int this_best_prio = this_rq->curr->prio;
do {
total_load_moved +=
class->load_balance(this_rq, this_cpu, busiest,
max_load_move - total_load_moved,
sd, idle, all_pinned, &this_best_prio);
class = class->next;
} while (class && max_load_move > total_load_moved);
return total_load_moved > 0;
}
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle,
struct rq_iterator *iterator)
{
struct task_struct *p = iterator->start(iterator->arg);
int pinned = 0;
while (p) {
if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
pull_task(busiest, p, this_rq, this_cpu);
/*
* Right now, this is only the second place pull_task()
* is called, so we can safely collect pull_task()
* stats here rather than inside pull_task().
*/
schedstat_inc(sd, lb_gained[idle]);
return 1;
}
p = iterator->next(iterator->arg);
}
return 0;
}
/*
* move_one_task tries to move exactly one task from busiest to this_rq, as
* part of active balancing operations within "domain".
* Returns 1 if successful and 0 otherwise.
*
* Called with both runqueues locked.
*/
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)
{
const struct sched_class *class;
for (class = sched_class_highest; class; class = class->next)
if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
return 1;
return 0;
}
/*
* find_busiest_group finds and returns the busiest CPU group within the
* domain. It calculates and returns the amount of weighted load which
* should be moved to restore balance via the imbalance parameter.
*/
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
unsigned long *imbalance, enum cpu_idle_type idle,
int *sd_idle, cpumask_t *cpus, int *balance)
{
struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
unsigned long max_load, avg_load, total_load, this_load, total_pwr;
unsigned long max_pull;
unsigned long busiest_load_per_task, busiest_nr_running;
unsigned long this_load_per_task, this_nr_running;
int load_idx, group_imb = 0;
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int power_savings_balance = 1;
unsigned long leader_nr_running = 0, min_load_per_task = 0;
unsigned long min_nr_running = ULONG_MAX;
struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
max_load = this_load = total_load = total_pwr = 0;
busiest_load_per_task = busiest_nr_running = 0;
this_load_per_task = this_nr_running = 0;
if (idle == CPU_NOT_IDLE)
load_idx = sd->busy_idx;
else if (idle == CPU_NEWLY_IDLE)
load_idx = sd->newidle_idx;
else
load_idx = sd->idle_idx;
do {
unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
int local_group;
int i;
int __group_imb = 0;
unsigned int balance_cpu = -1, first_idle_cpu = 0;
unsigned long sum_nr_running, sum_weighted_load;
local_group = cpu_isset(this_cpu, group->cpumask);
if (local_group)
balance_cpu = first_cpu(group->cpumask);
/* Tally up the load of all CPUs in the group */
sum_weighted_load = sum_nr_running = avg_load = 0;
max_cpu_load = 0;
min_cpu_load = ~0UL;
for_each_cpu_mask(i, group->cpumask) {
struct rq *rq;
if (!cpu_isset(i, *cpus))
continue;
rq = cpu_rq(i);
if (*sd_idle && rq->nr_running)
*sd_idle = 0;
/* Bias balancing toward cpus of our domain */
if (local_group) {
if (idle_cpu(i) && !first_idle_cpu) {
first_idle_cpu = 1;
balance_cpu = i;
}
load = target_load(i, load_idx);
} else {
load = source_load(i, load_idx);
if (load > max_cpu_load)
max_cpu_load = load;
if (min_cpu_load > load)
min_cpu_load = load;
}
avg_load += load;
sum_nr_running += rq->nr_running;
sum_weighted_load += weighted_cpuload(i);
}
/*
* First idle cpu or the first cpu(busiest) in this sched group
* is eligible for doing load balancing at this and above
* domains. In the newly idle case, we will allow all the cpu's
* to do the newly idle load balance.
*/
if (idle != CPU_NEWLY_IDLE && local_group &&
balance_cpu != this_cpu && balance) {
*balance = 0;
goto ret;
}
total_load += avg_load;
total_pwr += group->__cpu_power;
/* Adjust by relative CPU power of the group */
avg_load = sg_div_cpu_power(group,
avg_load * SCHED_LOAD_SCALE);
if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
__group_imb = 1;
group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
if (local_group) {
this_load = avg_load;
this = group;
this_nr_running = sum_nr_running;
this_load_per_task = sum_weighted_load;
} else if (avg_load > max_load &&
(sum_nr_running > group_capacity || __group_imb)) {
max_load = avg_load;
busiest = group;
busiest_nr_running = sum_nr_running;
busiest_load_per_task = sum_weighted_load;
group_imb = __group_imb;
}
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/*
* Busy processors will not participate in power savings
* balance.
*/
if (idle == CPU_NOT_IDLE ||
!(sd->flags & SD_POWERSAVINGS_BALANCE))
goto group_next;
/*
* If the local group is idle or completely loaded
* no need to do power savings balance at this domain
*/
if (local_group && (this_nr_running >= group_capacity ||
!this_nr_running))
power_savings_balance = 0;
/*
* If a group is already running at full capacity or idle,
* don't include that group in power savings calculations
*/
if (!power_savings_balance || sum_nr_running >= group_capacity
|| !sum_nr_running)
goto group_next;
/*
* Calculate the group which has the least non-idle load.
* This is the group from where we need to pick up the load
* for saving power
*/
if ((sum_nr_running < min_nr_running) ||
(sum_nr_running == min_nr_running &&
first_cpu(group->cpumask) <
first_cpu(group_min->cpumask))) {
group_min = group;
min_nr_running = sum_nr_running;
min_load_per_task = sum_weighted_load /
sum_nr_running;
}
/*
* Calculate the group which is almost near its
* capacity but still has some space to pick up some load
* from other group and save more power
*/
if (sum_nr_running <= group_capacity - 1) {
if (sum_nr_running > leader_nr_running ||
(sum_nr_running == leader_nr_running &&
first_cpu(group->cpumask) >
first_cpu(group_leader->cpumask))) {
group_leader = group;
leader_nr_running = sum_nr_running;
}
}
group_next:
#endif
group = group->next;
} while (group != sd->groups);
if (!busiest || this_load >= max_load || busiest_nr_running == 0)
goto out_balanced;
avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
if (this_load >= avg_load ||
100*max_load <= sd->imbalance_pct*this_load)
goto out_balanced;
busiest_load_per_task /= busiest_nr_running;
if (group_imb)
busiest_load_per_task = min(busiest_load_per_task, avg_load);
/*
* We're trying to get all the cpus to the average_load, so we don't
* want to push ourselves above the average load, nor do we wish to
* reduce the max loaded cpu below the average load, as either of these
* actions would just result in more rebalancing later, and ping-pong
* tasks around. Thus we look for the minimum possible imbalance.
* Negative imbalances (*we* are more loaded than anyone else) will
* be counted as no imbalance for these purposes -- we can't fix that
* by pulling tasks to us. Be careful of negative numbers as they'll
* appear as very large values with unsigned longs.
*/
if (max_load <= busiest_load_per_task)
goto out_balanced;
/*
* In the presence of smp nice balancing, certain scenarios can have
* max load less than avg load(as we skip the groups at or below
* its cpu_power, while calculating max_load..)
*/
if (max_load < avg_load) {
*imbalance = 0;
goto small_imbalance;
}
/* Don't want to pull so many tasks that a group would go idle */
max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
/* How much load to actually move to equalise the imbalance */
*imbalance = min(max_pull * busiest->__cpu_power,
(avg_load - this_load) * this->__cpu_power)
/ SCHED_LOAD_SCALE;
/*
* if *imbalance is less than the average load per runnable task
* there is no gaurantee that any tasks will be moved so we'll have
* a think about bumping its value to force at least one task to be
* moved
*/
if (*imbalance < busiest_load_per_task) {
unsigned long tmp, pwr_now, pwr_move;
unsigned int imbn;
small_imbalance:
pwr_move = pwr_now = 0;
imbn = 2;
if (this_nr_running) {
this_load_per_task /= this_nr_running;
if (busiest_load_per_task > this_load_per_task)
imbn = 1;
} else
this_load_per_task = SCHED_LOAD_SCALE;
if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
busiest_load_per_task * imbn) {
*imbalance = busiest_load_per_task;
return busiest;
}
/*
* OK, we don't have enough imbalance to justify moving tasks,
* however we may be able to increase total CPU power used by
* moving them.
*/
pwr_now += busiest->__cpu_power *
min(busiest_load_per_task, max_load);
pwr_now += this->__cpu_power *
min(this_load_per_task, this_load);
pwr_now /= SCHED_LOAD_SCALE;
/* Amount of load we'd subtract */
tmp = sg_div_cpu_power(busiest,
busiest_load_per_task * SCHED_LOAD_SCALE);
if (max_load > tmp)
pwr_move += busiest->__cpu_power *
min(busiest_load_per_task, max_load - tmp);
/* Amount of load we'd add */
if (max_load * busiest->__cpu_power <
busiest_load_per_task * SCHED_LOAD_SCALE)
tmp = sg_div_cpu_power(this,
max_load * busiest->__cpu_power);
else
tmp = sg_div_cpu_power(this,
busiest_load_per_task * SCHED_LOAD_SCALE);
pwr_move += this->__cpu_power *
min(this_load_per_task, this_load + tmp);
pwr_move /= SCHED_LOAD_SCALE;
/* Move if we gain throughput */
if (pwr_move > pwr_now)
*imbalance = busiest_load_per_task;
}
return busiest;
out_balanced:
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
goto ret;
if (this == group_leader && group_leader != group_min) {
*imbalance = min_load_per_task;
return group_min;
}
#endif
ret:
*imbalance = 0;
return NULL;
}
/*
* find_busiest_queue - find the busiest runqueue among the cpus in group.
*/
static struct rq *
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
unsigned long imbalance, cpumask_t *cpus)
{
struct rq *busiest = NULL, *rq;
unsigned long max_load = 0;
int i;
for_each_cpu_mask(i, group->cpumask) {
unsigned long wl;
if (!cpu_isset(i, *cpus))
continue;
rq = cpu_rq(i);
wl = weighted_cpuload(i);
if (rq->nr_running == 1 && wl > imbalance)
continue;
if (wl > max_load) {
max_load = wl;
busiest = rq;
}
}
return busiest;
}
/*
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
* so long as it is large enough.
*/
#define MAX_PINNED_INTERVAL 512
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*/
static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *balance)
{
int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
struct sched_group *group;
unsigned long imbalance;
struct rq *busiest;
cpumask_t cpus = CPU_MASK_ALL;
unsigned long flags;
/*
* When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case,
* let the state of idle sibling percolate up as CPU_IDLE, instead of
* portraying it as CPU_NOT_IDLE.
*/
if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
sd_idle = 1;
schedstat_inc(sd, lb_count[idle]);
redo:
group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
&cpus, balance);
if (*balance == 0)
goto out_balanced;
if (!group) {
schedstat_inc(sd, lb_nobusyg[idle]);
goto out_balanced;
}
busiest = find_busiest_queue(group, idle, imbalance, &cpus);
if (!busiest) {
schedstat_inc(sd, lb_nobusyq[idle]);
goto out_balanced;
}
BUG_ON(busiest == this_rq);
schedstat_add(sd, lb_imbalance[idle], imbalance);
ld_moved = 0;
if (busiest->nr_running > 1) {
/*
* Attempt to move tasks. If find_busiest_group has found
* an imbalance but busiest->nr_running <= 1, the group is
* still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance.
*/
local_irq_save(flags);
double_rq_lock(this_rq, busiest);
ld_moved = move_tasks(this_rq, this_cpu, busiest,
imbalance, sd, idle, &all_pinned);
double_rq_unlock(this_rq, busiest);
local_irq_restore(flags);
/*
* some other cpu did the load balance for us.
*/
if (ld_moved && this_cpu != smp_processor_id())
resched_cpu(this_cpu);
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(all_pinned)) {
cpu_clear(cpu_of(busiest), cpus);
if (!cpus_empty(cpus))
goto redo;
goto out_balanced;
}
}
if (!ld_moved) {
schedstat_inc(sd, lb_failed[idle]);
sd->nr_balance_failed++;
if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
spin_lock_irqsave(&busiest->lock, flags);
/* don't kick the migration_thread, if the curr
* task on busiest cpu can't be moved to this_cpu
*/
if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
spin_unlock_irqrestore(&busiest->lock, flags);
all_pinned = 1;
goto out_one_pinned;
}
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
}
spin_unlock_irqrestore(&busiest->lock, flags);
if (active_balance)
wake_up_process(busiest->migration_thread);
/*
* We've kicked active balancing, reset the failure
* counter.
*/
sd->nr_balance_failed = sd->cache_nice_tries+1;
}
} else
sd->nr_balance_failed = 0;
if (likely(!active_balance)) {
/* We were unbalanced, so reset the balancing interval */
sd->balance_interval = sd->min_interval;
} else {
/*
* If we've begun active balancing, start to back off. This
* case may not be covered by the all_pinned logic if there
* is only 1 task on the busy runqueue (because we don't call
* move_tasks).
*/
if (sd->balance_interval < sd->max_interval)
sd->balance_interval *= 2;
}
if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
return ld_moved;
out_balanced:
schedstat_inc(sd, lb_balanced[idle]);
sd->nr_balance_failed = 0;
out_one_pinned:
/* tune up the balancing interval */
if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
(sd->balance_interval < sd->max_interval))
sd->balance_interval *= 2;
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
return 0;
}
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*
* Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
* this_rq is locked.
*/
static int
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
{
struct sched_group *group;
struct rq *busiest = NULL;
unsigned long imbalance;
int ld_moved = 0;
int sd_idle = 0;
int all_pinned = 0;
cpumask_t cpus = CPU_MASK_ALL;
/*
* When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case,
* let the state of idle sibling percolate up as IDLE, instead of
* portraying it as CPU_NOT_IDLE.
