linux_old1/sound/oss/cmpci.c

3382 lines
94 KiB
C

/*
* cmpci.c -- C-Media PCI audio driver.
*
* Copyright (C) 1999 C-media support (support@cmedia.com.tw)
*
* Based on the PCI drivers by Thomas Sailer (sailer@ife.ee.ethz.ch)
*
* For update, visit:
* http://www.cmedia.com.tw
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Special thanks to David C. Niemi, Jan Pfeifer
*
*
* Module command line parameters:
* none so far
*
*
* Supported devices:
* /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
* /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
* /dev/midi simple MIDI UART interface, no ioctl
*
* The card has both an FM and a Wavetable synth, but I have to figure
* out first how to drive them...
*
* Revision history
* 06.05.98 0.1 Initial release
* 10.05.98 0.2 Fixed many bugs, esp. ADC rate calculation
* First stab at a simple midi interface (no bells&whistles)
* 13.05.98 0.3 Fix stupid cut&paste error: set_adc_rate was called instead of
* set_dac_rate in the FMODE_WRITE case in cm_open
* Fix hwptr out of bounds (now mpg123 works)
* 14.05.98 0.4 Don't allow excessive interrupt rates
* 08.06.98 0.5 First release using Alan Cox' soundcore instead of miscdevice
* 03.08.98 0.6 Do not include modversions.h
* Now mixer behaviour can basically be selected between
* "OSS documented" and "OSS actual" behaviour
* 31.08.98 0.7 Fix realplayer problems - dac.count issues
* 10.12.98 0.8 Fix drain_dac trying to wait on not yet initialized DMA
* 16.12.98 0.9 Fix a few f_file & FMODE_ bugs
* 06.01.99 0.10 remove the silly SA_INTERRUPT flag.
* hopefully killed the egcs section type conflict
* 12.03.99 0.11 cinfo.blocks should be reset after GETxPTR ioctl.
* reported by Johan Maes <joma@telindus.be>
* 22.03.99 0.12 return EAGAIN instead of EBUSY when O_NONBLOCK
* read/write cannot be executed
* 18.08.99 1.5 Only deallocate DMA buffer when unloading.
* 02.09.99 1.6 Enable SPDIF LOOP
* Change the mixer read back
* 21.09.99 2.33 Use RCS version as driver version.
* Add support for modem, S/PDIF loop and 4 channels.
* (8738 only)
* Fix bug cause x11amp cannot play.
*
* Fixes:
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
* 18/05/2001 - .bss nitpicks, fix a bug in set_dac_channels where it
* was calling prog_dmabuf with s->lock held, call missing
* unlock_kernel in cm_midi_release
* 08/10/2001 - use set_current_state in some more places
*
* Carlos Eduardo Gorges <carlos@techlinux.com.br>
* Fri May 25 2001
* - SMP support ( spin[un]lock* revision )
* - speaker mixer support
* Mon Aug 13 2001
* - optimizations and cleanups
*
* 03/01/2003 - open_mode fixes from Georg Acher <acher@in.tum.de>
* Simon Braunschmidt <brasimon@web.de>
* Sat Jan 31 2004
* - provide support for opl3 FM by releasing IO range after initialization
*
* ChenLi Tien <cltien@cmedia.com.tw>
* Mar 9 2004
* - Fix S/PDIF out if spdif_loop enabled
* - Load opl3 driver if enabled (fmio in proper range)
* - Load mpu401 if enabled (mpuio in proper range)
* Apr 5 2004
* - Fix DUAL_DAC dma synchronization bug
* - Check exist FM/MPU401 I/O before activate.
