652 lines
22 KiB
C
652 lines
22 KiB
C
/*
|
|
* Copyright 2008 Advanced Micro Devices, Inc.
|
|
* Copyright 2008 Red Hat Inc.
|
|
* Copyright 2009 Jerome Glisse.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Dave Airlie
|
|
* Alex Deucher
|
|
* Jerome Glisse
|
|
*/
|
|
#include "drmP.h"
|
|
#include "radeon_reg.h"
|
|
#include "radeon.h"
|
|
#include "rs690r.h"
|
|
#include "atom.h"
|
|
#include "atom-bits.h"
|
|
|
|
/* rs690,rs740 depends on : */
|
|
void r100_hdp_reset(struct radeon_device *rdev);
|
|
int r300_mc_wait_for_idle(struct radeon_device *rdev);
|
|
void r420_pipes_init(struct radeon_device *rdev);
|
|
void rs400_gart_disable(struct radeon_device *rdev);
|
|
int rs400_gart_enable(struct radeon_device *rdev);
|
|
void rs400_gart_adjust_size(struct radeon_device *rdev);
|
|
void rs600_mc_disable_clients(struct radeon_device *rdev);
|
|
void rs600_disable_vga(struct radeon_device *rdev);
|
|
|
|
/* This files gather functions specifics to :
|
|
* rs690,rs740
|
|
*
|
|
* Some of these functions might be used by newer ASICs.
|
|
*/
|
|
void rs690_gpu_init(struct radeon_device *rdev);
|
|
int rs690_mc_wait_for_idle(struct radeon_device *rdev);
|
|
|
|
|
|
/*
|
|
* MC functions.
|
|
*/
|
|
int rs690_mc_init(struct radeon_device *rdev)
|
|
{
|
|
uint32_t tmp;
|
|
int r;
|
|
|
|
if (r100_debugfs_rbbm_init(rdev)) {
|
|
DRM_ERROR("Failed to register debugfs file for RBBM !\n");
|
|
}
|
|
|
|
rs690_gpu_init(rdev);
|
|
rs400_gart_disable(rdev);
|
|
|
|
/* Setup GPU memory space */
|
|
rdev->mc.gtt_location = rdev->mc.mc_vram_size;
|
|
rdev->mc.gtt_location += (rdev->mc.gtt_size - 1);
|
|
rdev->mc.gtt_location &= ~(rdev->mc.gtt_size - 1);
|
|
rdev->mc.vram_location = 0xFFFFFFFFUL;
|
|
r = radeon_mc_setup(rdev);
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
/* Program GPU memory space */
|
|
rs600_mc_disable_clients(rdev);
|
|
if (rs690_mc_wait_for_idle(rdev)) {
|
|
printk(KERN_WARNING "Failed to wait MC idle while "
|
|
"programming pipes. Bad things might happen.\n");
|
|
}
|
|
tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
|
|
tmp = REG_SET(RS690_MC_FB_TOP, tmp >> 16);
|
|
tmp |= REG_SET(RS690_MC_FB_START, rdev->mc.vram_location >> 16);
|
|
WREG32_MC(RS690_MCCFG_FB_LOCATION, tmp);
|
|
/* FIXME: Does this reg exist on RS480,RS740 ? */
|
|
WREG32(0x310, rdev->mc.vram_location);
|
|
WREG32(RS690_HDP_FB_LOCATION, rdev->mc.vram_location >> 16);
|
|
return 0;
|
|
}
|
|
|
|
void rs690_mc_fini(struct radeon_device *rdev)
|
|
{
|
|
}
|
|
|
|
|
|
/*
|
|
* Global GPU functions
|
|
*/
|
|
int rs690_mc_wait_for_idle(struct radeon_device *rdev)
|
|
{
|
|
unsigned i;
|
|
uint32_t tmp;
|
|
|
|
for (i = 0; i < rdev->usec_timeout; i++) {
|
|
/* read MC_STATUS */
|
|
tmp = RREG32_MC(RS690_MC_STATUS);
|
|
if (tmp & RS690_MC_STATUS_IDLE) {
|
|
return 0;
|
|
}
|
|
DRM_UDELAY(1);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void rs690_errata(struct radeon_device *rdev)
|
|
{
|
|
rdev->pll_errata = 0;
|
|
}
|
|
|
|
void rs690_gpu_init(struct radeon_device *rdev)
|
|
{
|
|
/* FIXME: HDP same place on rs690 ? */
|
|
r100_hdp_reset(rdev);
|
|
rs600_disable_vga(rdev);
|
|
/* FIXME: is this correct ? */
|
|
r420_pipes_init(rdev);
|
|
if (rs690_mc_wait_for_idle(rdev)) {
|
|
printk(KERN_WARNING "Failed to wait MC idle while "
|
|
"programming pipes. Bad things might happen.\n");
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* VRAM info.