*/
if (sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
sd_idle = 1;
schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
redo:
group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
&sd_idle, &cpus, NULL);
if (!group) {
schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
goto out_balanced;
}
busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
&cpus);
if (!busiest) {
schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
goto out_balanced;
}
BUG_ON(busiest == this_rq);
schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
ld_moved = 0;
if (busiest->nr_running > 1) {
/* Attempt to move tasks */
double_lock_balance(this_rq, busiest);
/* this_rq->clock is already updated */
update_rq_clock(busiest);
ld_moved = move_tasks(this_rq, this_cpu, busiest,
imbalance, sd, CPU_NEWLY_IDLE,
&all_pinned);
spin_unlock(&busiest->lock);
if (unlikely(all_pinned)) {
cpu_clear(cpu_of(busiest), cpus);
if (!cpus_empty(cpus))
goto redo;
}
}
if (!ld_moved) {
schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
} else
sd->nr_balance_failed = 0;
return ld_moved;
out_balanced:
schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
sd->nr_balance_failed = 0;
return 0;
}
/*
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*/
static void idle_balance(int this_cpu, struct rq *this_rq)
{
struct sched_domain *sd;
int pulled_task = -1;
unsigned long next_balance = jiffies + HZ;
for_each_domain(this_cpu, sd) {
unsigned long interval;
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
if (sd->flags & SD_BALANCE_NEWIDLE)
/* If we've pulled tasks over stop searching: */
pulled_task = load_balance_newidle(this_cpu,
this_rq, sd);
interval = msecs_to_jiffies(sd->balance_interval);
if (time_after(next_balance, sd->last_balance + interval))
next_balance = sd->last_balance + interval;
if (pulled_task)
break;
}
if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
/*
* We are going idle. next_balance may be set based on
* a busy processor. So reset next_balance.
*/
this_rq->next_balance = next_balance;
}
}
/*
* active_load_balance is run by migration threads. It pushes running tasks
* off the busiest CPU onto idle CPUs. It requires at least 1 task to be
* running on each physical CPU where possible, and avoids physical /
* logical imbalances.
*
* Called with busiest_rq locked.
*/
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
{
int target_cpu = busiest_rq->push_cpu;
struct sched_domain *sd;
struct rq *target_rq;
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1)
return;
target_rq = cpu_rq(target_cpu);
/*
* This condition is "impossible", if it occurs
* we need to fix it. Originally reported by
* Bjorn Helgaas on a 128-cpu setup.
*/
BUG_ON(busiest_rq == target_rq);
/* move a task from busiest_rq to target_rq */
double_lock_balance(busiest_rq, target_rq);
update_rq_clock(busiest_rq);
update_rq_clock(target_rq);
/* Search for an sd spanning us and the target CPU. */
for_each_domain(target_cpu, sd) {
if ((sd->flags & SD_LOAD_BALANCE) &&
cpu_isset(busiest_cpu, sd->span))
break;
}
if (likely(sd)) {
schedstat_inc(sd, alb_count);
if (move_one_task(target_rq, target_cpu, busiest_rq,
sd, CPU_IDLE))
schedstat_inc(sd, alb_pushed);
else
schedstat_inc(sd, alb_failed);
}
spin_unlock(&target_rq->lock);
}
#ifdef CONFIG_NO_HZ
static struct {
atomic_t load_balancer;
cpumask_t cpu_mask;
} nohz ____cacheline_aligned = {
.load_balancer = ATOMIC_INIT(-1),
.cpu_mask = CPU_MASK_NONE,
};
/*
* This routine will try to nominate the ilb (idle load balancing)
* owner among the cpus whose ticks are stopped. ilb owner will do the idle
* load balancing on behalf of all those cpus. If all the cpus in the system
* go into this tickless mode, then there will be no ilb owner (as there is
* no need for one) and all the cpus will sleep till the next wakeup event
* arrives...
*
* For the ilb owner, tick is not stopped. And this tick will be used
* for idle load balancing. ilb owner will still be part of
* nohz.cpu_mask..
*
* While stopping the tick, this cpu will become the ilb owner if there
* is no other owner. And will be the owner till that cpu becomes busy
* or if all cpus in the system stop their ticks at which point
* there is no need for ilb owner.
*
* When the ilb owner becomes busy, it nominates another owner, during the
* next busy scheduler_tick()
*/
int select_nohz_load_balancer(int stop_tick)
{
int cpu = smp_processor_id();
if (stop_tick) {
cpu_set(cpu, nohz.cpu_mask);
cpu_rq(cpu)->in_nohz_recently = 1;
/*
* If we are going offline and still the leader, give up!
*/
if (cpu_is_offline(cpu) &&
atomic_read(&nohz.load_balancer) == cpu) {
if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
BUG();
return 0;
}
/* time for ilb owner also to sleep */
if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
if (atomic_read(&nohz.load_balancer) == cpu)
atomic_set(&nohz.load_balancer, -1);
return 0;
}
if (atomic_read(&nohz.load_balancer) == -1) {
/* make me the ilb owner */
if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
return 1;
} else if (atomic_read(&nohz.load_balancer) == cpu)
return 1;
} else {
if (!cpu_isset(cpu, nohz.cpu_mask))
return 0;
cpu_clear(cpu, nohz.cpu_mask);
if (atomic_read(&nohz.load_balancer) == cpu)
if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
BUG();
}
return 0;
}
#endif
static DEFINE_SPINLOCK(balancing);
/*
* It checks each scheduling domain to see if it is due to be balanced,
* and initiates a balancing operation if so.
*
* Balancing parameters are set up in arch_init_sched_domains.
*/
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
int balance = 1;
struct rq *rq = cpu_rq(cpu);
unsigned long interval;
struct sched_domain *sd;
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
for_each_domain(cpu, sd) {
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
interval = sd->balance_interval;
if (idle != CPU_IDLE)
interval *= sd->busy_factor;
/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
if (unlikely(!interval))
interval = 1;
if (interval > HZ*NR_CPUS/10)
interval = HZ*NR_CPUS/10;
if (sd->flags & SD_SERIALIZE) {
if (!spin_trylock(&balancing))
goto out;
}
if (time_after_eq(jiffies, sd->last_balance + interval)) {
if (load_balance(cpu, rq, sd, idle, &balance)) {
/*
* We've pulled tasks over so either we're no
* longer idle, or one of our SMT siblings is
* not idle.
*/
idle = CPU_NOT_IDLE;
}
sd->last_balance = jiffies;
}
if (sd->flags & SD_SERIALIZE)
spin_unlock(&balancing);
out:
if (time_after(next_balance, sd->last_balance + interval)) {
next_balance = sd->last_balance + interval;
update_next_balance = 1;
}
/*
* Stop the load balance at this level. There is another
* CPU in our sched group which is doing load balancing more
* actively.
*/
if (!balance)
break;
}
/*
* next_balance will be updated only when there is a need.
* When the cpu is attached to null domain for ex, it will not be
* updated.
*/
if (likely(update_next_balance))
rq->next_balance = next_balance;
}
/*
* run_rebalance_domains is triggered when needed from the scheduler tick.
* In CONFIG_NO_HZ case, the idle load balance owner will do the
* rebalancing for all the cpus for whom scheduler ticks are stopped.
*/
static void run_rebalance_domains(struct softirq_action *h)
{
int this_cpu = smp_processor_id();
struct rq *this_rq = cpu_rq(this_cpu);
enum cpu_idle_type idle = this_rq->idle_at_tick ?
CPU_IDLE : CPU_NOT_IDLE;
rebalance_domains(this_cpu, idle);
#ifdef CONFIG_NO_HZ
/*
* If this cpu is the owner for idle load balancing, then do the
* balancing on behalf of the other idle cpus whose ticks are
* stopped.
*/
if (this_rq->idle_at_tick &&
atomic_read(&nohz.load_balancer) == this_cpu) {
cpumask_t cpus = nohz.cpu_mask;
struct rq *rq;
int balance_cpu;
cpu_clear(this_cpu, cpus);
for_each_cpu_mask(balance_cpu, cpus) {
/*
* If this cpu gets work to do, stop the load balancing
* work being done for other cpus. Next load
* balancing owner will pick it up.
*/
if (need_resched())
break;
rebalance_domains(balance_cpu, CPU_IDLE);
rq = cpu_rq(balance_cpu);
if (time_after(this_rq->next_balance, rq->next_balance))
this_rq->next_balance = rq->next_balance;
}
}
#endif
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
*
* In case of CONFIG_NO_HZ, this is the place where we nominate a new
* idle load balancing owner or decide to stop the periodic load balancing,
* if the whole system is idle.
*/
static inline void trigger_load_balance(struct rq *rq, int cpu)
{
#ifdef CONFIG_NO_HZ
/*
* If we were in the nohz mode recently and busy at the current
* scheduler tick, then check if we need to nominate new idle
* load balancer.
*/
if (rq->in_nohz_recently && !rq->idle_at_tick) {
rq->in_nohz_recently = 0;
if (atomic_read(&nohz.load_balancer) == cpu) {
cpu_clear(cpu, nohz.cpu_mask);
atomic_set(&nohz.load_balancer, -1);
}
if (atomic_read(&nohz.load_balancer) == -1) {
/*
* simple selection for now: Nominate the
* first cpu in the nohz list to be the next
* ilb owner.
*
* TBD: Traverse the sched domains and nominate
* the nearest cpu in the nohz.cpu_mask.
*/
int ilb = first_cpu(nohz.cpu_mask);
if (ilb != NR_CPUS)
resched_cpu(ilb);
}
}
/*
* If this cpu is idle and doing idle load balancing for all the
* cpus with ticks stopped, is it time for that to stop?
*/
if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
resched_cpu(cpu);
return;
}
/*
* If this cpu is idle and the idle load balancing is done by
* someone else, then no need raise the SCHED_SOFTIRQ
*/
if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
cpu_isset(cpu, nohz.cpu_mask))
return;
#endif
if (time_after_eq(jiffies, rq->next_balance))
raise_softirq(SCHED_SOFTIRQ);
}
#else /* CONFIG_SMP */
/*
* on UP we do not need to balance between CPUs:
*/
static inline void idle_balance(int cpu, struct rq *rq)
{
}
#endif
DEFINE_PER_CPU(struct kernel_stat, kstat);
EXPORT_PER_CPU_SYMBOL(kstat);
/*
* Return p->sum_exec_runtime plus any more ns on the sched_clock
* that have not yet been banked in case the task is currently running.
*/
unsigned long long task_sched_runtime(struct task_struct *p)
{
unsigned long flags;
u64 ns, delta_exec;
struct rq *rq;
rq = task_rq_lock(p, &flags);
ns = p->se.sum_exec_runtime;
if (task_current(rq, p)) {
update_rq_clock(rq);
delta_exec = rq->clock - p->se.exec_start;
if ((s64)delta_exec > 0)
ns += delta_exec;
}
task_rq_unlock(rq, &flags);
return ns;
}
/*
* Account user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
*/
void account_user_time(struct task_struct *p, cputime_t cputime)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t tmp;
p->utime = cputime_add(p->utime, cputime);
/* Add user time to cpustat. */
tmp = cputime_to_cputime64(cputime);
if (TASK_NICE(p) > 0)
cpustat->nice = cputime64_add(cpustat->nice, tmp);
else
cpustat->user = cputime64_add(cpustat->user, tmp);
}
/*
* Account guest cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in virtual machine since the last update
*/
static void account_guest_time(struct task_struct *p, cputime_t cputime)
{
cputime64_t tmp;
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
tmp = cputime_to_cputime64(cputime);
p->utime = cputime_add(p->utime, cputime);
p->gtime = cputime_add(p->gtime, cputime);
cpustat->user = cputime64_add(cpustat->user, tmp);
cpustat->guest = cputime64_add(cpustat->guest, tmp);
}
/*
* Account scaled user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
*/
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
p->utimescaled = cputime_add(p->utimescaled, cputime);
}
/*
* Account system cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
*/
void account_system_time(struct task_struct *p, int hardirq_offset,
cputime_t cputime)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
struct rq *rq = this_rq();
cputime64_t tmp;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
return account_guest_time(p, cputime);
p->stime = cputime_add(p->stime, cputime);
/* Add system time to cpustat. */
tmp = cputime_to_cputime64(cputime);
if (hardirq_count() - hardirq_offset)
cpustat->irq = cputime64_add(cpustat->irq, tmp);
else if (softirq_count())
cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
else if (p != rq->idle)
cpustat->system = cputime64_add(cpustat->system, tmp);
else if (atomic_read(&rq->nr_iowait) > 0)
cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
else
cpustat->idle = cputime64_add(cpustat->idle, tmp);
/* Account for system time used */
acct_update_integrals(p);
}
/*
* Account scaled system cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
*/
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
p->stimescaled = cputime_add(p->stimescaled, cputime);
}
/*
* Account for involuntary wait time.
* @p: the process from which the cpu time has been stolen
* @steal: the cpu time spent in involuntary wait
*/
void account_steal_time(struct task_struct *p, cputime_t steal)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t tmp = cputime_to_cputime64(steal);
struct rq *rq = this_rq();
if (p == rq->idle) {
p->stime = cputime_add(p->stime, steal);
if (atomic_read(&rq->nr_iowait) > 0)
cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
else
cpustat->idle = cputime64_add(cpustat->idle, tmp);
} else
cpustat->steal = cputime64_add(cpustat->steal, tmp);
}
/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*
* It also gets called by the fork code, when changing the parent's
* timeslices.
*/
void scheduler_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
u64 next_tick = rq->tick_timestamp + TICK_NSEC;
spin_lock(&rq->lock);
__update_rq_clock(rq);
/*
* Let rq->clock advance by at least TICK_NSEC:
*/
if (unlikely(rq->clock < next_tick))
rq->clock = next_tick;
rq->tick_timestamp = rq->clock;
update_cpu_load(rq);
if (curr != rq->idle) /* FIXME: needed? */
curr->sched_class->task_tick(rq, curr);
spin_unlock(&rq->lock);
#ifdef CONFIG_SMP
rq->idle_at_tick = idle_cpu(cpu);
trigger_load_balance(rq, cpu);
#endif
}
#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
void fastcall add_preempt_count(int val)
{
/*
* Underflow?
*/
if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
return;
preempt_count() += val;
/*
* Spinlock count overflowing soon?
*/
DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
PREEMPT_MASK - 10);
}
EXPORT_SYMBOL(add_preempt_count);
void fastcall sub_preempt_count(int val)
{
/*
* Underflow?
*/
if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
return;
/*
* Is the spinlock portion underflowing?
*/
if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
!(preempt_count() & PREEMPT_MASK)))
return;
preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);
#endif
/*
* Print scheduling while atomic bug:
*/
static noinline void __schedule_bug(struct task_struct *prev)
{
struct pt_regs *regs = get_irq_regs();
printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
prev->comm, prev->pid, preempt_count());
debug_show_held_locks(prev);
if (irqs_disabled())
print_irqtrace_events(prev);
if (regs)
show_regs(regs);
else
dump_stack();
}
/*
* Various schedule()-time debugging checks and statistics:
*/
static inline void schedule_debug(struct task_struct *prev)
{
/*
* Test if we are atomic. Since do_exit() needs to call into
* schedule() atomically, we ignore that path for now.