* - Add AFTM_S16_BE format support, so MPlayer/Xine can play AC3/mutlichannel
* on Mac
* - Change to support kernel 2.6 so only small patch needed
* - All parameters default to 0
* - Add spdif_out to send PCM through S/PDIF out jack
* - Add hw_copy to get 4-spaker output for general PCM/analog output
*
* Stefan Thater <stefan.thaeter@gmx.de>
* Apr 5 2004
* - Fix mute single channel for CD/Line-in/AUX-in
*/
/*****************************************************************************/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/bitops.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/uaccess.h>
#ifdef CONFIG_SOUND_CMPCI_MIDI
#include "sound_config.h"
#include "mpu401.h"
#endif
#ifdef CONFIG_SOUND_CMPCI_FM
#include "opl3.h"
#endif
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
#include <linux/gameport.h>
#include <linux/mutex.h>
#endif
/* --------------------------------------------------------------------- */
#undef OSS_DOCUMENTED_MIXER_SEMANTICS
#undef DMABYTEIO
#define DBG(x) {}
/* --------------------------------------------------------------------- */
#define CM_MAGIC ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A)
/* CM8338 registers definition ****************/
#define CODEC_CMI_FUNCTRL0 (0x00)
#define CODEC_CMI_FUNCTRL1 (0x04)
#define CODEC_CMI_CHFORMAT (0x08)
#define CODEC_CMI_INT_HLDCLR (0x0C)
#define CODEC_CMI_INT_STATUS (0x10)
#define CODEC_CMI_LEGACY_CTRL (0x14)
#define CODEC_CMI_MISC_CTRL (0x18)
#define CODEC_CMI_TDMA_POS (0x1C)
#define CODEC_CMI_MIXER (0x20)
#define CODEC_SB16_DATA (0x22)
#define CODEC_SB16_ADDR (0x23)
#define CODEC_CMI_MIXER1 (0x24)
#define CODEC_CMI_MIXER2 (0x25)
#define CODEC_CMI_AUX_VOL (0x26)
#define CODEC_CMI_MISC (0x27)
#define CODEC_CMI_AC97 (0x28)
#define CODEC_CMI_CH0_FRAME1 (0x80)
#define CODEC_CMI_CH0_FRAME2 (0x84)
#define CODEC_CMI_CH1_FRAME1 (0x88)
#define CODEC_CMI_CH1_FRAME2 (0x8C)
#define CODEC_CMI_SPDIF_CTRL (0x90)
#define CODEC_CMI_MISC_CTRL2 (0x92)
#define CODEC_CMI_EXT_REG (0xF0)
/* Mixer registers for SB16 ******************/
#define DSP_MIX_DATARESETIDX ((unsigned char)(0x00))
#define DSP_MIX_MASTERVOLIDX_L ((unsigned char)(0x30))
#define DSP_MIX_MASTERVOLIDX_R ((unsigned char)(0x31))
#define DSP_MIX_VOICEVOLIDX_L ((unsigned char)(0x32))
#define DSP_MIX_VOICEVOLIDX_R ((unsigned char)(0x33))
#define DSP_MIX_FMVOLIDX_L ((unsigned char)(0x34))
#define DSP_MIX_FMVOLIDX_R ((unsigned char)(0x35))
#define DSP_MIX_CDVOLIDX_L ((unsigned char)(0x36))
#define DSP_MIX_CDVOLIDX_R ((unsigned char)(0x37))
#define DSP_MIX_LINEVOLIDX_L ((unsigned char)(0x38))
#define DSP_MIX_LINEVOLIDX_R ((unsigned char)(0x39))
#define DSP_MIX_MICVOLIDX ((unsigned char)(0x3A))
#define DSP_MIX_SPKRVOLIDX ((unsigned char)(0x3B))
#define DSP_MIX_OUTMIXIDX ((unsigned char)(0x3C))
#define DSP_MIX_ADCMIXIDX_L ((unsigned char)(0x3D))
#define DSP_MIX_ADCMIXIDX_R ((unsigned char)(0x3E))
#define DSP_MIX_INGAINIDX_L ((unsigned char)(0x3F))
#define DSP_MIX_INGAINIDX_R ((unsigned char)(0x40))
#define DSP_MIX_OUTGAINIDX_L ((unsigned char)(0x41))
#define DSP_MIX_OUTGAINIDX_R ((unsigned char)(0x42))
#define DSP_MIX_AGCIDX ((unsigned char)(0x43))
#define DSP_MIX_TREBLEIDX_L ((unsigned char)(0x44))