|
|
*/
|
|
void rs690_pm_info(struct radeon_device *rdev)
|
|
{
|
|
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
|
|
struct _ATOM_INTEGRATED_SYSTEM_INFO *info;
|
|
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 *info_v2;
|
|
void *ptr;
|
|
uint16_t data_offset;
|
|
uint8_t frev, crev;
|
|
fixed20_12 tmp;
|
|
|
|
atom_parse_data_header(rdev->mode_info.atom_context, index, NULL,
|
|
&frev, &crev, &data_offset);
|
|
ptr = rdev->mode_info.atom_context->bios + data_offset;
|
|
info = (struct _ATOM_INTEGRATED_SYSTEM_INFO *)ptr;
|
|
info_v2 = (struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 *)ptr;
|
|
/* Get various system informations from bios */
|
|
switch (crev) {
|
|
case 1:
|
|
tmp.full = rfixed_const(100);
|
|
rdev->pm.igp_sideport_mclk.full = rfixed_const(info->ulBootUpMemoryClock);
|
|
rdev->pm.igp_sideport_mclk.full = rfixed_div(rdev->pm.igp_sideport_mclk, tmp);
|
|
rdev->pm.igp_system_mclk.full = rfixed_const(le16_to_cpu(info->usK8MemoryClock));
|
|
rdev->pm.igp_ht_link_clk.full = rfixed_const(le16_to_cpu(info->usFSBClock));
|
|
rdev->pm.igp_ht_link_width.full = rfixed_const(info->ucHTLinkWidth);
|
|
break;
|
|
case 2:
|
|
tmp.full = rfixed_const(100);
|
|
rdev->pm.igp_sideport_mclk.full = rfixed_const(info_v2->ulBootUpSidePortClock);
|
|
rdev->pm.igp_sideport_mclk.full = rfixed_div(rdev->pm.igp_sideport_mclk, tmp);
|
|
rdev->pm.igp_system_mclk.full = rfixed_const(info_v2->ulBootUpUMAClock);
|
|
rdev->pm.igp_system_mclk.full = rfixed_div(rdev->pm.igp_system_mclk, tmp);
|
|
rdev->pm.igp_ht_link_clk.full = rfixed_const(info_v2->ulHTLinkFreq);
|
|
rdev->pm.igp_ht_link_clk.full = rfixed_div(rdev->pm.igp_ht_link_clk, tmp);
|
|
rdev->pm.igp_ht_link_width.full = rfixed_const(le16_to_cpu(info_v2->usMinHTLinkWidth));
|
|
break;
|
|
default:
|
|
tmp.full = rfixed_const(100);
|
|
/* We assume the slower possible clock ie worst case */
|
|
/* DDR 333Mhz */
|
|
rdev->pm.igp_sideport_mclk.full = rfixed_const(333);
|
|
/* FIXME: system clock ? */
|
|
rdev->pm.igp_system_mclk.full = rfixed_const(100);
|
|
rdev->pm.igp_system_mclk.full = rfixed_div(rdev->pm.igp_system_mclk, tmp);
|
|
rdev->pm.igp_ht_link_clk.full = rfixed_const(200);
|
|
rdev->pm.igp_ht_link_width.full = rfixed_const(8);
|
|
DRM_ERROR("No integrated system info for your GPU, using safe default\n");
|
|
break;
|
|
}
|
|
/* Compute various bandwidth */
|
|
/* k8_bandwidth = (memory_clk / 2) * 2 * 8 * 0.5 = memory_clk * 4 */
|
|
tmp.full = rfixed_const(4);
|
|
rdev->pm.k8_bandwidth.full = rfixed_mul(rdev->pm.igp_system_mclk, tmp);
|
|
/* ht_bandwidth = ht_clk * 2 * ht_width / 8 * 0.8
|
|
* = ht_clk * ht_width / 5
|
|
*/
|
|