* Otherwise, whine if we are scheduling when we should not be.
*/
if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
__schedule_bug(prev);
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
schedstat_inc(this_rq(), sched_count);
#ifdef CONFIG_SCHEDSTATS
if (unlikely(prev->lock_depth >= 0)) {
schedstat_inc(this_rq(), bkl_count);
schedstat_inc(prev, sched_info.bkl_count);
}
#endif
}
/*
* Pick up the highest-prio task:
*/
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev)
{
const struct sched_class *class;
struct task_struct *p;
/*
* Optimization: we know that if all tasks are in
* the fair class we can call that function directly:
*/
if (likely(rq->nr_running == rq->cfs.nr_running)) {
p = fair_sched_class.pick_next_task(rq);
if (likely(p))
return p;
}
class = sched_class_highest;
for ( ; ; ) {
p = class->pick_next_task(rq);
if (p)
return p;
/*
* Will never be NULL as the idle class always
* returns a non-NULL p:
*/
class = class->next;
}
}
/*
* schedule() is the main scheduler function.
*/
asmlinkage void __sched schedule(void)
{
struct task_struct *prev, *next;
long *switch_count;
struct rq *rq;
int cpu;
need_resched:
preempt_disable();
cpu = smp_processor_id();
rq = cpu_rq(cpu);
rcu_qsctr_inc(cpu);
prev = rq->curr;
switch_count = &prev->nivcsw;
release_kernel_lock(prev);
need_resched_nonpreemptible:
schedule_debug(prev);
/*
* Do the rq-clock update outside the rq lock:
*/
local_irq_disable();
__update_rq_clock(rq);
spin_lock(&rq->lock);
clear_tsk_need_resched(prev);
if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
unlikely(signal_pending(prev)))) {
prev->state = TASK_RUNNING;
} else {
deactivate_task(rq, prev, 1);
}
switch_count = &prev->nvcsw;
}
schedule_balance_rt(rq, prev);
if (unlikely(!rq->nr_running))
idle_balance(cpu, rq);
prev->sched_class->put_prev_task(rq, prev);
next = pick_next_task(rq, prev);
sched_info_switch(prev, next);
if (likely(prev != next)) {
rq->nr_switches++;
rq->curr = next;
++*switch_count;
context_switch(rq, prev, next); /* unlocks the rq */
} else
spin_unlock_irq(&rq->lock);
if (unlikely(reacquire_kernel_lock(current) < 0)) {
cpu = smp_processor_id();
rq = cpu_rq(cpu);
goto need_resched_nonpreemptible;
}
preempt_enable_no_resched();
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched;
}
EXPORT_SYMBOL(schedule);
#ifdef CONFIG_PREEMPT
/*
* this is the entry point to schedule() from in-kernel preemption
* off of preempt_enable. Kernel preemptions off return from interrupt
* occur there and call schedule directly.
*/
asmlinkage void __sched preempt_schedule(void)
{
struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
struct task_struct *task = current;
int saved_lock_depth;
#endif
/*
* If there is a non-zero preempt_count or interrupts are disabled,
* we do not want to preempt the current task. Just return..
*/
if (likely(ti->preempt_count || irqs_disabled()))
return;
do {
add_preempt_count(PREEMPT_ACTIVE);
/*
* We keep the big kernel semaphore locked, but we
* clear ->lock_depth so that schedule() doesnt
* auto-release the semaphore:
*/
#ifdef CONFIG_PREEMPT_BKL
saved_lock_depth = task->lock_depth;
task->lock_depth = -1;
#endif
schedule();
#ifdef CONFIG_PREEMPT_BKL
task->lock_depth = saved_lock_depth;
#endif
sub_preempt_count(PREEMPT_ACTIVE);
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
barrier();
} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}
EXPORT_SYMBOL(preempt_schedule);
/*
* this is the entry point to schedule() from kernel preemption
* off of irq context.
* Note, that this is called and return with irqs disabled. This will
* protect us against recursive calling from irq.
*/
asmlinkage void __sched preempt_schedule_irq(void)
{
struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
struct task_struct *task = current;
int saved_lock_depth;
#endif
/* Catch callers which need to be fixed */
BUG_ON(ti->preempt_count || !irqs_disabled());
do {
add_preempt_count(PREEMPT_ACTIVE);
/*
* We keep the big kernel semaphore locked, but we
* clear ->lock_depth so that schedule() doesnt
* auto-release the semaphore:
*/
#ifdef CONFIG_PREEMPT_BKL
saved_lock_depth = task->lock_depth;
task->lock_depth = -1;
#endif
local_irq_enable();
schedule();
local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
task->lock_depth = saved_lock_depth;
#endif
sub_preempt_count(PREEMPT_ACTIVE);
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
barrier();
} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}
#endif /* CONFIG_PREEMPT */
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
void *key)
{
return try_to_wake_up(curr->private, mode, sync);
}
EXPORT_SYMBOL(default_wake_function);
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, int sync, void *key)
{
wait_queue_t *curr, *next;
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
unsigned flags = curr->flags;
if (curr->func(curr, mode, sync, key) &&
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
break;
}
}
/**
* __wake_up - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: is directly passed to the wakeup function
*/
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, 0, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);
/*
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
*/
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
__wake_up_common(q, mode, 1, 0, NULL);
}
/**
* __wake_up_sync - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
*
* The sync wakeup differs that the waker knows that it will schedule
* away soon, so while the target thread will be woken up, it will not
* be migrated to another CPU - ie. the two threads are 'synchronized'
* with each other. This can prevent needless bouncing between CPUs.
*
* On UP it can prevent extra preemption.
*/
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
unsigned long flags;
int sync = 1;
if (unlikely(!q))
return;
if (unlikely(!nr_exclusive))
sync = 0;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, sync, NULL);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
void complete(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
1, 0, NULL);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);
void complete_all(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done += UINT_MAX/2;
__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
0, 0, NULL);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
if (!x->done) {
DECLARE_WAITQUEUE(wait, current);
wait.flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue_tail(&x->wait, &wait);
do {
if (state == TASK_INTERRUPTIBLE &&
signal_pending(current)) {
__remove_wait_queue(&x->wait, &wait);
return -ERESTARTSYS;
}
__set_current_state(state);
spin_unlock_irq(&x->wait.lock);
timeout = schedule_timeout(timeout);
spin_lock_irq(&x->wait.lock);
if (!timeout) {
__remove_wait_queue(&x->wait, &wait);
return timeout;
}
} while (!x->done);
__remove_wait_queue(&x->wait, &wait);
}
x->done--;
return timeout;
}
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
might_sleep();
spin_lock_irq(&x->wait.lock);
timeout = do_wait_for_common(x, timeout, state);
spin_unlock_irq(&x->wait.lock);
return timeout;
}
void __sched wait_for_completion(struct completion *x)
{
wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion);
unsigned long __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_timeout);
int __sched wait_for_completion_interruptible(struct completion *x)
{
long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
if (t == -ERESTARTSYS)
return t;
return 0;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);
unsigned long __sched
wait_for_completion_interruptible_timeout(struct completion *x,
unsigned long timeout)
{
return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
{
unsigned long flags;
wait_queue_t wait;
init_waitqueue_entry(&wait, current);
__set_current_state(state);
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, &wait);
spin_unlock(&q->lock);
timeout = schedule_timeout(timeout);
spin_lock_irq(&q->lock);
__remove_wait_queue(q, &wait);
spin_unlock_irqrestore(&q->lock, flags);
return timeout;
}
void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
EXPORT_SYMBOL(interruptible_sleep_on);
long __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);
void __sched sleep_on(wait_queue_head_t *q)
{
sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
EXPORT_SYMBOL(sleep_on);
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
}
EXPORT_SYMBOL(sleep_on_timeout);
#ifdef CONFIG_RT_MUTEXES
/*
* rt_mutex_setprio - set the current priority of a task
* @p: task
* @prio: prio value (kernel-internal form)
*
* This function changes the 'effective' priority of a task. It does
* not touch ->normal_prio like __setscheduler().
*
* Used by the rt_mutex code to implement priority inheritance logic.
*/
void rt_mutex_setprio(struct task_struct *p, int prio)
{
unsigned long flags;
int oldprio, on_rq, running;
struct rq *rq;
BUG_ON(prio < 0 || prio > MAX_PRIO);
rq = task_rq_lock(p, &flags);
update_rq_clock(rq);
oldprio = p->prio;
on_rq = p->se.on_rq;
running = task_current(rq, p);
if (on_rq) {
dequeue_task(rq, p, 0);
if (running)
p->sched_class->put_prev_task(rq, p);
}
if (rt_prio(prio))
p->sched_class = &rt_sched_class;
else
p->sched_class = &fair_sched_class;
p->prio = prio;
if (on_rq) {
if (running)
p->sched_class->set_curr_task(rq);
enqueue_task(rq, p, 0);
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
if (running) {
if (p->prio > oldprio)
resched_task(rq->curr);
} else {
check_preempt_curr(rq, p);
}
}
task_rq_unlock(rq, &flags);
}
#endif
void set_user_nice(struct task_struct *p, long nice)
{
int old_prio, delta, on_rq;
unsigned long flags;
struct rq *rq;
if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
return;
/*
* We have to be careful, if called from sys_setpriority(),
* the task might be in the middle of scheduling on another CPU.
*/
rq = task_rq_lock(p, &flags);
update_rq_clock(rq);
/*
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
* it wont have any effect on scheduling until the task is
* SCHED_FIFO/SCHED_RR:
*/
if (task_has_rt_policy(p)) {
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
on_rq = p->se.on_rq;
if (on_rq)
dequeue_task(rq, p, 0);
p->static_prio = NICE_TO_PRIO(nice);
set_load_weight(p);
old_prio = p->prio;
p->prio = effective_prio(p);
delta = p->prio - old_prio;
if (on_rq) {
enqueue_task(rq, p, 0);
/*
* If the task increased its priority or is running and
* lowered its priority, then reschedule its CPU:
*/
if (delta < 0 || (delta > 0 && task_running(rq, p)))
resched_task(rq->curr);
}
out_unlock:
task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);
/*
* can_nice - check if a task can reduce its nice value
* @p: task
* @nice: nice value
*/
int can_nice(const struct task_struct *p, const int nice)
{
/* convert nice value [19,-20] to rlimit style value [1,40] */
int nice_rlim = 20 - nice;
return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
capable(CAP_SYS_NICE));
}
#ifdef __ARCH_WANT_SYS_NICE
/*
* sys_nice - change the priority of the current process.
* @increment: priority increment
*
* sys_setpriority is a more generic, but much slower function that
* does similar things.
*/
asmlinkage long sys_nice(int increment)
{
long nice, retval;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
if (increment < -40)
increment = -40;
if (increment > 40)
increment = 40;
nice = PRIO_TO_NICE(current->static_prio) + increment;
if (nice < -20)
nice = -20;
if (nice > 19)
nice = 19;
if (increment < 0 && !can_nice(current, nice))
return -EPERM;
retval = security_task_setnice(current, nice);
if (retval)
return retval;
set_user_nice(current, nice);
return 0;
}
#endif
/**
* task_prio - return the priority value of a given task.
* @p: the task in question.
*
* This is the priority value as seen by users in /proc.
* RT tasks are offset by -200. Normal tasks are centered
* around 0, value goes from -16 to +15.
*/
int task_prio(const struct task_struct *p)
{
return p->prio - MAX_RT_PRIO;
}
/**
* task_nice - return the nice value of a given task.
* @p: the task in question.
*/
int task_nice(const struct task_struct *p)
{
return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);
/**
* idle_cpu - is a given cpu idle currently?
* @cpu: the processor in question.
*/
int idle_cpu(int cpu)
{
return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}
/**
* idle_task - return the idle task for a given cpu.
* @cpu: the processor in question.
*/
struct task_struct *idle_task(int cpu)
{
return cpu_rq(cpu)->idle;
}
/**
* find_process_by_pid - find a process with a matching PID value.
* @pid: the pid in question.
*/
static struct task_struct *find_process_by_pid(pid_t pid)
{
return pid ? find_task_by_vpid(pid) : current;
}
/* Actually do priority change: must hold rq lock. */
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
{
BUG_ON(p->se.on_rq);
p->policy = policy;
switch (p->policy) {
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
p->sched_class = &fair_sched_class;
break;
case SCHED_FIFO:
case SCHED_RR:
p->sched_class = &rt_sched_class;
break;
}
p->rt_priority = prio;
p->normal_prio = normal_prio(p);
/* we are holding p->pi_lock already */
p->prio = rt_mutex_getprio(p);
set_load_weight(p);
}
/**
* sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
* @p: the task in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*
* NOTE that the task may be already dead.
*/
int sched_setscheduler(struct task_struct *p, int policy,
struct sched_param *param)
{
int retval, oldprio, oldpolicy = -1, on_rq, running;
unsigned long flags;
struct rq *rq;
/* may grab non-irq protected spin_locks */
BUG_ON(in_interrupt());
recheck:
/* double check policy once rq lock held */
if (policy < 0)
policy = oldpolicy = p->policy;
else if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_NORMAL && policy != SCHED_BATCH &&
policy != SCHED_IDLE)
return -EINVAL;
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are
* 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
* SCHED_BATCH and SCHED_IDLE is 0.
*/
if (param->sched_priority < 0 ||
(p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
(!p->mm && param->sched_priority > MAX_RT_PRIO-1))
return -EINVAL;
if (rt_policy(policy) != (param->sched_priority != 0))
return -EINVAL;
/*
* Allow unprivileged RT tasks to decrease priority:
*/
if (!capable(CAP_SYS_NICE)) {
if (rt_policy(policy)) {
unsigned long rlim_rtprio;
if (!lock_task_sighand(p, &flags))
return -ESRCH;
rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
unlock_task_sighand(p, &flags);
/* can't set/change the rt policy */
if (policy != p->policy && !rlim_rtprio)
return -EPERM;
/* can't increase priority */
if (param->sched_priority > p->rt_priority &&
param->sched_priority > rlim_rtprio)
return -EPERM;
}
/*
* Like positive nice levels, dont allow tasks to
* move out of SCHED_IDLE either:
*/
if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
return -EPERM;
/* can't change other user's priorities */
if ((current->euid != p->euid) &&
(current->euid != p->uid))
return -EPERM;
}
retval = security_task_setscheduler(p, policy, param);
if (retval)
return retval;
/*
* make sure no PI-waiters arrive (or leave) while we are
* changing the priority of the task:
*/
spin_lock_irqsave(&p->pi_lock, flags);
/*
* To be able to change p->policy safely, the apropriate
* runqueue lock must be held.