#define DSP_MIX_TREBLEIDX_R ((unsigned char)(0x45))
#define DSP_MIX_BASSIDX_L ((unsigned char)(0x46))
#define DSP_MIX_BASSIDX_R ((unsigned char)(0x47))
#define DSP_MIX_EXTENSION ((unsigned char)(0xf0))
// pseudo register for AUX
#define DSP_MIX_AUXVOL_L ((unsigned char)(0x50))
#define DSP_MIX_AUXVOL_R ((unsigned char)(0x51))
// I/O length
#define CM_EXTENT_CODEC 0x100
#define CM_EXTENT_MIDI 0x2
#define CM_EXTENT_SYNTH 0x4
#define CM_EXTENT_GAME 0x8
// Function Control Register 0 (00h)
#define CHADC0 0x01
#define CHADC1 0x02
#define PAUSE0 0x04
#define PAUSE1 0x08
// Function Control Register 0+2 (02h)
#define CHEN0 0x01
#define CHEN1 0x02
#define RST_CH0 0x04
#define RST_CH1 0x08
// Function Control Register 1 (04h)
#define JYSTK_EN 0x02
#define UART_EN 0x04
#define SPDO2DAC 0x40
#define SPDFLOOP 0x80
// Function Control Register 1+1 (05h)
#define SPDF_0 0x01
#define SPDF_1 0x02
#define ASFC 0x1c
#define DSFC 0xe0
#define SPDIF2DAC (SPDF_1 << 8 | SPDO2DAC)
// Channel Format Register (08h)
#define CM_CFMT_STEREO 0x01
#define CM_CFMT_16BIT 0x02
#define CM_CFMT_MASK 0x03
#define POLVALID 0x20
#define INVSPDIFI 0x80
// Channel Format Register+2 (0ah)
#define SPD24SEL 0x20
// Channel Format Register+3 (0bh)
#define CHB3D 0x20
#define CHB3D5C 0x80
// Interrupt Hold/Clear Register+2 (0eh)
#define CH0_INT_EN 0x01
#define CH1_INT_EN 0x02
// Interrupt Register (10h)
#define CHINT0 0x01
#define CHINT1 0x02
#define CH0BUSY 0x04
#define CH1BUSY 0x08
// Legacy Control/Status Register+1 (15h)
#define EXBASEN 0x10
#define BASE2LIN 0x20
#define CENTR2LIN 0x40
#define CB2LIN (BASE2LIN | CENTR2LIN)
#define CHB3D6C 0x80
// Legacy Control/Status Register+2 (16h)
#define DAC2SPDO 0x20
#define SPDCOPYRHT 0x40
#define ENSPDOUT 0x80
// Legacy Control/Status Register+3 (17h)
#define FMSEL 0x03
#define VSBSEL 0x0c
#define VMPU 0x60
#define NXCHG 0x80
// Miscellaneous Control Register (18h)
#define REAR2LIN 0x20
#define MUTECH1 0x40
#define ENCENTER 0x80
// Miscellaneous Control Register+1 (19h)
#define SELSPDIFI2 0x01
#define SPDF_AC97 0x80
// Miscellaneous Control Register+2 (1ah)
#define AC3_EN 0x04
#define FM_EN 0x08
#define SPD32SEL 0x20
#define XCHGDAC 0x40
#define ENDBDAC 0x80
// Miscellaneous Control Register+3 (1bh)
#define SPDIFI48K 0x01
#define SPDO5V 0x02
#define N4SPK3D 0x04
#define RESET 0x40
#define PWD 0x80
#define SPDIF48K (SPDIFI48K << 24 | SPDF_AC97 << 8)
// Mixer1 (24h)
#define CDPLAY 0x01
#define X3DEN 0x02
#define REAR2FRONT 0x10
#define SPK4 0x20
#define WSMUTE 0x40
#define FMMUTE 0x80
// Miscellaneous Register (27h)
#define SPDVALID 0x02
#define CENTR2MIC 0x04
// Miscellaneous Register2 (92h)
#define SPD32KFMT 0x10
#define CM_CFMT_DACSHIFT 2
#define CM_CFMT_ADCSHIFT 0
#define CM_FREQ_DACSHIFT 5
#define CM_FREQ_ADCSHIFT 2
#define RSTDAC RST_CH1
#define RSTADC RST_CH0
#define ENDAC CHEN1
#define ENADC CHEN0
#define PAUSEDAC PAUSE1
#define PAUSEADC PAUSE0
#define CODEC_CMI_ADC_FRAME1 CODEC_CMI_CH0_FRAME1
#define CODEC_CMI_ADC_FRAME2 CODEC_CMI_CH0_FRAME2
#define CODEC_CMI_DAC_FRAME1 CODEC_CMI_CH1_FRAME1
#define CODEC_CMI_DAC_FRAME2 CODEC_CMI_CH1_FRAME2
#define DACINT CHINT1
#define ADCINT CHINT0