tmp.full = rfixed_const(5);
|
|
rdev->pm.ht_bandwidth.full = rfixed_mul(rdev->pm.igp_ht_link_clk,
|
|
rdev->pm.igp_ht_link_width);
|
|
rdev->pm.ht_bandwidth.full = rfixed_div(rdev->pm.ht_bandwidth, tmp);
|
|
if (tmp.full < rdev->pm.max_bandwidth.full) {
|
|
/* HT link is a limiting factor */
|
|
rdev->pm.max_bandwidth.full = tmp.full;
|
|
}
|
|
/* sideport_bandwidth = (sideport_clk / 2) * 2 * 2 * 0.7
|
|
* = (sideport_clk * 14) / 10
|
|
*/
|
|
tmp.full = rfixed_const(14);
|
|
rdev->pm.sideport_bandwidth.full = rfixed_mul(rdev->pm.igp_sideport_mclk, tmp);
|
|
tmp.full = rfixed_const(10);
|
|
rdev->pm.sideport_bandwidth.full = rfixed_div(rdev->pm.sideport_bandwidth, tmp);
|
|
}
|
|
|
|
void rs690_vram_info(struct radeon_device *rdev)
|
|
{
|
|
uint32_t tmp;
|
|
fixed20_12 a;
|
|
|
|
rs400_gart_adjust_size(rdev);
|
|
/* DDR for all card after R300 & IGP */
|
|
rdev->mc.vram_is_ddr = true;
|
|
/* FIXME: is this correct for RS690/RS740 ? */
|
|
tmp = RREG32(RADEON_MEM_CNTL);
|
|
if (tmp & R300_MEM_NUM_CHANNELS_MASK) {
|
|
rdev->mc.vram_width = 128;
|
|
} else {
|
|
rdev->mc.vram_width = 64;
|
|
}
|
|
rdev->mc.real_vram_size = RREG32(RADEON_CONFIG_MEMSIZE);
|
|
rdev->mc.mc_vram_size = rdev->mc.real_vram_size;
|
|
|
|
rdev->mc.aper_base = drm_get_resource_start(rdev->ddev, 0);
|
|
rdev->mc.aper_size = drm_get_resource_len(rdev->ddev, 0);
|
|
rs690_pm_info(rdev);
|
|
/* FIXME: we should enforce default clock in case GPU is not in
|
|
* default setup
|
|
*/
|
|
a.full = rfixed_const(100);
|
|
rdev->pm.sclk.full = rfixed_const(rdev->clock.default_sclk);
|
|
rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a);
|
|
a.full = rfixed_const(16);
|
|
/* core_bandwidth = sclk(Mhz) * 16 */
|
|
rdev->pm.core_bandwidth.full = rfixed_div(rdev->pm.sclk, a);
|
|
}
|
|
|
|
void rs690_line_buffer_adjust(struct radeon_device *rdev,
|
|
struct drm_display_mode *mode1,
|
|
struct drm_display_mode *mode2)
|
|
{
|
|
u32 tmp;
|
|
|
|
/*
|
|
* Line Buffer Setup
|
|
* There is a single line buffer shared by both display controllers.
|
|
* DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
|
|
* the display controllers. The paritioning can either be done
|
|
* manually or via one of four preset allocations specified in bits 1:0:
|
|
* 0 - line buffer is divided in half and shared between crtc
|
|
* 1 - D1 gets 3/4 of the line buffer, D2 gets 1/4
|
|
* 2 - D1 gets the whole buffer
|
|
* 3 - D1 gets 1/4 of the line buffer, D2 gets 3/4
|
|
* Setting bit 2 of DC_LB_MEMORY_SPLIT controls switches to manual
|
|
* allocation mode. In manual allocation mode, D1 always starts at 0,
|
|
* D1 end/2 is specified in bits 14:4; D2 allocation follows D1.