*/
rq = __task_rq_lock(p);
/* recheck policy now with rq lock held */
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
policy = oldpolicy = -1;
__task_rq_unlock(rq);
spin_unlock_irqrestore(&p->pi_lock, flags);
goto recheck;
}
update_rq_clock(rq);
on_rq = p->se.on_rq;
running = task_current(rq, p);
if (on_rq) {
deactivate_task(rq, p, 0);
if (running)
p->sched_class->put_prev_task(rq, p);
}
oldprio = p->prio;
__setscheduler(rq, p, policy, param->sched_priority);
if (on_rq) {
if (running)
p->sched_class->set_curr_task(rq);
activate_task(rq, p, 0);
/*
* Reschedule if we are currently running on this runqueue and
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
if (running) {
if (p->prio > oldprio)
resched_task(rq->curr);
} else {
check_preempt_curr(rq, p);
}
}
__task_rq_unlock(rq);
spin_unlock_irqrestore(&p->pi_lock, flags);
rt_mutex_adjust_pi(p);
return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
struct sched_param lparam;
struct task_struct *p;
int retval;
if (!param || pid < 0)
return -EINVAL;
if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
return -EFAULT;
rcu_read_lock();
retval = -ESRCH;
p = find_process_by_pid(pid);
if (p != NULL)
retval = sched_setscheduler(p, policy, &lparam);
rcu_read_unlock();
return retval;
}
/**
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
* @pid: the pid in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*/
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
/* negative values for policy are not valid */
if (policy < 0)
return -EINVAL;
return do_sched_setscheduler(pid, policy, param);
}
/**
* sys_sched_setparam - set/change the RT priority of a thread
* @pid: the pid in question.
* @param: structure containing the new RT priority.
*/
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
return do_sched_setscheduler(pid, -1, param);
}
/**
* sys_sched_getscheduler - get the policy (scheduling class) of a thread
* @pid: the pid in question.
*/
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
struct task_struct *p;
int retval;
if (pid < 0)
return -EINVAL;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (p) {
retval = security_task_getscheduler(p);
if (!retval)
retval = p->policy;
}
read_unlock(&tasklist_lock);
return retval;
}
/**
* sys_sched_getscheduler - get the RT priority of a thread
* @pid: the pid in question.
* @param: structure containing the RT priority.
*/
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
struct sched_param lp;
struct task_struct *p;
int retval;
if (!param || pid < 0)
return -EINVAL;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
lp.sched_priority = p->rt_priority;
read_unlock(&tasklist_lock);
/*
* This one might sleep, we cannot do it with a spinlock held ...
*/
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
cpumask_t cpus_allowed;
struct task_struct *p;
int retval;
get_online_cpus();
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (!p) {
read_unlock(&tasklist_lock);
put_online_cpus();
return -ESRCH;
}
/*
* It is not safe to call set_cpus_allowed with the
* tasklist_lock held. We will bump the task_struct's
* usage count and then drop tasklist_lock.
*/
get_task_struct(p);
read_unlock(&tasklist_lock);
retval = -EPERM;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
retval = security_task_setscheduler(p, 0, NULL);
if (retval)
goto out_unlock;
cpus_allowed = cpuset_cpus_allowed(p);
cpus_and(new_mask, new_mask, cpus_allowed);
again:
retval = set_cpus_allowed(p, new_mask);
if (!retval) {
cpus_allowed = cpuset_cpus_allowed(p);
if (!cpus_subset(new_mask, cpus_allowed)) {
/*
* We must have raced with a concurrent cpuset
* update. Just reset the cpus_allowed to the
* cpuset's cpus_allowed
*/
new_mask = cpus_allowed;
goto again;
}
}
out_unlock:
put_task_struct(p);
put_online_cpus();
return retval;
}
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
cpumask_t *new_mask)
{
if (len < sizeof(cpumask_t)) {
memset(new_mask, 0, sizeof(cpumask_t));
} else if (len > sizeof(cpumask_t)) {
len = sizeof(cpumask_t);
}
return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}
/**
* sys_sched_setaffinity - set the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to the new cpu mask
*/
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
unsigned long __user *user_mask_ptr)
{
cpumask_t new_mask;
int retval;
retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
if (retval)
return retval;
return sched_setaffinity(pid, new_mask);
}
/*
* Represents all cpu's present in the system
* In systems capable of hotplug, this map could dynamically grow
* as new cpu's are detected in the system via any platform specific
* method, such as ACPI for e.g.
*/
cpumask_t cpu_present_map __read_mostly;
EXPORT_SYMBOL(cpu_present_map);
#ifndef CONFIG_SMP
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
EXPORT_SYMBOL(cpu_online_map);
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
EXPORT_SYMBOL(cpu_possible_map);
#endif
long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
struct task_struct *p;
int retval;
get_online_cpus();
read_lock(&tasklist_lock);
retval = -ESRCH;
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
cpus_and(*mask, p->cpus_allowed, cpu_online_map);
out_unlock:
read_unlock(&tasklist_lock);
put_online_cpus();
return retval;
}
/**
* sys_sched_getaffinity - get the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to hold the current cpu mask
*/
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
unsigned long __user *user_mask_ptr)
{
int ret;
cpumask_t mask;
if (len < sizeof(cpumask_t))
return -EINVAL;
ret = sched_getaffinity(pid, &mask);
if (ret < 0)
return ret;
if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
return -EFAULT;
return sizeof(cpumask_t);
}
/**
* sys_sched_yield - yield the current processor to other threads.
*
* This function yields the current CPU to other tasks. If there are no
* other threads running on this CPU then this function will return.
*/
asmlinkage long sys_sched_yield(void)
{
struct rq *rq = this_rq_lock();
schedstat_inc(rq, yld_count);
current->sched_class->yield_task(rq);
/*
* Since we are going to call schedule() anyway, there's
* no need to preempt or enable interrupts:
*/
__release(rq->lock);
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
_raw_spin_unlock(&rq->lock);
preempt_enable_no_resched();
schedule();
return 0;
}
static void __cond_resched(void)
{
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
__might_sleep(__FILE__, __LINE__);
#endif
/*
* The BKS might be reacquired before we have dropped
* PREEMPT_ACTIVE, which could trigger a second
* cond_resched() call.
*/
do {
add_preempt_count(PREEMPT_ACTIVE);
schedule();
sub_preempt_count(PREEMPT_ACTIVE);
} while (need_resched());
}
int __sched cond_resched(void)
{
if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
system_state == SYSTEM_RUNNING) {
__cond_resched();
return 1;
}
return 0;
}
EXPORT_SYMBOL(cond_resched);
/*
* cond_resched_lock() - if a reschedule is pending, drop the given lock,
* call schedule, and on return reacquire the lock.
*
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
* operations here to prevent schedule() from being called twice (once via
* spin_unlock(), once by hand).
*/
int cond_resched_lock(spinlock_t *lock)
{
int ret = 0;
if (need_lockbreak(lock)) {
spin_unlock(lock);
cpu_relax();
ret = 1;
spin_lock(lock);
}
if (need_resched() && system_state == SYSTEM_RUNNING) {
spin_release(&lock->dep_map, 1, _THIS_IP_);
_raw_spin_unlock(lock);
preempt_enable_no_resched();
__cond_resched();
ret = 1;
spin_lock(lock);
}
return ret;
}
EXPORT_SYMBOL(cond_resched_lock);
int __sched cond_resched_softirq(void)
{
BUG_ON(!in_softirq());
if (need_resched() && system_state == SYSTEM_RUNNING) {
local_bh_enable();
__cond_resched();
local_bh_disable();
return 1;
}
return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);
/**
* yield - yield the current processor to other threads.
*
* This is a shortcut for kernel-space yielding - it marks the
* thread runnable and calls sys_sched_yield().
*/
void __sched yield(void)
{
set_current_state(TASK_RUNNING);
sys_sched_yield();
}
EXPORT_SYMBOL(yield);
/*
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
* that process accounting knows that this is a task in IO wait state.
*
* But don't do that if it is a deliberate, throttling IO wait (this task
* has set its backing_dev_info: the queue against which it should throttle)
*/
void __sched io_schedule(void)
{
struct rq *rq = &__raw_get_cpu_var(runqueues);
delayacct_blkio_start();
atomic_inc(&rq->nr_iowait);
schedule();
atomic_dec(&rq->nr_iowait);
delayacct_blkio_end();
}
EXPORT_SYMBOL(io_schedule);
long __sched io_schedule_timeout(long timeout)
{
struct rq *rq = &__raw_get_cpu_var(runqueues);
long ret;
delayacct_blkio_start();
atomic_inc(&rq->nr_iowait);
ret = schedule_timeout(timeout);
atomic_dec(&rq->nr_iowait);
delayacct_blkio_end();
return ret;
}
/**
* sys_sched_get_priority_max - return maximum RT priority.
* @policy: scheduling class.
*
* this syscall returns the maximum rt_priority that can be used
* by a given scheduling class.
*/
asmlinkage long sys_sched_get_priority_max(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = MAX_USER_RT_PRIO-1;
break;
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
ret = 0;
break;
}
return ret;
}
/**
* sys_sched_get_priority_min - return minimum RT priority.
* @policy: scheduling class.
*
* this syscall returns the minimum rt_priority that can be used
* by a given scheduling class.
*/
asmlinkage long sys_sched_get_priority_min(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
ret = 0;
}
return ret;
}
/**
* sys_sched_rr_get_interval - return the default timeslice of a process.
* @pid: pid of the process.
* @interval: userspace pointer to the timeslice value.
*
* this syscall writes the default timeslice value of a given process
* into the user-space timespec buffer. A value of '0' means infinity.
*/
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
struct task_struct *p;
unsigned int time_slice;
int retval;
struct timespec t;
if (pid < 0)
return -EINVAL;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
/*
* Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
* tasks that are on an otherwise idle runqueue:
*/
time_slice = 0;
if (p->policy == SCHED_RR) {
time_slice = DEF_TIMESLICE;
} else {
struct sched_entity *se = &p->se;
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(p, &flags);
if (rq->cfs.load.weight)
time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
task_rq_unlock(rq, &flags);
}
read_unlock(&tasklist_lock);
jiffies_to_timespec(time_slice, &t);
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
static const char stat_nam[] = "RSDTtZX";
void sched_show_task(struct task_struct *p)
{
unsigned long free = 0;
unsigned state;
state = p->state ? __ffs(p->state) + 1 : 0;
printk(KERN_INFO "%-13.13s %c", p->comm,
state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
#if BITS_PER_LONG == 32
if (state == TASK_RUNNING)
printk(KERN_CONT " running ");
else
printk(KERN_CONT " %08lx ", thread_saved_pc(p));
#else
if (state == TASK_RUNNING)
printk(KERN_CONT " running task ");
else
printk(KERN_CONT " %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
{
unsigned long *n = end_of_stack(p);
while (!*n)
n++;
free = (unsigned long)n - (unsigned long)end_of_stack(p);
}
#endif
printk(KERN_CONT "%5lu %5d %6d\n", free,
task_pid_nr(p), task_pid_nr(p->real_parent));
if (state != TASK_RUNNING)
show_stack(p, NULL);
}
void show_state_filter(unsigned long state_filter)
{
struct task_struct *g, *p;
#if BITS_PER_LONG == 32
printk(KERN_INFO
" task PC stack pid father\n");
#else
printk(KERN_INFO
" task PC stack pid father\n");
#endif
read_lock(&tasklist_lock);
do_each_thread(g, p) {
/*
* reset the NMI-timeout, listing all files on a slow
* console might take alot of time:
*/
touch_nmi_watchdog();
if (!state_filter || (p->state & state_filter))
sched_show_task(p);
} while_each_thread(g, p);
touch_all_softlockup_watchdogs();
#ifdef CONFIG_SCHED_DEBUG
sysrq_sched_debug_show();
#endif
read_unlock(&tasklist_lock);
/*
* Only show locks if all tasks are dumped:
*/
if (state_filter == -1)
debug_show_all_locks();
}
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
idle->sched_class = &idle_sched_class;
}
/**
* init_idle - set up an idle thread for a given CPU
* @idle: task in question
* @cpu: cpu the idle task belongs to
*
* NOTE: this function does not set the idle thread's NEED_RESCHED
* flag, to make booting more robust.
*/
void __cpuinit init_idle(struct task_struct *idle, int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
__sched_fork(idle);
idle->se.exec_start = sched_clock();
idle->prio = idle->normal_prio = MAX_PRIO;
idle->cpus_allowed = cpumask_of_cpu(cpu);
__set_task_cpu(idle, cpu);
spin_lock_irqsave(&rq->lock, flags);
rq->curr = rq->idle = idle;
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
idle->oncpu = 1;
#endif
spin_unlock_irqrestore(&rq->lock, flags);
/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
task_thread_info(idle)->preempt_count = 0;
#endif
/*
* The idle tasks have their own, simple scheduling class:
*/
idle->sched_class = &idle_sched_class;
}
/*
* In a system that switches off the HZ timer nohz_cpu_mask
* indicates which cpus entered this state. This is used
* in the rcu update to wait only for active cpus. For system
* which do not switch off the HZ timer nohz_cpu_mask should
* always be CPU_MASK_NONE.
*/
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
/*
* Increase the granularity value when there are more CPUs,
* because with more CPUs the 'effective latency' as visible
* to users decreases. But the relationship is not linear,
* so pick a second-best guess by going with the log2 of the
* number of CPUs.
*
* This idea comes from the SD scheduler of Con Kolivas:
*/
static inline void sched_init_granularity(void)
{
unsigned int factor = 1 + ilog2(num_online_cpus());
const unsigned long limit = 200000000;
sysctl_sched_min_granularity *= factor;
if (sysctl_sched_min_granularity > limit)
sysctl_sched_min_granularity = limit;
sysctl_sched_latency *= factor;
if (sysctl_sched_latency > limit)
sysctl_sched_latency = limit;
sysctl_sched_wakeup_granularity *= factor;
sysctl_sched_batch_wakeup_granularity *= factor;
}
#ifdef CONFIG_SMP
/*
* This is how migration works:
*
* 1) we queue a struct migration_req structure in the source CPU's
* runqueue and wake up that CPU's migration thread.
* 2) we down() the locked semaphore => thread blocks.
* 3) migration thread wakes up (implicitly it forces the migrated
* thread off the CPU)
* 4) it gets the migration request and checks whether the migrated
* task is still in the wrong runqueue.