#define DACBUSY CH1BUSY
#define ADCBUSY CH0BUSY
#define ENDACINT CH1_INT_EN
#define ENADCINT CH0_INT_EN
static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[] = { 0, 1, 1, 2 };
#define SND_DEV_DSP16 5
#define NR_DEVICE 3 /* maximum number of devices */
#define set_dac1_rate set_adc_rate
#define set_dac1_rate_unlocked set_adc_rate_unlocked
#define stop_dac1 stop_adc
#define stop_dac1_unlocked stop_adc_unlocked
#define get_dmadac1 get_dmaadc
static unsigned int devindex = 0;
//*********************************************/
struct cm_state {
/* magic */
unsigned int magic;
/* list of cmedia devices */
struct list_head devs;
/* the corresponding pci_dev structure */
struct pci_dev *dev;
int dev_audio; /* soundcore stuff */
int dev_mixer;
unsigned int iosb, iobase, iosynth,
iomidi, iogame, irq; /* hardware resources */
unsigned short deviceid; /* pci_id */
struct { /* mixer stuff */
unsigned int modcnt;
unsigned short vol[13];
} mix;
unsigned int rateadc, ratedac; /* wave stuff */
unsigned char fmt, enable;
spinlock_t lock;
struct mutex open_mutex;
mode_t open_mode;
wait_queue_head_t open_wait;
struct dmabuf {
void *rawbuf;
dma_addr_t dmaaddr;
unsigned buforder;
unsigned numfrag;
unsigned fragshift;
unsigned hwptr, swptr;
unsigned total_bytes;
int count;
unsigned error; /* over/underrun */
wait_queue_head_t wait;
unsigned fragsize; /* redundant, but makes calculations easier */
unsigned dmasize;
unsigned fragsamples;
unsigned dmasamples;
unsigned mapped:1; /* OSS stuff */
unsigned ready:1;
unsigned endcleared:1;
unsigned enabled:1;
unsigned ossfragshift;
int ossmaxfrags;
unsigned subdivision;
} dma_dac, dma_adc;
#ifdef CONFIG_SOUND_CMPCI_MIDI
int midi_devc;
struct address_info mpu_data;
#endif
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
struct gameport *gameport;
#endif
int chip_version;
int max_channels;
int curr_channels;
int capability; /* HW capability, various for chip versions */
int status; /* HW or SW state */
int spdif_counter; /* spdif frame counter */
};
/* flags used for capability */
#define CAN_AC3_HW 0x00000001 /* 037 or later */
#define CAN_AC3_SW 0x00000002 /* 033 or later */
#define CAN_AC3 (CAN_AC3_HW | CAN_AC3_SW)
#define CAN_DUAL_DAC 0x00000004 /* 033 or later */
#define CAN_MULTI_CH_HW 0x00000008 /* 039 or later */
#define CAN_MULTI_CH (CAN_MULTI_CH_HW | CAN_DUAL_DAC)
#define CAN_LINE_AS_REAR 0x00000010 /* 033 or later */
#define CAN_LINE_AS_BASS 0x00000020 /* 039 or later */
#define CAN_MIC_AS_BASS 0x00000040 /* 039 or later */
/* flags used for status */
#define DO_AC3_HW 0x00000001
#define DO_AC3_SW 0x00000002
#define DO_AC3 (DO_AC3_HW | DO_AC3_SW)
#define DO_DUAL_DAC 0x00000004
#define DO_MULTI_CH_HW 0x00000008
#define DO_MULTI_CH (DO_MULTI_CH_HW | DO_DUAL_DAC)
#define DO_LINE_AS_REAR 0x00000010 /* 033 or later */
#define DO_LINE_AS_BASS 0x00000020 /* 039 or later */
#define DO_MIC_AS_BASS 0x00000040 /* 039 or later */
#define DO_SPDIF_OUT 0x00000100
#define DO_SPDIF_IN 0x00000200
#define DO_SPDIF_LOOP 0x00000400
#define DO_BIGENDIAN_W 0x00001000 /* used in PowerPC */
#define DO_BIGENDIAN_R 0x00002000 /* used in PowerPC */
static LIST_HEAD(devs);
static int mpuio;
static int fmio;