|
|
*/
|
|
tmp = RREG32(DC_LB_MEMORY_SPLIT) & ~DC_LB_MEMORY_SPLIT_MASK;
|
|
tmp &= ~DC_LB_MEMORY_SPLIT_SHIFT_MODE;
|
|
/* auto */
|
|
if (mode1 && mode2) {
|
|
if (mode1->hdisplay > mode2->hdisplay) {
|
|
if (mode1->hdisplay > 2560)
|
|
tmp |= DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q;
|
|
else
|
|
tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
|
|
} else if (mode2->hdisplay > mode1->hdisplay) {
|
|
if (mode2->hdisplay > 2560)
|
|
tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
|
|
else
|
|
tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
|
|
} else
|
|
tmp |= AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
|
|
} else if (mode1) {
|
|
tmp |= DC_LB_MEMORY_SPLIT_D1_ONLY;
|
|
} else if (mode2) {
|
|
tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
|
|
}
|
|
WREG32(DC_LB_MEMORY_SPLIT, tmp);
|
|
}
|
|
|
|
struct rs690_watermark {
|
|
u32 lb_request_fifo_depth;
|
|
fixed20_12 num_line_pair;
|
|
fixed20_12 estimated_width;
|
|
fixed20_12 worst_case_latency;
|
|
fixed20_12 consumption_rate;
|
|
fixed20_12 active_time;
|
|
fixed20_12 dbpp;
|
|
fixed20_12 priority_mark_max;
|
|
fixed20_12 priority_mark;
|
|
fixed20_12 sclk;
|
|
};
|
|
|
|
void rs690_crtc_bandwidth_compute(struct radeon_device *rdev,
|
|
struct radeon_crtc *crtc,
|
|
struct rs690_watermark *wm)
|
|
{
|
|
struct drm_display_mode *mode = &crtc->base.mode;
|
|
fixed20_12 a, b, c;
|
|
fixed20_12 pclk, request_fifo_depth, tolerable_latency, estimated_width;
|
|
fixed20_12 consumption_time, line_time, chunk_time, read_delay_latency;
|
|
/* FIXME: detect IGP with sideport memory, i don't think there is any
|
|
* such product available
|
|
*/
|
|
bool sideport = false;
|
|
|
|
if (!crtc->base.enabled) {
|
|
/* FIXME: wouldn't it better to set priority mark to maximum */
|
|
wm->lb_request_fifo_depth = 4;
|
|
return;
|
|
}
|
|
|
|
if (crtc->vsc.full > rfixed_const(2))
|
|
wm->num_line_pair.full = rfixed_const(2);
|
|
else
|
|
wm->num_line_pair.full = rfixed_const(1);
|
|
|
|
b.full = rfixed_const(mode->crtc_hdisplay);
|
|
c.full = rfixed_const(256);
|
|
a.full = rfixed_mul(wm->num_line_pair, b);
|
|
request_fifo_depth.full = rfixed_div(a, c);
|
|
if (a.full < rfixed_const(4)) {
|
|
wm->lb_request_fifo_depth = 4;
|
|
} else {
|
|
wm->lb_request_fifo_depth = rfixed_trunc(request_fifo_depth);
|
|
}
|
|
|
|
/* Determine consumption rate
|
|
* pclk = pixel clock period(ns) = 1000 / (mode.clock / 1000)
|
|
* vtaps = number of vertical taps,
|
|
* vsc = vertical scaling ratio, defined as source/destination
|
|
* hsc = horizontal scaling ration, defined as source/destination
|
|
*/
|
|
a.full = rfixed_const(mode->clock);
|
|
b.full = rfixed_const(1000);
|
|
a.full = rfixed_div(a, b);
|
|
pclk.full = rfixed_div(b, a);
|
|
if (crtc->rmx_type != RMX_OFF) {
|
|
b.full = rfixed_const(2);
|
|
if (crtc->vsc.full > b.full)
|
|