* 5) if it's in the wrong runqueue then the migration thread removes
* it and puts it into the right queue.
* 6) migration thread up()s the semaphore.
* 7) we wake up and the migration is done.
*/
/*
* Change a given task's CPU affinity. Migrate the thread to a
* proper CPU and schedule it away if the CPU it's executing on
* is removed from the allowed bitmask.
*
* NOTE: the caller must have a valid reference to the task, the
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
{
struct migration_req req;
unsigned long flags;
struct rq *rq;
int ret = 0;
rq = task_rq_lock(p, &flags);
if (!cpus_intersects(new_mask, cpu_online_map)) {
ret = -EINVAL;
goto out;
}
if (p->sched_class->set_cpus_allowed)
p->sched_class->set_cpus_allowed(p, &new_mask);
else {
p->cpus_allowed = new_mask;
p->nr_cpus_allowed = cpus_weight(new_mask);
}
/* Can the task run on the task's current CPU? If so, we're done */
if (cpu_isset(task_cpu(p), new_mask))
goto out;
if (migrate_task(p, any_online_cpu(new_mask), &req)) {
/* Need help from migration thread: drop lock and wait. */
task_rq_unlock(rq, &flags);
wake_up_process(rq->migration_thread);
wait_for_completion(&req.done);
tlb_migrate_finish(p->mm);
return 0;
}
out:
task_rq_unlock(rq, &flags);
return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);
/*
* Move (not current) task off this cpu, onto dest cpu. We're doing
* this because either it can't run here any more (set_cpus_allowed()
* away from this CPU, or CPU going down), or because we're
* attempting to rebalance this task on exec (sched_exec).
*
* So we race with normal scheduler movements, but that's OK, as long
* as the task is no longer on this CPU.
*
* Returns non-zero if task was successfully migrated.
*/
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
{
struct rq *rq_dest, *rq_src;
int ret = 0, on_rq;
if (unlikely(cpu_is_offline(dest_cpu)))
return ret;
rq_src = cpu_rq(src_cpu);
rq_dest = cpu_rq(dest_cpu);
double_rq_lock(rq_src, rq_dest);
/* Already moved. */
if (task_cpu(p) != src_cpu)
goto out;
/* Affinity changed (again). */
if (!cpu_isset(dest_cpu, p->cpus_allowed))
goto out;
on_rq = p->se.on_rq;
if (on_rq)
deactivate_task(rq_src, p, 0);
set_task_cpu(p, dest_cpu);
if (on_rq) {
activate_task(rq_dest, p, 0);
check_preempt_curr(rq_dest, p);
}
ret = 1;
out:
double_rq_unlock(rq_src, rq_dest);
return ret;
}
/*
* migration_thread - this is a highprio system thread that performs
* thread migration by bumping thread off CPU then 'pushing' onto
* another runqueue.
*/
static int migration_thread(void *data)
{
int cpu = (long)data;
struct rq *rq;
rq = cpu_rq(cpu);
BUG_ON(rq->migration_thread != current);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
struct migration_req *req;
struct list_head *head;
spin_lock_irq(&rq->lock);
if (cpu_is_offline(cpu)) {
spin_unlock_irq(&rq->lock);
goto wait_to_die;
}
if (rq->active_balance) {
active_load_balance(rq, cpu);
rq->active_balance = 0;
}
head = &rq->migration_queue;
if (list_empty(head)) {
spin_unlock_irq(&rq->lock);
schedule();
set_current_state(TASK_INTERRUPTIBLE);
continue;
}
req = list_entry(head->next, struct migration_req, list);
list_del_init(head->next);
spin_unlock(&rq->lock);
__migrate_task(req->task, cpu, req->dest_cpu);
local_irq_enable();
complete(&req->done);
}
__set_current_state(TASK_RUNNING);
return 0;
wait_to_die:
/* Wait for kthread_stop */
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
schedule();
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
int ret;
local_irq_disable();
ret = __migrate_task(p, src_cpu, dest_cpu);
local_irq_enable();
return ret;
}
/*
* Figure out where task on dead CPU should go, use force if necessary.
* NOTE: interrupts should be disabled by the caller
*/
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
{
unsigned long flags;
cpumask_t mask;
struct rq *rq;
int dest_cpu;
do {
/* On same node? */
mask = node_to_cpumask(cpu_to_node(dead_cpu));
cpus_and(mask, mask, p->cpus_allowed);
dest_cpu = any_online_cpu(mask);
/* On any allowed CPU? */
if (dest_cpu == NR_CPUS)
dest_cpu = any_online_cpu(p->cpus_allowed);
/* No more Mr. Nice Guy. */
if (dest_cpu == NR_CPUS) {
cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
/*
* Try to stay on the same cpuset, where the
* current cpuset may be a subset of all cpus.
* The cpuset_cpus_allowed_locked() variant of
* cpuset_cpus_allowed() will not block. It must be
* called within calls to cpuset_lock/cpuset_unlock.
*/
rq = task_rq_lock(p, &flags);
p->cpus_allowed = cpus_allowed;
dest_cpu = any_online_cpu(p->cpus_allowed);
task_rq_unlock(rq, &flags);
/*
* Don't tell them about moving exiting tasks or
* kernel threads (both mm NULL), since they never
* leave kernel.
*/
if (p->mm && printk_ratelimit()) {
printk(KERN_INFO "process %d (%s) no "
"longer affine to cpu%d\n",
task_pid_nr(p), p->comm, dead_cpu);
}
}
} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
}
/*
* While a dead CPU has no uninterruptible tasks queued at this point,
* it might still have a nonzero ->nr_uninterruptible counter, because
* for performance reasons the counter is not stricly tracking tasks to
* their home CPUs. So we just add the counter to another CPU's counter,
* to keep the global sum constant after CPU-down:
*/
static void migrate_nr_uninterruptible(struct rq *rq_src)
{
struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
unsigned long flags;
local_irq_save(flags);
double_rq_lock(rq_src, rq_dest);
rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
rq_src->nr_uninterruptible = 0;
double_rq_unlock(rq_src, rq_dest);
local_irq_restore(flags);
}
/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
struct task_struct *p, *t;
read_lock(&tasklist_lock);
do_each_thread(t, p) {
if (p == current)
continue;
if (task_cpu(p) == src_cpu)
move_task_off_dead_cpu(src_cpu, p);
} while_each_thread(t, p);
read_unlock(&tasklist_lock);
}
/*
* Schedules idle task to be the next runnable task on current CPU.
* It does so by boosting its priority to highest possible.
* Used by CPU offline code.
*/
void sched_idle_next(void)
{
int this_cpu = smp_processor_id();
struct rq *rq = cpu_rq(this_cpu);
struct task_struct *p = rq->idle;
unsigned long flags;
/* cpu has to be offline */
BUG_ON(cpu_online(this_cpu));
/*
* Strictly not necessary since rest of the CPUs are stopped by now
* and interrupts disabled on the current cpu.
*/
spin_lock_irqsave(&rq->lock, flags);
__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
update_rq_clock(rq);
activate_task(rq, p, 0);
spin_unlock_irqrestore(&rq->lock, flags);
}
/*
* Ensures that the idle task is using init_mm right before its cpu goes
* offline.
*/
void idle_task_exit(void)
{
struct mm_struct *mm = current->active_mm;
BUG_ON(cpu_online(smp_processor_id()));
if (mm != &init_mm)
switch_mm(mm, &init_mm, current);
mmdrop(mm);
}
/* called under rq->lock with disabled interrupts */
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
{
struct rq *rq = cpu_rq(dead_cpu);
/* Must be exiting, otherwise would be on tasklist. */
BUG_ON(!p->exit_state);
/* Cannot have done final schedule yet: would have vanished. */
BUG_ON(p->state == TASK_DEAD);
get_task_struct(p);
/*
* Drop lock around migration; if someone else moves it,
* that's OK. No task can be added to this CPU, so iteration is
* fine.
*/
spin_unlock_irq(&rq->lock);
move_task_off_dead_cpu(dead_cpu, p);
spin_lock_irq(&rq->lock);
put_task_struct(p);
}
/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
struct rq *rq = cpu_rq(dead_cpu);
struct task_struct *next;
for ( ; ; ) {
if (!rq->nr_running)
break;
update_rq_clock(rq);
next = pick_next_task(rq, rq->curr);
if (!next)
break;
migrate_dead(dead_cpu, next);
}
}
#endif /* CONFIG_HOTPLUG_CPU */
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
static struct ctl_table sd_ctl_dir[] = {
{
.procname = "sched_domain",
.mode = 0555,
},
{0, },
};
static struct ctl_table sd_ctl_root[] = {
{
.ctl_name = CTL_KERN,
.procname = "kernel",
.mode = 0555,
.child = sd_ctl_dir,
},
{0, },
};
static struct ctl_table *sd_alloc_ctl_entry(int n)
{
struct ctl_table *entry =
kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
return entry;
}
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
struct ctl_table *entry;
/*
* In the intermediate directories, both the child directory and
* procname are dynamically allocated and could fail but the mode
* will always be set. In the lowest directory the names are
* static strings and all have proc handlers.
*/
for (entry = *tablep; entry->mode; entry++) {
if (entry->child)
sd_free_ctl_entry(&entry->child);
if (entry->proc_handler == NULL)
kfree(entry->procname);
}
kfree(*tablep);
*tablep = NULL;
}
static void
set_table_entry(struct ctl_table *entry,
const char *procname, void *data, int maxlen,
mode_t mode, proc_handler *proc_handler)
{
entry->procname = procname;
entry->data = data;
entry->maxlen = maxlen;
entry->mode = mode;
entry->proc_handler = proc_handler;
}
static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
struct ctl_table *table = sd_alloc_ctl_entry(12);
if (table == NULL)
return NULL;
set_table_entry(&table[0], "min_interval", &sd->min_interval,
sizeof(long), 0644, proc_doulongvec_minmax);
set_table_entry(&table[1], "max_interval", &sd->max_interval,
sizeof(long), 0644, proc_doulongvec_minmax);
set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[9], "cache_nice_tries",
&sd->cache_nice_tries,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[10], "flags", &sd->flags,
sizeof(int), 0644, proc_dointvec_minmax);
/* &table[11] is terminator */
return table;
}
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
struct ctl_table *entry, *table;
struct sched_domain *sd;
int domain_num = 0, i;
char buf[32];
for_each_domain(cpu, sd)
domain_num++;
entry = table = sd_alloc_ctl_entry(domain_num + 1);
if (table == NULL)
return NULL;
i = 0;
for_each_domain(cpu, sd) {
snprintf(buf, 32, "domain%d", i);
entry->procname = kstrdup(buf, GFP_KERNEL);
entry->mode = 0555;
entry->child = sd_alloc_ctl_domain_table(sd);
entry++;
i++;
}
return table;
}
static struct ctl_table_header *sd_sysctl_header;
static void register_sched_domain_sysctl(void)
{
int i, cpu_num = num_online_cpus();
struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
char buf[32];
WARN_ON(sd_ctl_dir[0].child);
sd_ctl_dir[0].child = entry;
if (entry == NULL)
return;
for_each_online_cpu(i) {
snprintf(buf, 32, "cpu%d", i);
entry->procname = kstrdup(buf, GFP_KERNEL);
entry->mode = 0555;
entry->child = sd_alloc_ctl_cpu_table(i);
entry++;
}
WARN_ON(sd_sysctl_header);
sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
/* may be called multiple times per register */
static void unregister_sched_domain_sysctl(void)
{
if (sd_sysctl_header)
unregister_sysctl_table(sd_sysctl_header);
sd_sysctl_header = NULL;
if (sd_ctl_dir[0].child)
sd_free_ctl_entry(&sd_ctl_dir[0].child);
}
#else
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
{
}
#endif
/*
* migration_call - callback that gets triggered when a CPU is added.
* Here we can start up the necessary migration thread for the new CPU.
*/
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
struct task_struct *p;
int cpu = (long)hcpu;
unsigned long flags;
struct rq *rq;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
if (IS_ERR(p))
return NOTIFY_BAD;
kthread_bind(p, cpu);
/* Must be high prio: stop_machine expects to yield to it. */
rq = task_rq_lock(p, &flags);
__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
task_rq_unlock(rq, &flags);
cpu_rq(cpu)->migration_thread = p;
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
/* Strictly unnecessary, as first user will wake it. */
wake_up_process(cpu_rq(cpu)->migration_thread);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
if (!cpu_rq(cpu)->migration_thread)
break;
/* Unbind it from offline cpu so it can run. Fall thru. */
kthread_bind(cpu_rq(cpu)->migration_thread,
any_online_cpu(cpu_online_map));
kthread_stop(cpu_rq(cpu)->migration_thread);
cpu_rq(cpu)->migration_thread = NULL;
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
migrate_live_tasks(cpu);
rq = cpu_rq(cpu);
kthread_stop(rq->migration_thread);
rq->migration_thread = NULL;
/* Idle task back to normal (off runqueue, low prio) */
spin_lock_irq(&rq->lock);
update_rq_clock(rq);
deactivate_task(rq, rq->idle, 0);
rq->idle->static_prio = MAX_PRIO;
__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
rq->idle->sched_class = &idle_sched_class;
migrate_dead_tasks(cpu);
spin_unlock_irq(&rq->lock);
cpuset_unlock();
migrate_nr_uninterruptible(rq);
BUG_ON(rq->nr_running != 0);
/*
* No need to migrate the tasks: it was best-effort if
* they didn't take sched_hotcpu_mutex. Just wake up
* the requestors.
*/
spin_lock_irq(&rq->lock);
while (!list_empty(&rq->migration_queue)) {
struct migration_req *req;
req = list_entry(rq->migration_queue.next,
struct migration_req, list);
list_del_init(&req->list);
complete(&req->done);
}
spin_unlock_irq(&rq->lock);
break;
#endif
}
return NOTIFY_OK;
}
/* Register at highest priority so that task migration (migrate_all_tasks)
* happens before everything else.