static int joystick;
static int spdif_inverse;
static int spdif_loop;
static int spdif_out;
static int use_line_as_rear;
static int use_line_as_bass;
static int use_mic_as_bass;
static int mic_boost;
static int hw_copy;
module_param(mpuio, int, 0);
module_param(fmio, int, 0);
module_param(joystick, bool, 0);
module_param(spdif_inverse, bool, 0);
module_param(spdif_loop, bool, 0);
module_param(spdif_out, bool, 0);
module_param(use_line_as_rear, bool, 0);
module_param(use_line_as_bass, bool, 0);
module_param(use_mic_as_bass, bool, 0);
module_param(mic_boost, bool, 0);
module_param(hw_copy, bool, 0);
MODULE_PARM_DESC(mpuio, "(0x330, 0x320, 0x310, 0x300) Base of MPU-401, 0 to disable");
MODULE_PARM_DESC(fmio, "(0x388, 0x3C8, 0x3E0) Base of OPL3, 0 to disable");
MODULE_PARM_DESC(joystick, "(1/0) Enable joystick interface, still need joystick driver");
MODULE_PARM_DESC(spdif_inverse, "(1/0) Invert S/PDIF-in signal");
MODULE_PARM_DESC(spdif_loop, "(1/0) Route S/PDIF-in to S/PDIF-out directly");
MODULE_PARM_DESC(spdif_out, "(1/0) Send PCM to S/PDIF-out (PCM volume will not function)");
MODULE_PARM_DESC(use_line_as_rear, "(1/0) Use line-in jack as rear-out");
MODULE_PARM_DESC(use_line_as_bass, "(1/0) Use line-in jack as bass/center");
MODULE_PARM_DESC(use_mic_as_bass, "(1/0) Use mic-in jack as bass/center");
MODULE_PARM_DESC(mic_boost, "(1/0) Enable microphone boost");
MODULE_PARM_DESC(hw_copy, "Copy front channel to surround channel");
/* --------------------------------------------------------------------- */
static inline unsigned ld2(unsigned int x)
{
unsigned exp=16,l=5,r=0;
static const unsigned num[]={0x2,0x4,0x10,0x100,0x10000};
/* num: 2, 4, 16, 256, 65536 */
/* exp: 1, 2, 4, 8, 16 */
while(l--) {
if( x >= num[l] ) {
if(num[l]>2) x >>= exp;
r+=exp;
}
exp>>=1;
}
return r;
}
/* --------------------------------------------------------------------- */
static void maskb(unsigned int addr, unsigned int mask, unsigned int value)
{
outb((inb(addr) & mask) | value, addr);
}
static void maskw(unsigned int addr, unsigned int mask, unsigned int value)
{
outw((inw(addr) & mask) | value, addr);
}
static void maskl(unsigned int addr, unsigned int mask, unsigned int value)
{
outl((inl(addr) & mask) | value, addr);
}
static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count)
{
if (addr)
outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC0, 0);
}
static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count)
{
outl(addr, s->iobase + CODEC_CMI_ADC_FRAME1);
outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2);
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, CHADC0);
}
static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count)
{
outl(addr, s->iobase + CODEC_CMI_DAC_FRAME1);
outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2);
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, 0);
if (s->status & DO_DUAL_DAC)
set_dmadac1(s, 0, count);
}
static void set_countadc(struct cm_state *s, unsigned count)
{
outw(count - 1, s->iobase + CODEC_CMI_ADC_FRAME2 + 2);
}
static void set_countdac(struct cm_state *s, unsigned count)
{
outw(count - 1, s->iobase + CODEC_CMI_DAC_FRAME2 + 2);