b.full = crtc->vsc.full;
|
|
b.full = rfixed_mul(b, crtc->hsc);
|
|
c.full = rfixed_const(2);
|
|
b.full = rfixed_div(b, c);
|
|
consumption_time.full = rfixed_div(pclk, b);
|
|
} else {
|
|
consumption_time.full = pclk.full;
|
|
}
|
|
a.full = rfixed_const(1);
|
|
wm->consumption_rate.full = rfixed_div(a, consumption_time);
|
|
|
|
|
|
/* Determine line time
|
|
* LineTime = total time for one line of displayhtotal
|
|
* LineTime = total number of horizontal pixels
|
|
* pclk = pixel clock period(ns)
|
|
*/
|
|
a.full = rfixed_const(crtc->base.mode.crtc_htotal);
|
|
line_time.full = rfixed_mul(a, pclk);
|
|
|
|
/* Determine active time
|
|
* ActiveTime = time of active region of display within one line,
|
|
* hactive = total number of horizontal active pixels
|
|
* htotal = total number of horizontal pixels
|
|
*/
|
|
a.full = rfixed_const(crtc->base.mode.crtc_htotal);
|
|
b.full = rfixed_const(crtc->base.mode.crtc_hdisplay);
|
|
wm->active_time.full = rfixed_mul(line_time, b);
|
|
wm->active_time.full = rfixed_div(wm->active_time, a);
|
|
|
|
/* Maximun bandwidth is the minimun bandwidth of all component */
|
|
rdev->pm.max_bandwidth = rdev->pm.core_bandwidth;
|
|
if (sideport) {
|
|
if (rdev->pm.max_bandwidth.full > rdev->pm.sideport_bandwidth.full &&
|
|
rdev->pm.sideport_bandwidth.full)
|
|
rdev->pm.max_bandwidth = rdev->pm.sideport_bandwidth;
|
|
read_delay_latency.full = rfixed_const(370 * 800 * 1000);
|
|
read_delay_latency.full = rfixed_div(read_delay_latency,
|
|
rdev->pm.igp_sideport_mclk);
|
|
} else {
|
|
if (rdev->pm.max_bandwidth.full > rdev->pm.k8_bandwidth.full &&
|
|
rdev->pm.k8_bandwidth.full)
|
|
rdev->pm.max_bandwidth = rdev->pm.k8_bandwidth;
|
|
if (rdev->pm.max_bandwidth.full > rdev->pm.ht_bandwidth.full &&
|
|
rdev->pm.ht_bandwidth.full)
|
|
rdev->pm.max_bandwidth = rdev->pm.ht_bandwidth;
|
|
read_delay_latency.full = rfixed_const(5000);
|
|
}
|
|
|
|
/* sclk = system clocks(ns) = 1000 / max_bandwidth / 16 */
|
|
a.full = rfixed_const(16);
|
|
rdev->pm.sclk.full = rfixed_mul(rdev->pm.max_bandwidth, a);
|
|
a.full = rfixed_const(1000);
|
|
rdev->pm.sclk.full = rfixed_div(a, rdev->pm.sclk);
|
|
/* Determine chunk time
|
|
* ChunkTime = the time it takes the DCP to send one chunk of data
|
|
* to the LB which consists of pipeline delay and inter chunk gap
|
|
* sclk = system clock(ns)
|
|
*/
|
|
a.full = rfixed_const(256 * 13);
|
|
chunk_time.full = rfixed_mul(rdev->pm.sclk, a);
|
|
a.full = rfixed_const(10);
|
|
chunk_time.full = rfixed_div(chunk_time, a);
|
|
|
|
/* Determine the worst case latency
|
|
* NumLinePair = Number of line pairs to request(1=2 lines, 2=4 lines)
|
|
* WorstCaseLatency = worst case time from urgent to when the MC starts
|
|
* to return data
|
|
* READ_DELAY_IDLE_MAX = constant of 1us
|
|
* ChunkTime = time it takes the DCP to send one chunk of data to the LB