*/
static struct notifier_block __cpuinitdata migration_notifier = {
.notifier_call = migration_call,
.priority = 10
};
void __init migration_init(void)
{
void *cpu = (void *)(long)smp_processor_id();
int err;
/* Start one for the boot CPU: */
err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
BUG_ON(err == NOTIFY_BAD);
migration_call(&migration_notifier, CPU_ONLINE, cpu);
register_cpu_notifier(&migration_notifier);
}
#endif
#ifdef CONFIG_SMP
/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);
#ifdef CONFIG_SCHED_DEBUG
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
{
struct sched_group *group = sd->groups;
cpumask_t groupmask;
char str[NR_CPUS];
cpumask_scnprintf(str, NR_CPUS, sd->span);
cpus_clear(groupmask);
printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
if (!(sd->flags & SD_LOAD_BALANCE)) {
printk("does not load-balance\n");
if (sd->parent)
printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
" has parent");
return -1;
}
printk(KERN_CONT "span %s\n", str);
if (!cpu_isset(cpu, sd->span)) {
printk(KERN_ERR "ERROR: domain->span does not contain "
"CPU%d\n", cpu);
}
if (!cpu_isset(cpu, group->cpumask)) {
printk(KERN_ERR "ERROR: domain->groups does not contain"
" CPU%d\n", cpu);
}
printk(KERN_DEBUG "%*s groups:", level + 1, "");
do {
if (!group) {
printk("\n");
printk(KERN_ERR "ERROR: group is NULL\n");
break;
}
if (!group->__cpu_power) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: domain->cpu_power not "
"set\n");
break;
}
if (!cpus_weight(group->cpumask)) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: empty group\n");
break;
}
if (cpus_intersects(groupmask, group->cpumask)) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: repeated CPUs\n");
break;
}
cpus_or(groupmask, groupmask, group->cpumask);
cpumask_scnprintf(str, NR_CPUS, group->cpumask);
printk(KERN_CONT " %s", str);
group = group->next;
} while (group != sd->groups);
printk(KERN_CONT "\n");
if (!cpus_equal(sd->span, groupmask))
printk(KERN_ERR "ERROR: groups don't span domain->span\n");
if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
printk(KERN_ERR "ERROR: parent span is not a superset "
"of domain->span\n");
return 0;
}
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
int level = 0;
if (!sd) {
printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
return;
}
printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
for (;;) {
if (sched_domain_debug_one(sd, cpu, level))
break;
level++;
sd = sd->parent;
if (!sd)
break;
}
}
#else
# define sched_domain_debug(sd, cpu) do { } while (0)
#endif
static int sd_degenerate(struct sched_domain *sd)
{
if (cpus_weight(sd->span) == 1)
return 1;
/* Following flags need at least 2 groups */
if (sd->flags & (SD_LOAD_BALANCE |
SD_BALANCE_NEWIDLE |
SD_BALANCE_FORK |
SD_BALANCE_EXEC |
SD_SHARE_CPUPOWER |
SD_SHARE_PKG_RESOURCES)) {
if (sd->groups != sd->groups->next)
return 0;
}
/* Following flags don't use groups */
if (sd->flags & (SD_WAKE_IDLE |
SD_WAKE_AFFINE |
SD_WAKE_BALANCE))
return 0;
return 1;
}
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
{
unsigned long cflags = sd->flags, pflags = parent->flags;
if (sd_degenerate(parent))
return 1;
if (!cpus_equal(sd->span, parent->span))
return 0;
/* Does parent contain flags not in child? */
/* WAKE_BALANCE is a subset of WAKE_AFFINE */
if (cflags & SD_WAKE_AFFINE)
pflags &= ~SD_WAKE_BALANCE;
/* Flags needing groups don't count if only 1 group in parent */
if (parent->groups == parent->groups->next) {
pflags &= ~(SD_LOAD_BALANCE |
SD_BALANCE_NEWIDLE |
SD_BALANCE_FORK |
SD_BALANCE_EXEC |
SD_SHARE_CPUPOWER |
SD_SHARE_PKG_RESOURCES);
}
if (~cflags & pflags)
return 0;
return 1;
}
/*
* Attach the domain 'sd' to 'cpu' as its base domain. Callers must
* hold the hotplug lock.
*/
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct sched_domain *tmp;
/* Remove the sched domains which do not contribute to scheduling. */
for (tmp = sd; tmp; tmp = tmp->parent) {
struct sched_domain *parent = tmp->parent;
if (!parent)
break;
if (sd_parent_degenerate(tmp, parent)) {
tmp->parent = parent->parent;
if (parent->parent)
parent->parent->child = tmp;
}
}
if (sd && sd_degenerate(sd)) {
sd = sd->parent;
if (sd)
sd->child = NULL;
}
sched_domain_debug(sd, cpu);
rcu_assign_pointer(rq->sd, sd);
}
/* cpus with isolated domains */
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
int ints[NR_CPUS], i;
str = get_options(str, ARRAY_SIZE(ints), ints);
cpus_clear(cpu_isolated_map);
for (i = 1; i <= ints[0]; i++)
if (ints[i] < NR_CPUS)
cpu_set(ints[i], cpu_isolated_map);
return 1;
}
__setup("isolcpus=", isolated_cpu_setup);
/*
* init_sched_build_groups takes the cpumask we wish to span, and a pointer
* to a function which identifies what group(along with sched group) a CPU
* belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
* (due to the fact that we keep track of groups covered with a cpumask_t).
*
* init_sched_build_groups will build a circular linked list of the groups
* covered by the given span, and will set each group's ->cpumask correctly,
* and ->cpu_power to 0.
*/
static void
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
int (*group_fn)(int cpu, const cpumask_t *cpu_map,
struct sched_group **sg))
{
struct sched_group *first = NULL, *last = NULL;
cpumask_t covered = CPU_MASK_NONE;
int i;
for_each_cpu_mask(i, span) {
struct sched_group *sg;
int group = group_fn(i, cpu_map, &sg);
int j;
if (cpu_isset(i, covered))
continue;
sg->cpumask = CPU_MASK_NONE;
sg->__cpu_power = 0;
for_each_cpu_mask(j, span) {
if (group_fn(j, cpu_map, NULL) != group)
continue;
cpu_set(j, covered);
cpu_set(j, sg->cpumask);
}
if (!first)
first = sg;
if (last)
last->next = sg;
last = sg;
}
last->next = first;
}
#define SD_NODES_PER_DOMAIN 16
#ifdef CONFIG_NUMA
/**
* find_next_best_node - find the next node to include in a sched_domain
* @node: node whose sched_domain we're building
* @used_nodes: nodes already in the sched_domain
*
* Find the next node to include in a given scheduling domain. Simply
* finds the closest node not already in the @used_nodes map.
*
* Should use nodemask_t.
*/
static int find_next_best_node(int node, unsigned long *used_nodes)
{
int i, n, val, min_val, best_node = 0;
min_val = INT_MAX;
for (i = 0; i < MAX_NUMNODES; i++) {
/* Start at @node */
n = (node + i) % MAX_NUMNODES;
if (!nr_cpus_node(n))
continue;
/* Skip already used nodes */
if (test_bit(n, used_nodes))
continue;
/* Simple min distance search */
val = node_distance(node, n);
if (val < min_val) {
min_val = val;
best_node = n;
}
}
set_bit(best_node, used_nodes);
return best_node;
}
/**
* sched_domain_node_span - get a cpumask for a node's sched_domain
* @node: node whose cpumask we're constructing
* @size: number of nodes to include in this span
*
* Given a node, construct a good cpumask for its sched_domain to span. It
* should be one that prevents unnecessary balancing, but also spreads tasks
* out optimally.
*/
static cpumask_t sched_domain_node_span(int node)
{
DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
cpumask_t span, nodemask;
int i;
cpus_clear(span);
bitmap_zero(used_nodes, MAX_NUMNODES);
nodemask = node_to_cpumask(node);
cpus_or(span, span, nodemask);
set_bit(node, used_nodes);
for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
int next_node = find_next_best_node(node, used_nodes);
nodemask = node_to_cpumask(next_node);
cpus_or(span, span, nodemask);
}
return span;
}
#endif
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
/*
* SMT sched-domains:
*/
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
if (sg)
*sg = &per_cpu(sched_group_cpus, cpu);
return cpu;
}
#endif
/*
* multi-core sched-domains:
*/
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
#endif
#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
int group;
cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
cpus_and(mask, mask, *cpu_map);
group = first_cpu(mask);
if (sg)
*sg = &per_cpu(sched_group_core, group);
return group;
}
#elif defined(CONFIG_SCHED_MC)
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
if (sg)
*sg = &per_cpu(sched_group_core, cpu);
return cpu;
}
#endif
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
{
int group;
#ifdef CONFIG_SCHED_MC
cpumask_t mask = cpu_coregroup_map(cpu);
cpus_and(mask, mask, *cpu_map);
group = first_cpu(mask);
#elif defined(CONFIG_SCHED_SMT)
cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
cpus_and(mask, mask, *cpu_map);
group = first_cpu(mask);
#else
group = cpu;
#endif
if (sg)
*sg = &per_cpu(sched_group_phys, group);
return group;
}
#ifdef CONFIG_NUMA
/*
* The init_sched_build_groups can't handle what we want to do with node
* groups, so roll our own. Now each node has its own list of groups which
* gets dynamically allocated.
*/
static DEFINE_PER_CPU(struct sched_domain, node_domains);
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
struct sched_group **sg)
{
cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
int group;
cpus_and(nodemask, nodemask, *cpu_map);
group = first_cpu(nodemask);
if (sg)
*sg = &per_cpu(sched_group_allnodes, group);
return group;
}
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
struct sched_group *sg = group_head;
int j;
if (!sg)
return;
do {
for_each_cpu_mask(j, sg->cpumask) {
struct sched_domain *sd;
sd = &per_cpu(phys_domains, j);
if (j != first_cpu(sd->groups->cpumask)) {
/*
* Only add "power" once for each
* physical package.
*/
continue;
}
sg_inc_cpu_power(sg, sd->groups->__cpu_power);
}
sg = sg->next;
} while (sg != group_head);
}
#endif
#ifdef CONFIG_NUMA
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
int cpu, i;
for_each_cpu_mask(cpu, *cpu_map) {
struct sched_group **sched_group_nodes
= sched_group_nodes_bycpu[cpu];
if (!sched_group_nodes)
continue;
for (i = 0; i < MAX_NUMNODES; i++) {
cpumask_t nodemask = node_to_cpumask(i);
struct sched_group *oldsg, *sg = sched_group_nodes[i];
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask))
continue;
if (sg == NULL)
continue;
sg = sg->next;
next_sg:
oldsg = sg;
sg = sg->next;
kfree(oldsg);
if (oldsg != sched_group_nodes[i])
goto next_sg;
}
kfree(sched_group_nodes);
sched_group_nodes_bycpu[cpu] = NULL;
}
}
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
/*
* Initialize sched groups cpu_power.
*
* cpu_power indicates the capacity of sched group, which is used while
* distributing the load between different sched groups in a sched domain.
* Typically cpu_power for all the groups in a sched domain will be same unless
* there are asymmetries in the topology. If there are asymmetries, group
* having more cpu_power will pickup more load compared to the group having
* less cpu_power.
*
* cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
* the maximum number of tasks a group can handle in the presence of other idle
* or lightly loaded groups in the same sched domain.
*/
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
struct sched_domain *child;
struct sched_group *group;
WARN_ON(!sd || !sd->groups);
if (cpu != first_cpu(sd->groups->cpumask))
return;
child = sd->child;
sd->groups->__cpu_power = 0;
/*
* For perf policy, if the groups in child domain share resources
* (for example cores sharing some portions of the cache hierarchy
* or SMT), then set this domain groups cpu_power such that each group
* can handle only one task, when there are other idle groups in the
* same sched domain.
*/
if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
(child->flags &
(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
return;
}
/*
* add cpu_power of each child group to this groups cpu_power
*/
group = child->groups;
do {
sg_inc_cpu_power(sd->groups, group->__cpu_power);
group = group->next;
} while (group != child->groups);
}
/*
* Build sched domains for a given set of cpus and attach the sched domains
* to the individual cpus
*/
static int build_sched_domains(const cpumask_t *cpu_map)
{
int i;
#ifdef CONFIG_NUMA
struct sched_group **sched_group_nodes = NULL;
int sd_allnodes = 0;
/*
* Allocate the per-node list of sched groups
*/
sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
GFP_KERNEL);
if (!sched_group_nodes) {
printk(KERN_WARNING "Can not alloc sched group node list\n");
return -ENOMEM;
}
sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
/*
* Set up domains for cpus specified by the cpu_map.