if (s->status & DO_DUAL_DAC)
set_countadc(s, count);
}
static unsigned get_dmadac(struct cm_state *s)
{
unsigned int curr_addr;
curr_addr = inw(s->iobase + CODEC_CMI_DAC_FRAME2) + 1;
curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
curr_addr = s->dma_dac.dmasize - curr_addr;
return curr_addr;
}
static unsigned get_dmaadc(struct cm_state *s)
{
unsigned int curr_addr;
curr_addr = inw(s->iobase + CODEC_CMI_ADC_FRAME2) + 1;
curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK];
curr_addr = s->dma_adc.dmasize - curr_addr;
return curr_addr;
}
static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data)
{
unsigned char regval, pseudo;
// pseudo register
if (idx == DSP_MIX_AUXVOL_L) {
data >>= 4;
data &= 0x0f;
regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0x0f;
outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
return;
}
if (idx == DSP_MIX_AUXVOL_R) {
data &= 0xf0;
regval = inb(s->iobase + CODEC_CMI_AUX_VOL) & ~0xf0;
outb(regval | data, s->iobase + CODEC_CMI_AUX_VOL);
return;
}
outb(idx, s->iobase + CODEC_SB16_ADDR);
udelay(10);
// pseudo bits
if (idx == DSP_MIX_OUTMIXIDX) {
pseudo = data & ~0x1f;
pseudo >>= 1;
regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x30;
outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
}
if (idx == DSP_MIX_ADCMIXIDX_L) {
pseudo = data & 0x80;
pseudo >>= 1;
regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x40;
outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
}
if (idx == DSP_MIX_ADCMIXIDX_R) {
pseudo = data & 0x80;
regval = inb(s->iobase + CODEC_CMI_MIXER2) & ~0x80;
outb(regval | pseudo, s->iobase + CODEC_CMI_MIXER2);
}
outb(data, s->iobase + CODEC_SB16_DATA);
udelay(10);
}
static unsigned char rdmixer(struct cm_state *s, unsigned char idx)
{
unsigned char v, pseudo;
// pseudo register
if (idx == DSP_MIX_AUXVOL_L) {
v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0x0f;
v <<= 4;
return v;
}
if (idx == DSP_MIX_AUXVOL_L) {
v = inb(s->iobase + CODEC_CMI_AUX_VOL) & 0xf0;
return v;
}
outb(idx, s->iobase + CODEC_SB16_ADDR);
udelay(10);
v = inb(s->iobase + CODEC_SB16_DATA);
udelay(10);
// pseudo bits
if (idx == DSP_MIX_OUTMIXIDX) {
pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x30;
pseudo <<= 1;
v |= pseudo;
}
if (idx == DSP_MIX_ADCMIXIDX_L) {
pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x40;
pseudo <<= 1;
v |= pseudo;
}
if (idx == DSP_MIX_ADCMIXIDX_R) {
pseudo = inb(s->iobase + CODEC_CMI_MIXER2) & 0x80;
v |= pseudo;
}
return v;
}
static void set_fmt_unlocked(struct cm_state *s, unsigned char mask, unsigned char data)
{
if (mask && s->chip_version > 0) { /* 8338 cannot keep this */
s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT);
udelay(10);
}
s->fmt = (s->fmt & mask) | data;
outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT);
udelay(10);
}
static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
set_fmt_unlocked(s,mask,data);
spin_unlock_irqrestore(&s->lock, flags);
}
static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data)
{
outb(idx, s->iobase + CODEC_SB16_ADDR);
udelay(10);
outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA);
udelay(10);
}
static struct {
unsigned rate;
unsigned lower;