|
|
* which consists of pipeline delay and inter chunk gap
|
|
*/
|
|
if (rfixed_trunc(wm->num_line_pair) > 1) {
|
|
a.full = rfixed_const(3);
|
|
wm->worst_case_latency.full = rfixed_mul(a, chunk_time);
|
|
wm->worst_case_latency.full += read_delay_latency.full;
|
|
} else {
|
|
a.full = rfixed_const(2);
|
|
wm->worst_case_latency.full = rfixed_mul(a, chunk_time);
|
|
wm->worst_case_latency.full += read_delay_latency.full;
|
|
}
|
|
|
|
/* Determine the tolerable latency
|
|
* TolerableLatency = Any given request has only 1 line time
|
|
* for the data to be returned
|
|
* LBRequestFifoDepth = Number of chunk requests the LB can
|
|
* put into the request FIFO for a display
|
|
* LineTime = total time for one line of display
|
|
* ChunkTime = the time it takes the DCP to send one chunk
|
|
* of data to the LB which consists of
|
|
* pipeline delay and inter chunk gap
|
|
*/
|
|
if ((2+wm->lb_request_fifo_depth) >= rfixed_trunc(request_fifo_depth)) {
|
|
tolerable_latency.full = line_time.full;
|
|
} else {
|
|
tolerable_latency.full = rfixed_const(wm->lb_request_fifo_depth - 2);
|
|
tolerable_latency.full = request_fifo_depth.full - tolerable_latency.full;
|
|
tolerable_latency.full = rfixed_mul(tolerable_latency, chunk_time);
|
|
tolerable_latency.full = line_time.full - tolerable_latency.full;
|
|
}
|
|
/* We assume worst case 32bits (4 bytes) */
|
|
wm->dbpp.full = rfixed_const(4 * 8);
|
|
|
|
/* Determine the maximum priority mark
|
|
* width = viewport width in pixels
|
|
*/
|
|
a.full = rfixed_const(16);
|
|
wm->priority_mark_max.full = rfixed_const(crtc->base.mode.crtc_hdisplay);
|
|
wm->priority_mark_max.full = rfixed_div(wm->priority_mark_max, a);
|
|
|
|
/* Determine estimated width */
|
|
estimated_width.full = tolerable_latency.full - wm->worst_case_latency.full;
|
|
estimated_width.full = rfixed_div(estimated_width, consumption_time);
|
|
if (rfixed_trunc(estimated_width) > crtc->base.mode.crtc_hdisplay) {
|
|
wm->priority_mark.full = rfixed_const(10);
|
|
} else {
|
|
a.full = rfixed_const(16);
|
|
wm->priority_mark.full = rfixed_div(estimated_width, a);
|
|
wm->priority_mark.full = wm->priority_mark_max.full - wm->priority_mark.full;
|
|
}
|
|
}
|
|
|
|
void rs690_bandwidth_update(struct radeon_device *rdev)
|
|
{
|
|
struct drm_display_mode *mode0 = NULL;
|
|
struct drm_display_mode *mode1 = NULL;
|
|
struct rs690_watermark wm0;
|
|
struct rs690_watermark wm1;
|
|
u32 tmp;
|
|
fixed20_12 priority_mark02, priority_mark12, fill_rate;
|
|
fixed20_12 a, b;
|
|
|
|
if (rdev->mode_info.crtcs[0]->base.enabled)
|
|
mode0 = &rdev->mode_info.crtcs[0]->base.mode;
|
|
if (rdev->mode_info.crtcs[1]->base.enabled)
|
|
mode1 = &rdev->mode_info.crtcs[1]->base.mode;
|
|
/*
|
|
* Set display0/1 priority up in the memory controller for
|
|
* modes if the user specifies HIGH for displaypriority
|
|
* option.