*/
for_each_cpu_mask(i, *cpu_map) {
struct sched_domain *sd = NULL, *p;
cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
cpus_and(nodemask, nodemask, *cpu_map);
#ifdef CONFIG_NUMA
if (cpus_weight(*cpu_map) >
SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
sd = &per_cpu(allnodes_domains, i);
*sd = SD_ALLNODES_INIT;
sd->span = *cpu_map;
cpu_to_allnodes_group(i, cpu_map, &sd->groups);
p = sd;
sd_allnodes = 1;
} else
p = NULL;
sd = &per_cpu(node_domains, i);
*sd = SD_NODE_INIT;
sd->span = sched_domain_node_span(cpu_to_node(i));
sd->parent = p;
if (p)
p->child = sd;
cpus_and(sd->span, sd->span, *cpu_map);
#endif
p = sd;
sd = &per_cpu(phys_domains, i);
*sd = SD_CPU_INIT;
sd->span = nodemask;
sd->parent = p;
if (p)
p->child = sd;
cpu_to_phys_group(i, cpu_map, &sd->groups);
#ifdef CONFIG_SCHED_MC
p = sd;
sd = &per_cpu(core_domains, i);
*sd = SD_MC_INIT;
sd->span = cpu_coregroup_map(i);
cpus_and(sd->span, sd->span, *cpu_map);
sd->parent = p;
p->child = sd;
cpu_to_core_group(i, cpu_map, &sd->groups);
#endif
#ifdef CONFIG_SCHED_SMT
p = sd;
sd = &per_cpu(cpu_domains, i);
*sd = SD_SIBLING_INIT;
sd->span = per_cpu(cpu_sibling_map, i);
cpus_and(sd->span, sd->span, *cpu_map);
sd->parent = p;
p->child = sd;
cpu_to_cpu_group(i, cpu_map, &sd->groups);
#endif
}
#ifdef CONFIG_SCHED_SMT
/* Set up CPU (sibling) groups */
for_each_cpu_mask(i, *cpu_map) {
cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
if (i != first_cpu(this_sibling_map))
continue;
init_sched_build_groups(this_sibling_map, cpu_map,
&cpu_to_cpu_group);
}
#endif
#ifdef CONFIG_SCHED_MC
/* Set up multi-core groups */
for_each_cpu_mask(i, *cpu_map) {
cpumask_t this_core_map = cpu_coregroup_map(i);
cpus_and(this_core_map, this_core_map, *cpu_map);
if (i != first_cpu(this_core_map))
continue;
init_sched_build_groups(this_core_map, cpu_map,
&cpu_to_core_group);
}
#endif
/* Set up physical groups */
for (i = 0; i < MAX_NUMNODES; i++) {
cpumask_t nodemask = node_to_cpumask(i);
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask))
continue;
init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
}
#ifdef CONFIG_NUMA
/* Set up node groups */
if (sd_allnodes)
init_sched_build_groups(*cpu_map, cpu_map,
&cpu_to_allnodes_group);
for (i = 0; i < MAX_NUMNODES; i++) {
/* Set up node groups */
struct sched_group *sg, *prev;
cpumask_t nodemask = node_to_cpumask(i);
cpumask_t domainspan;
cpumask_t covered = CPU_MASK_NONE;
int j;
cpus_and(nodemask, nodemask, *cpu_map);
if (cpus_empty(nodemask)) {
sched_group_nodes[i] = NULL;
continue;
}
domainspan = sched_domain_node_span(i);
cpus_and(domainspan, domainspan, *cpu_map);
sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
if (!sg) {
printk(KERN_WARNING "Can not alloc domain group for "
"node %d\n", i);
goto error;
}
sched_group_nodes[i] = sg;
for_each_cpu_mask(j, nodemask) {
struct sched_domain *sd;
sd = &per_cpu(node_domains, j);
sd->groups = sg;
}
sg->__cpu_power = 0;
sg->cpumask = nodemask;
sg->next = sg;
cpus_or(covered, covered, nodemask);
prev = sg;
for (j = 0; j < MAX_NUMNODES; j++) {
cpumask_t tmp, notcovered;
int n = (i + j) % MAX_NUMNODES;
cpus_complement(notcovered, covered);
cpus_and(tmp, notcovered, *cpu_map);
cpus_and(tmp, tmp, domainspan);
if (cpus_empty(tmp))
break;
nodemask = node_to_cpumask(n);
cpus_and(tmp, tmp, nodemask);
if (cpus_empty(tmp))
continue;
sg = kmalloc_node(sizeof(struct sched_group),
GFP_KERNEL, i);
if (!sg) {
printk(KERN_WARNING
"Can not alloc domain group for node %d\n", j);
goto error;
}
sg->__cpu_power = 0;
sg->cpumask = tmp;
sg->next = prev->next;
cpus_or(covered, covered, tmp);
prev->next = sg;
prev = sg;
}
}
#endif
/* Calculate CPU power for physical packages and nodes */
#ifdef CONFIG_SCHED_SMT
for_each_cpu_mask(i, *cpu_map) {
struct sched_domain *sd = &per_cpu(cpu_domains, i);
init_sched_groups_power(i, sd);
}
#endif
#ifdef CONFIG_SCHED_MC
for_each_cpu_mask(i, *cpu_map) {
struct sched_domain *sd = &per_cpu(core_domains, i);
init_sched_groups_power(i, sd);
}
#endif
for_each_cpu_mask(i, *cpu_map) {
struct sched_domain *sd = &per_cpu(phys_domains, i);
init_sched_groups_power(i, sd);
}
#ifdef CONFIG_NUMA
for (i = 0; i < MAX_NUMNODES; i++)
init_numa_sched_groups_power(sched_group_nodes[i]);
if (sd_allnodes) {
struct sched_group *sg;
cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
init_numa_sched_groups_power(sg);
}
#endif
/* Attach the domains */
for_each_cpu_mask(i, *cpu_map) {
struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
sd = &per_cpu(cpu_domains, i);
#elif defined(CONFIG_SCHED_MC)
sd = &per_cpu(core_domains, i);
#else
sd = &per_cpu(phys_domains, i);
#endif
cpu_attach_domain(sd, i);
}
return 0;
#ifdef CONFIG_NUMA
error:
free_sched_groups(cpu_map);
return -ENOMEM;
#endif
}
static cpumask_t *doms_cur; /* current sched domains */
static int ndoms_cur; /* number of sched domains in 'doms_cur' */
/*
* Special case: If a kmalloc of a doms_cur partition (array of
* cpumask_t) fails, then fallback to a single sched domain,
* as determined by the single cpumask_t fallback_doms.
*/
static cpumask_t fallback_doms;
/*
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
* For now this just excludes isolated cpus, but could be used to
* exclude other special cases in the future.
*/
static int arch_init_sched_domains(const cpumask_t *cpu_map)
{
int err;
ndoms_cur = 1;
doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
if (!doms_cur)
doms_cur = &fallback_doms;
cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
err = build_sched_domains(doms_cur);
register_sched_domain_sysctl();
return err;
}
static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
{
free_sched_groups(cpu_map);
}
/*
* Detach sched domains from a group of cpus specified in cpu_map
* These cpus will now be attached to the NULL domain
*/
static void detach_destroy_domains(const cpumask_t *cpu_map)
{
int i;
unregister_sched_domain_sysctl();
for_each_cpu_mask(i, *cpu_map)
cpu_attach_domain(NULL, i);
synchronize_sched();
arch_destroy_sched_domains(cpu_map);
}
/*
* Partition sched domains as specified by the 'ndoms_new'
* cpumasks in the array doms_new[] of cpumasks. This compares
* doms_new[] to the current sched domain partitioning, doms_cur[].
* It destroys each deleted domain and builds each new domain.
*
* 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
* The masks don't intersect (don't overlap.) We should setup one
* sched domain for each mask. CPUs not in any of the cpumasks will
* not be load balanced. If the same cpumask appears both in the
* current 'doms_cur' domains and in the new 'doms_new', we can leave
* it as it is.
*
* The passed in 'doms_new' should be kmalloc'd. This routine takes
* ownership of it and will kfree it when done with it. If the caller
* failed the kmalloc call, then it can pass in doms_new == NULL,
* and partition_sched_domains() will fallback to the single partition
* 'fallback_doms'.
*
* Call with hotplug lock held
*/
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
int i, j;
lock_doms_cur();
/* always unregister in case we don't destroy any domains */
unregister_sched_domain_sysctl();
if (doms_new == NULL) {
ndoms_new = 1;
doms_new = &fallback_doms;
cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
}
/* Destroy deleted domains */
for (i = 0; i < ndoms_cur; i++) {
for (j = 0; j < ndoms_new; j++) {
if (cpus_equal(doms_cur[i], doms_new[j]))
goto match1;
}
/* no match - a current sched domain not in new doms_new[] */
detach_destroy_domains(doms_cur + i);
match1:
;
}
/* Build new domains */
for (i = 0; i < ndoms_new; i++) {
for (j = 0; j < ndoms_cur; j++) {
if (cpus_equal(doms_new[i], doms_cur[j]))
goto match2;
}
/* no match - add a new doms_new */
build_sched_domains(doms_new + i);
match2:
;
}
/* Remember the new sched domains */
if (doms_cur != &fallback_doms)
kfree(doms_cur);
doms_cur = doms_new;
ndoms_cur = ndoms_new;
register_sched_domain_sysctl();
unlock_doms_cur();
}
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
static int arch_reinit_sched_domains(void)
{
int err;
get_online_cpus();
detach_destroy_domains(&cpu_online_map);
err = arch_init_sched_domains(&cpu_online_map);
put_online_cpus();
return err;
}
static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
int ret;
if (buf[0] != '0' && buf[0] != '1')
return -EINVAL;
if (smt)
sched_smt_power_savings = (buf[0] == '1');
else
sched_mc_power_savings = (buf[0] == '1');
ret = arch_reinit_sched_domains();
return ret ? ret : count;
}
#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
return sprintf(page, "%u\n", sched_mc_power_savings);
}
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
const char *buf, size_t count)
{
return sched_power_savings_store(buf, count, 0);
}
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
sched_mc_power_savings_store);
#endif
#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
return sprintf(page, "%u\n", sched_smt_power_savings);
}
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
const char *buf, size_t count)
{
return sched_power_savings_store(buf, count, 1);
}
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
sched_smt_power_savings_store);
#endif
int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
int err = 0;
#ifdef CONFIG_SCHED_SMT
if (smt_capable())
err = sysfs_create_file(&cls->kset.kobj,
&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
if (!err && mc_capable())
err = sysfs_create_file(&cls->kset.kobj,
&attr_sched_mc_power_savings.attr);
#endif
return err;
}
#endif
/*
* Force a reinitialization of the sched domains hierarchy. The domains
* and groups cannot be updated in place without racing with the balancing
* code, so we temporarily attach all running cpus to the NULL domain
* which will prevent rebalancing while the sched domains are recalculated.
*/
static int update_sched_domains(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
detach_destroy_domains(&cpu_online_map);
return NOTIFY_OK;
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
/*
* Fall through and re-initialise the domains.
*/
break;
default:
return NOTIFY_DONE;
}
/* The hotplug lock is already held by cpu_up/cpu_down */
arch_init_sched_domains(&cpu_online_map);
return NOTIFY_OK;
}
void __init sched_init_smp(void)
{
cpumask_t non_isolated_cpus;
get_online_cpus();
arch_init_sched_domains(&cpu_online_map);
cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
if (cpus_empty(non_isolated_cpus))
cpu_set(smp_processor_id(), non_isolated_cpus);
put_online_cpus();
/* XXX: Theoretical race here - CPU may be hotplugged now */
hotcpu_notifier(update_sched_domains, 0);
/* Move init over to a non-isolated CPU */
if (set_cpus_allowed(current, non_isolated_cpus) < 0)
BUG();
sched_init_granularity();
#ifdef CONFIG_FAIR_GROUP_SCHED
if (nr_cpu_ids == 1)
return;
lb_monitor_task = kthread_create(load_balance_monitor, NULL,
"group_balance");
if (!IS_ERR(lb_monitor_task)) {
lb_monitor_task->flags |= PF_NOFREEZE;
wake_up_process(lb_monitor_task);
} else {
printk(KERN_ERR "Could not create load balance monitor thread"
"(error = %ld) \n", PTR_ERR(lb_monitor_task));
}
#endif
}
#else
void __init sched_init_smp(void)
{
sched_init_granularity();
}
#endif /* CONFIG_SMP */
int in_sched_functions(unsigned long addr)
{
return in_lock_functions(addr) ||
(addr >= (unsigned long)__sched_text_start
&& addr < (unsigned long)__sched_text_end);
}
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq->rq = rq;
#endif
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
}
void __init sched_init(void)
{
int highest_cpu = 0;
int i, j;
for_each_possible_cpu(i) {
struct rt_prio_array *array;
struct rq *rq;
rq = cpu_rq(i);
spin_lock_init(&rq->lock);
lockdep_set_class(&rq->lock, &rq->rq_lock_key);
rq->nr_running = 0;
rq->clock = 1;
init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
{
struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
struct sched_entity *se =
&per_cpu(init_sched_entity, i);
init_cfs_rq_p[i] = cfs_rq;
init_cfs_rq(cfs_rq, rq);
cfs_rq->tg = &init_task_group;
list_add(&cfs_rq->leaf_cfs_rq_list,
&rq->leaf_cfs_rq_list);
init_sched_entity_p[i] = se;
se->cfs_rq = &rq->cfs;
se->my_q = cfs_rq;
se->load.weight = init_task_group_load;
se->load.inv_weight =
div64_64(1ULL<<32, init_task_group_load);
se->parent = NULL;
}
init_task_group.shares = init_task_group_load;
#endif
for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
rq->cpu_load[j] = 0;
#ifdef CONFIG_SMP
rq->sd = NULL;
rq->active_balance = 0;
rq->next_balance = jiffies;
rq->push_cpu = 0;
rq->cpu = i;
rq->migration_thread = NULL;
INIT_LIST_HEAD(&rq->migration_queue);
rq->rt.highest_prio = MAX_RT_PRIO;
#endif
atomic_set(&rq->nr_iowait, 0);
array = &rq->rt.active;
for (j = 0; j < MAX_RT_PRIO; j++) {
INIT_LIST_HEAD(array->queue + j);
__clear_bit(j, array->bitmap);
}
highest_cpu = i;
/* delimiter for bitsearch: */
__set_bit(MAX_RT_PRIO, array->bitmap);
}
set_load_weight(&init_task);
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif
#ifdef CONFIG_SMP
nr_cpu_ids = highest_cpu + 1;
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif
#ifdef CONFIG_RT_MUTEXES
plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif
/*
* The boot idle thread does lazy MMU switching as well:
*/
atomic_inc(&init_mm.mm_count);
enter_lazy_tlb(&init_mm, current);
/*
* Make us the idle thread. Technically, schedule() should not be
* called from this thread, however somewhere below it might be,
* but because we are the idle thread, we just pick up running again
* when this runqueue becomes "idle".
*/
init_idle(current, smp_processor_id());
/*
* During early bootup we pretend to be a normal task:
*/
current->sched_class = &fair_sched_class;
}
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
#ifdef in_atomic
static unsigned long prev_jiffy; /* ratelimiting */
if ((in_atomic() || irqs_disabled()) &&
system_state == SYSTEM_RUNNING && !oops_in_progress) {
if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
return;
prev_jiffy = jiffies;
printk(KERN_ERR "BUG: sleeping function called from invalid"
" context at %s:%d\n", file, line);
printk("in_atomic():%d, irqs_disabled():%d\n",
in_atomic(), irqs_disabled());
debug_show_held_locks(current);
if (irqs_disabled())
print_irqtrace_events(current);
dump_stack();
}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif
#ifdef CONFIG_MAGIC_SYSRQ
static void normalize_task(struct rq *rq, struct task_struct *p)
{
int on_rq;
update_rq_clock(rq);
on_rq = p->se.on_rq;
if (on_rq)
deactivate_task(rq, p, 0);
__setscheduler(rq, p, SCHED_NORMAL, 0);
if (on_rq) {
activate_task(rq, p, 0);
resched_task(rq->curr);
}
}
void normalize_rt_tasks(void)
{
struct task_struct *g, *p;
unsigned long flags;
struct rq *rq;
read_lock_irq(&tasklist_lock);
do_each_thread(g, p) {
/*
* Only normalize user tasks:
*/
if (!p->mm)
continue;
p->se.exec_start = 0;
#ifdef CONFIG_SCHEDSTATS
p->se.wait_start = 0;
p->se.sleep_start = 0;
p->se.block_start = 0;
#endif
task_rq(p)->clock = 0;
if (!rt_task(p)) {
/*
* Renice negative nice level userspace
* tasks back to 0:
*/
if (TASK_NICE(p) < 0 && p->mm)
set_user_nice(p, 0);
continue;
}
spin_lock_irqsave(&p->pi_lock, flags);
rq = __task_rq_lock(p);
normalize_task(rq, p);
__task_rq_unlock(rq);
spin_unlock_irqrestore(&p->pi_lock, flags);
} while_each_thread(g, p);
read_unlock_irq(&tasklist_lock);
}
#endif /* CONFIG_MAGIC_SYSRQ */
#ifdef CONFIG_IA64
/*
* These functions are only useful for the IA64 MCA handling.