unsigned upper;
unsigned char freq;
} rate_lookup[] =
{
{ 5512, (0 + 5512) / 2, (5512 + 8000) / 2, 0 },
{ 8000, (5512 + 8000) / 2, (8000 + 11025) / 2, 4 },
{ 11025, (8000 + 11025) / 2, (11025 + 16000) / 2, 1 },
{ 16000, (11025 + 16000) / 2, (16000 + 22050) / 2, 5 },
{ 22050, (16000 + 22050) / 2, (22050 + 32000) / 2, 2 },
{ 32000, (22050 + 32000) / 2, (32000 + 44100) / 2, 6 },
{ 44100, (32000 + 44100) / 2, (44100 + 48000) / 2, 3 },
{ 48000, (44100 + 48000) / 2, 48000, 7 }
};
static void set_spdif_copyright(struct cm_state *s, int spdif_copyright)
{
/* enable SPDIF-in Copyright */
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~SPDCOPYRHT, spdif_copyright ? SPDCOPYRHT : 0);
}
static void set_spdif_loop(struct cm_state *s, int spdif_loop)
{
/* enable SPDIF loop */
if (spdif_loop) {
s->status |= DO_SPDIF_LOOP;
/* turn on spdif-in to spdif-out */
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, SPDFLOOP);
} else {
s->status &= ~DO_SPDIF_LOOP;
/* turn off spdif-in to spdif-out */
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDFLOOP, 0);
}
}
static void set_spdif_monitor(struct cm_state *s, int channel)
{
// SPDO2DAC
maskw(s->iobase + CODEC_CMI_FUNCTRL1, ~SPDO2DAC, channel == 2 ? SPDO2DAC : 0);
// CDPLAY
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, channel ? CDPLAY : 0);
}
static void set_spdifout_level(struct cm_state *s, int level5v)
{
/* SPDO5V */
if (s->chip_version > 0)
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~SPDO5V, level5v ? SPDO5V : 0);
}
static void set_spdifin_inverse(struct cm_state *s, int spdif_inverse)
{
if (s->chip_version == 0) /* 8338 has not this feature */
return;
if (spdif_inverse) {
/* turn on spdif-in inverse */
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_CHFORMAT, ~0, INVSPDIFI);
else
maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 1);
} else {
/* turn off spdif-ininverse */
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_CHFORMAT, ~INVSPDIFI, 0);
else
maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~1, 0);
}
}
static void set_spdifin_channel2(struct cm_state *s, int channel2)
{
/* SELSPDIFI2 */
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 1, ~SELSPDIFI2, channel2 ? SELSPDIFI2 : 0);
}
static void set_spdifin_valid(struct cm_state *s, int valid)
{
/* SPDVALID */
maskb(s->iobase + CODEC_CMI_MISC, ~SPDVALID, valid ? SPDVALID : 0);
}
static void set_spdifout_unlocked(struct cm_state *s, unsigned rate)
{
if (rate != 48000 && rate != 44100)
rate = 0;
if (rate == 48000 || rate == 44100) {
set_spdif_loop(s, 0);
// SPDF_1
maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
// SPDIFI48K SPDF_AC97
maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
if (s->chip_version >= 55)
// SPD32KFMT
maskb(s->iobase + CODEC_CMI_MISC_CTRL2, ~SPD32KFMT, rate == 48000 ? SPD32KFMT : 0);
if (s->chip_version > 0)
// ENSPDOUT
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~0, ENSPDOUT);
// monitor SPDIF out
set_spdif_monitor(s, 2);
s->status |= DO_SPDIF_OUT;
} else {
maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~ENSPDOUT, 0);
// monitor none
set_spdif_monitor(s, 0);
s->status &= ~DO_SPDIF_OUT;
}
}