|
|
*/
|
|
if (rdev->disp_priority == 2) {
|
|
tmp = RREG32_MC(MC_INIT_MISC_LAT_TIMER);
|
|
tmp &= ~MC_DISP1R_INIT_LAT_MASK;
|
|
tmp &= ~MC_DISP0R_INIT_LAT_MASK;
|
|
if (mode1)
|
|
tmp |= (1 << MC_DISP1R_INIT_LAT_SHIFT);
|
|
if (mode0)
|
|
tmp |= (1 << MC_DISP0R_INIT_LAT_SHIFT);
|
|
WREG32_MC(MC_INIT_MISC_LAT_TIMER, tmp);
|
|
}
|
|
rs690_line_buffer_adjust(rdev, mode0, mode1);
|
|
|
|
if ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740))
|
|
WREG32(DCP_CONTROL, 0);
|
|
if ((rdev->family == CHIP_RS780) || (rdev->family == CHIP_RS880))
|
|
WREG32(DCP_CONTROL, 2);
|
|
|
|
rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[0], &wm0);
|
|
rs690_crtc_bandwidth_compute(rdev, rdev->mode_info.crtcs[1], &wm1);
|
|
|
|
tmp = (wm0.lb_request_fifo_depth - 1);
|
|
tmp |= (wm1.lb_request_fifo_depth - 1) << 16;
|
|
WREG32(LB_MAX_REQ_OUTSTANDING, tmp);
|
|
|
|
if (mode0 && mode1) {
|
|
if (rfixed_trunc(wm0.dbpp) > 64)
|
|
a.full = rfixed_mul(wm0.dbpp, wm0.num_line_pair);
|
|
else
|
|
a.full = wm0.num_line_pair.full;
|
|
if (rfixed_trunc(wm1.dbpp) > 64)
|
|
b.full = rfixed_mul(wm1.dbpp, wm1.num_line_pair);
|
|
else
|
|
b.full = wm1.num_line_pair.full;
|
|
a.full += b.full;
|
|
fill_rate.full = rfixed_div(wm0.sclk, a);
|
|
if (wm0.consumption_rate.full > fill_rate.full) {
|
|
b.full = wm0.consumption_rate.full - fill_rate.full;
|
|
b.full = rfixed_mul(b, wm0.active_time);
|
|
a.full = rfixed_mul(wm0.worst_case_latency,
|
|
wm0.consumption_rate);
|
|
a.full = a.full + b.full;
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark02.full = rfixed_div(a, b);
|
|
} else {
|
|
a.full = rfixed_mul(wm0.worst_case_latency,
|
|
wm0.consumption_rate);
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark02.full = rfixed_div(a, b);
|
|
}
|
|
if (wm1.consumption_rate.full > fill_rate.full) {
|
|
b.full = wm1.consumption_rate.full - fill_rate.full;
|
|
b.full = rfixed_mul(b, wm1.active_time);
|
|
a.full = rfixed_mul(wm1.worst_case_latency,
|
|
wm1.consumption_rate);
|
|
a.full = a.full + b.full;
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark12.full = rfixed_div(a, b);
|
|
} else {
|
|
a.full = rfixed_mul(wm1.worst_case_latency,
|
|
wm1.consumption_rate);
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark12.full = rfixed_div(a, b);
|
|
}
|
|
if (wm0.priority_mark.full > priority_mark02.full)
|
|
priority_mark02.full = wm0.priority_mark.full;
|
|
if (rfixed_trunc(priority_mark02) < 0)
|
|
priority_mark02.full = 0;
|
|
if (wm0.priority_mark_max.full > priority_mark02.full)
|
|
priority_mark02.full = wm0.priority_mark_max.full;
|
|
if (wm1.priority_mark.full > priority_mark12.full)
|
|
priority_mark12.full = wm1.priority_mark.full;
|
|
if (rfixed_trunc(priority_mark12) < 0)
|
|
priority_mark12.full = 0;
|
|
if (wm1.priority_mark_max.full > priority_mark12.full)
|
|
priority_mark12.full = wm1.priority_mark_max.full;
|
|
WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02));
|
|
WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02));
|
|
WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12));
|
|
WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12));
|
|
} else if (mode0) {