*
* They can only be called when the whole system has been
* stopped - every CPU needs to be quiescent, and no scheduling
* activity can take place. Using them for anything else would
* be a serious bug, and as a result, they aren't even visible
* under any other configuration.
*/
/**
* curr_task - return the current task for a given cpu.
* @cpu: the processor in question.
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
*/
struct task_struct *curr_task(int cpu)
{
return cpu_curr(cpu);
}
/**
* set_curr_task - set the current task for a given cpu.
* @cpu: the processor in question.
* @p: the task pointer to set.
*
* Description: This function must only be used when non-maskable interrupts
* are serviced on a separate stack. It allows the architecture to switch the
* notion of the current task on a cpu in a non-blocking manner. This function
* must be called with all CPU's synchronized, and interrupts disabled, the
* and caller must save the original value of the current task (see
* curr_task() above) and restore that value before reenabling interrupts and
* re-starting the system.
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
*/
void set_curr_task(int cpu, struct task_struct *p)
{
cpu_curr(cpu) = p;
}
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_SMP
/*
* distribute shares of all task groups among their schedulable entities,
* to reflect load distrbution across cpus.
*/
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
struct cfs_rq *cfs_rq;
struct rq *rq = cpu_rq(this_cpu);
cpumask_t sdspan = sd->span;
int balanced = 1;
/* Walk thr' all the task groups that we have */
for_each_leaf_cfs_rq(rq, cfs_rq) {
int i;
unsigned long total_load = 0, total_shares;
struct task_group *tg = cfs_rq->tg;
/* Gather total task load of this group across cpus */
for_each_cpu_mask(i, sdspan)
total_load += tg->cfs_rq[i]->load.weight;
/* Nothing to do if this group has no load */
if (!total_load)
continue;
/*
* tg->shares represents the number of cpu shares the task group
* is eligible to hold on a single cpu. On N cpus, it is
* eligible to hold (N * tg->shares) number of cpu shares.
*/
total_shares = tg->shares * cpus_weight(sdspan);
/*
* redistribute total_shares across cpus as per the task load
* distribution.
*/
for_each_cpu_mask(i, sdspan) {
unsigned long local_load, local_shares;
local_load = tg->cfs_rq[i]->load.weight;
local_shares = (local_load * total_shares) / total_load;
if (!local_shares)
local_shares = MIN_GROUP_SHARES;
if (local_shares == tg->se[i]->load.weight)
continue;
spin_lock_irq(&cpu_rq(i)->lock);
set_se_shares(tg->se[i], local_shares);
spin_unlock_irq(&cpu_rq(i)->lock);
balanced = 0;
}
}
return balanced;
}
/*
* How frequently should we rebalance_shares() across cpus?
*
* The more frequently we rebalance shares, the more accurate is the fairness
* of cpu bandwidth distribution between task groups. However higher frequency
* also implies increased scheduling overhead.
*
* sysctl_sched_min_bal_int_shares represents the minimum interval between
* consecutive calls to rebalance_shares() in the same sched domain.
*
* sysctl_sched_max_bal_int_shares represents the maximum interval between
* consecutive calls to rebalance_shares() in the same sched domain.
*
* These settings allows for the appropriate tradeoff between accuracy of
* fairness and the associated overhead.
*
*/
/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
unsigned int timeout = sysctl_sched_min_bal_int_shares;
struct sched_param schedparm;
int ret;
/*
* We don't want this thread's execution to be limited by the shares
* assigned to default group (init_task_group). Hence make it run
* as a SCHED_RR RT task at the lowest priority.
*/
schedparm.sched_priority = 1;
ret = sched_setscheduler(current, SCHED_RR, &schedparm);
if (ret)
printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
" monitor thread (error = %d) \n", ret);
while (!kthread_should_stop()) {
int i, cpu, balanced = 1;
/* Prevent cpus going down or coming up */
get_online_cpus();
/* lockout changes to doms_cur[] array */
lock_doms_cur();
/*
* Enter a rcu read-side critical section to safely walk rq->sd
* chain on various cpus and to walk task group list
* (rq->leaf_cfs_rq_list) in rebalance_shares().
*/
rcu_read_lock();
for (i = 0; i < ndoms_cur; i++) {
cpumask_t cpumap = doms_cur[i];
struct sched_domain *sd = NULL, *sd_prev = NULL;
cpu = first_cpu(cpumap);
/* Find the highest domain at which to balance shares */
for_each_domain(cpu, sd) {
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
sd_prev = sd;
}
sd = sd_prev;
/* sd == NULL? No load balance reqd in this domain */
if (!sd)
continue;
balanced &= rebalance_shares(sd, cpu);
}
rcu_read_unlock();
unlock_doms_cur();
put_online_cpus();
if (!balanced)
timeout = sysctl_sched_min_bal_int_shares;
else if (timeout < sysctl_sched_max_bal_int_shares)
timeout *= 2;
msleep_interruptible(timeout);
}
return 0;
}
#endif /* CONFIG_SMP */
/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
struct task_group *tg;
struct cfs_rq *cfs_rq;
struct sched_entity *se;
struct rq *rq;
int i;
tg = kzalloc(sizeof(*tg), GFP_KERNEL);
if (!tg)
return ERR_PTR(-ENOMEM);
tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
if (!tg->cfs_rq)
goto err;
tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
if (!tg->se)
goto err;
for_each_possible_cpu(i) {
rq = cpu_rq(i);
cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
cpu_to_node(i));
if (!cfs_rq)
goto err;
se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
cpu_to_node(i));
if (!se)
goto err;
memset(cfs_rq, 0, sizeof(struct cfs_rq));
memset(se, 0, sizeof(struct sched_entity));
tg->cfs_rq[i] = cfs_rq;
init_cfs_rq(cfs_rq, rq);
cfs_rq->tg = tg;
tg->se[i] = se;
se->cfs_rq = &rq->cfs;
se->my_q = cfs_rq;
se->load.weight = NICE_0_LOAD;
se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
se->parent = NULL;
}
tg->shares = NICE_0_LOAD;
lock_task_group_list();
for_each_possible_cpu(i) {
rq = cpu_rq(i);
cfs_rq = tg->cfs_rq[i];
list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
}
unlock_task_group_list();
return tg;
err:
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
if (tg->se)
kfree(tg->se[i]);
}
kfree(tg->cfs_rq);
kfree(tg->se);
kfree(tg);
return ERR_PTR(-ENOMEM);
}
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
{
struct task_group *tg = container_of(rhp, struct task_group, rcu);
struct cfs_rq *cfs_rq;
struct sched_entity *se;
int i;
/* now it should be safe to free those cfs_rqs */
for_each_possible_cpu(i) {
cfs_rq = tg->cfs_rq[i];
kfree(cfs_rq);
se = tg->se[i];
kfree(se);
}
kfree(tg->cfs_rq);
kfree(tg->se);
kfree(tg);
}
/* Destroy runqueue etc associated with a task group */
void sched_destroy_group(struct task_group *tg)
{
struct cfs_rq *cfs_rq = NULL;
int i;
lock_task_group_list();
for_each_possible_cpu(i) {
cfs_rq = tg->cfs_rq[i];
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
}
unlock_task_group_list();
BUG_ON(!cfs_rq);
/* wait for possible concurrent references to cfs_rqs complete */
call_rcu(&tg->rcu, free_sched_group);
}
/* change task's runqueue when it moves between groups.
* The caller of this function should have put the task in its new group
* by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
* reflect its new group.
*/
void sched_move_task(struct task_struct *tsk)
{
int on_rq, running;
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(tsk, &flags);
if (tsk->sched_class != &fair_sched_class) {
set_task_cfs_rq(tsk, task_cpu(tsk));
goto done;
}
update_rq_clock(rq);
running = task_current(rq, tsk);
on_rq = tsk->se.on_rq;
if (on_rq) {
dequeue_task(rq, tsk, 0);
if (unlikely(running))
tsk->sched_class->put_prev_task(rq, tsk);
}
set_task_cfs_rq(tsk, task_cpu(tsk));
if (on_rq) {
if (unlikely(running))
tsk->sched_class->set_curr_task(rq);
enqueue_task(rq, tsk, 0);
}
done:
task_rq_unlock(rq, &flags);
}
/* rq->lock to be locked by caller */
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
struct cfs_rq *cfs_rq = se->cfs_rq;
struct rq *rq = cfs_rq->rq;
int on_rq;
if (!shares)
shares = MIN_GROUP_SHARES;
on_rq = se->on_rq;
if (on_rq) {
dequeue_entity(cfs_rq, se, 0);
dec_cpu_load(rq, se->load.weight);
}
se->load.weight = shares;
se->load.inv_weight = div64_64((1ULL<<32), shares);
if (on_rq) {
enqueue_entity(cfs_rq, se, 0);
inc_cpu_load(rq, se->load.weight);
}
}
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
int i;
struct cfs_rq *cfs_rq;
struct rq *rq;
lock_task_group_list();
if (tg->shares == shares)
goto done;
if (shares < MIN_GROUP_SHARES)
shares = MIN_GROUP_SHARES;
/*
* Prevent any load balance activity (rebalance_shares,
* load_balance_fair) from referring to this group first,
* by taking it off the rq->leaf_cfs_rq_list on each cpu.
*/
for_each_possible_cpu(i) {
cfs_rq = tg->cfs_rq[i];
list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
}
/* wait for any ongoing reference to this group to finish */
synchronize_sched();
/*
* Now we are free to modify the group's share on each cpu
* w/o tripping rebalance_share or load_balance_fair.
*/
tg->shares = shares;
for_each_possible_cpu(i) {
spin_lock_irq(&cpu_rq(i)->lock);
set_se_shares(tg->se[i], shares);
spin_unlock_irq(&cpu_rq(i)->lock);
}
/*
* Enable load balance activity on this group, by inserting it back on
* each cpu's rq->leaf_cfs_rq_list.
*/
for_each_possible_cpu(i) {
rq = cpu_rq(i);
cfs_rq = tg->cfs_rq[i];
list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
}
done:
unlock_task_group_list();
return 0;
}
unsigned long sched_group_shares(struct task_group *tg)
{
return tg->shares;
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_FAIR_CGROUP_SCHED
/* return corresponding task_group object of a cgroup */
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
{
return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
struct task_group, css);
}
static struct cgroup_subsys_state *
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
struct task_group *tg;
if (!cgrp->parent) {
/* This is early initialization for the top cgroup */
init_task_group.css.cgroup = cgrp;
return &init_task_group.css;
}
/* we support only 1-level deep hierarchical scheduler atm */
if (cgrp->parent->parent)
return ERR_PTR(-EINVAL);
tg = sched_create_group();
if (IS_ERR(tg))
return ERR_PTR(-ENOMEM);
/* Bind the cgroup to task_group object we just created */
tg->css.cgroup = cgrp;
return &tg->css;
}
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
struct task_group *tg = cgroup_tg(cgrp);
sched_destroy_group(tg);
}
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
struct task_struct *tsk)
{
/* We don't support RT-tasks being in separate groups */
if (tsk->sched_class != &fair_sched_class)
return -EINVAL;
return 0;
}
static void
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
struct cgroup *old_cont, struct task_struct *tsk)
{
sched_move_task(tsk);
}
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
u64 shareval)
{
return sched_group_set_shares(cgroup_tg(cgrp), shareval);
}
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
struct task_group *tg = cgroup_tg(cgrp);
return (u64) tg->shares;
}
static struct cftype cpu_files[] = {
{
.name = "shares",
.read_uint = cpu_shares_read_uint,
.write_uint = cpu_shares_write_uint,
},
};
static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
}
struct cgroup_subsys cpu_cgroup_subsys = {
.name = "cpu",
.create = cpu_cgroup_create,
.destroy = cpu_cgroup_destroy,
.can_attach = cpu_cgroup_can_attach,
.attach = cpu_cgroup_attach,
.populate = cpu_cgroup_populate,
.subsys_id = cpu_cgroup_subsys_id,
.early_init = 1,
};
#endif /* CONFIG_FAIR_CGROUP_SCHED */
#ifdef CONFIG_CGROUP_CPUACCT
/*
* CPU accounting code for task groups.
*
* Based on the work by Paul Menage (menage@google.com) and Balbir Singh
* (balbir@in.ibm.com).
*/
/* track cpu usage of a group of tasks */
struct cpuacct {
struct cgroup_subsys_state css;
/* cpuusage holds pointer to a u64-type object on every cpu */
u64 *cpuusage;
};
struct cgroup_subsys cpuacct_subsys;
/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
struct cpuacct, css);
}
/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
struct cpuacct, css);
}
/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
struct cgroup_subsys *ss, struct cgroup *cont)
{
struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca)
return ERR_PTR(-ENOMEM);
ca->cpuusage = alloc_percpu(u64);
if (!ca->cpuusage) {
kfree(ca);
return ERR_PTR(-ENOMEM);
}
return &ca->css;
}
/* destroy an existing cpu accounting group */
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
struct cpuacct *ca = cgroup_ca(cont);
free_percpu(ca->cpuusage);
kfree(ca);
}
/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
struct cpuacct *ca = cgroup_ca(cont);
u64 totalcpuusage = 0;
int i;
for_each_possible_cpu(i) {
u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
/*
* Take rq->lock to make 64-bit addition safe on 32-bit
* platforms.
*/
spin_lock_irq(&cpu_rq(i)->lock);
totalcpuusage += *cpuusage;
spin_unlock_irq(&cpu_rq(i)->lock);
}
return totalcpuusage;
}
static struct cftype files[] = {
{
.name = "usage",
.read_uint = cpuusage_read,
},
};
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}
/*
* charge this task's execution time to its accounting group.
*
* called with rq->lock held.
*/
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
struct cpuacct *ca;
if (!cpuacct_subsys.active)
return;
ca = task_ca(tsk);
if (ca) {
u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
*cpuusage += cputime;
}
}
struct cgroup_subsys cpuacct_subsys = {
.name = "cpuacct",
.create = cpuacct_create,
.destroy = cpuacct_destroy,
.populate = cpuacct_populate,
.subsys_id = cpuacct_subsys_id,
};
#endif /* CONFIG_CGROUP_CPUACCT */