|
|
if (rfixed_trunc(wm0.dbpp) > 64)
|
|
a.full = rfixed_mul(wm0.dbpp, wm0.num_line_pair);
|
|
else
|
|
a.full = wm0.num_line_pair.full;
|
|
fill_rate.full = rfixed_div(wm0.sclk, a);
|
|
if (wm0.consumption_rate.full > fill_rate.full) {
|
|
b.full = wm0.consumption_rate.full - fill_rate.full;
|
|
b.full = rfixed_mul(b, wm0.active_time);
|
|
a.full = rfixed_mul(wm0.worst_case_latency,
|
|
wm0.consumption_rate);
|
|
a.full = a.full + b.full;
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark02.full = rfixed_div(a, b);
|
|
} else {
|
|
a.full = rfixed_mul(wm0.worst_case_latency,
|
|
wm0.consumption_rate);
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark02.full = rfixed_div(a, b);
|
|
}
|
|
if (wm0.priority_mark.full > priority_mark02.full)
|
|
priority_mark02.full = wm0.priority_mark.full;
|
|
if (rfixed_trunc(priority_mark02) < 0)
|
|
priority_mark02.full = 0;
|
|
if (wm0.priority_mark_max.full > priority_mark02.full)
|
|
priority_mark02.full = wm0.priority_mark_max.full;
|
|
WREG32(D1MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark02));
|
|
WREG32(D1MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark02));
|
|
WREG32(D2MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF);
|
|
WREG32(D2MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF);
|
|
} else {
|
|
if (rfixed_trunc(wm1.dbpp) > 64)
|
|
a.full = rfixed_mul(wm1.dbpp, wm1.num_line_pair);
|
|
else
|
|
a.full = wm1.num_line_pair.full;
|
|
fill_rate.full = rfixed_div(wm1.sclk, a);
|
|
if (wm1.consumption_rate.full > fill_rate.full) {
|
|
b.full = wm1.consumption_rate.full - fill_rate.full;
|
|
b.full = rfixed_mul(b, wm1.active_time);
|
|
a.full = rfixed_mul(wm1.worst_case_latency,
|
|
wm1.consumption_rate);
|
|
a.full = a.full + b.full;
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark12.full = rfixed_div(a, b);
|
|
} else {
|
|
a.full = rfixed_mul(wm1.worst_case_latency,
|
|
wm1.consumption_rate);
|
|
b.full = rfixed_const(16 * 1000);
|
|
priority_mark12.full = rfixed_div(a, b);
|
|
}
|
|
if (wm1.priority_mark.full > priority_mark12.full)
|
|
priority_mark12.full = wm1.priority_mark.full;
|
|
if (rfixed_trunc(priority_mark12) < 0)
|
|
priority_mark12.full = 0;
|
|
if (wm1.priority_mark_max.full > priority_mark12.full)
|
|
priority_mark12.full = wm1.priority_mark_max.full;
|
|
WREG32(D1MODE_PRIORITY_A_CNT, MODE_PRIORITY_OFF);
|
|
WREG32(D1MODE_PRIORITY_B_CNT, MODE_PRIORITY_OFF);
|
|
WREG32(D2MODE_PRIORITY_A_CNT, rfixed_trunc(priority_mark12));
|
|
WREG32(D2MODE_PRIORITY_B_CNT, rfixed_trunc(priority_mark12));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Indirect registers accessor
|
|
*/
|
|
uint32_t rs690_mc_rreg(struct radeon_device *rdev, uint32_t reg)
|
|
{
|
|
uint32_t r;
|
|
|
|
WREG32(RS690_MC_INDEX, (reg & RS690_MC_INDEX_MASK));
|
|
r = RREG32(RS690_MC_DATA);
|
|
WREG32(RS690_MC_INDEX, RS690_MC_INDEX_MASK);
|
|
return r;
|
|
}
|
|
|
|
void rs690_mc_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v)
|
|
{
|
|
WREG32(RS690_MC_INDEX,
|
|
RS690_MC_INDEX_WR_EN | ((reg) & RS690_MC_INDEX_MASK));
|
|
WREG32(RS690_MC_DATA, v);
|
|
WREG32(RS690_MC_INDEX, RS690_MC_INDEX_WR_ACK);
|
|
}
|