static void set_spdifout(struct cm_state *s, unsigned rate)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
set_spdifout_unlocked(s,rate);
spin_unlock_irqrestore(&s->lock, flags);
}
static void set_spdifin_unlocked(struct cm_state *s, unsigned rate)
{
if (rate == 48000 || rate == 44100) {
// SPDF_1
maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0, SPDF_1);
// SPDIFI48K SPDF_AC97
maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~SPDIF48K, rate == 48000 ? SPDIF48K : 0);
s->status |= DO_SPDIF_IN;
} else {
maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~SPDF_1, 0);
s->status &= ~DO_SPDIF_IN;
}
}
static void set_spdifin(struct cm_state *s, unsigned rate)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
set_spdifin_unlocked(s,rate);
spin_unlock_irqrestore(&s->lock, flags);
}
/* find parity for bit 4~30 */
static unsigned parity(unsigned data)
{
unsigned parity = 0;
int counter = 4;
data >>= 4; // start from bit 4
while (counter <= 30) {
if (data & 1)
parity++;
data >>= 1;
counter++;
}
return parity & 1;
}
static void set_ac3_unlocked(struct cm_state *s, unsigned rate)
{
if (!(s->capability & CAN_AC3))
return;
/* enable AC3 */
if (rate && rate != 44100)
rate = 48000;
if (rate == 48000 || rate == 44100) {
// mute DAC
maskb(s->iobase + CODEC_CMI_MIXER1, ~0, WSMUTE);
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~0, MUTECH1);
// AC3EN for 039, 0x04
if (s->chip_version >= 39) {
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, AC3_EN);
if (s->chip_version == 55)
maskb(s->iobase + CODEC_CMI_SPDIF_CTRL, ~2, 0);
// AC3EN for 037, 0x10
} else if (s->chip_version == 37)
maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x10);
if (s->capability & CAN_AC3_HW) {
// SPD24SEL for 039, 0x20, but cannot be set
if (s->chip_version == 39)
maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, SPD24SEL);
// SPD24SEL for 037, 0x02
else if (s->chip_version == 37)
maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x02);
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_MIXER1, ~CDPLAY, 0);
s->status |= DO_AC3_HW;
} else {
// SPD32SEL for 037 & 039
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, SPD32SEL);
// set 176K sample rate to fix 033 HW bug
if (s->chip_version == 33) {
if (rate == 48000)
maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0, 0x08);
else
maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
}
s->status |= DO_AC3_SW;
}
} else {
maskb(s->iobase + CODEC_CMI_MIXER1, ~WSMUTE, 0);
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~MUTECH1, 0);
maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~(SPD24SEL|0x12), 0);
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~(SPD32SEL|AC3_EN), 0);
if (s->chip_version == 33)
maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0);
if (s->chip_version >= 39)
maskb(s->iobase + CODEC_CMI_MIXER1, ~0, CDPLAY);
s->status &= ~DO_AC3;
}
s->spdif_counter = 0;
}
static void set_line_as_rear(struct cm_state *s, int use_line_as_rear)
{
if (!(s->capability & CAN_LINE_AS_REAR))
return;
if (use_line_as_rear) {
maskb(s->iobase + CODEC_CMI_MIXER1, ~0, SPK4);
s->status |= DO_LINE_AS_REAR;
} else {
maskb(s->iobase + CODEC_CMI_MIXER1, ~SPK4, 0);
s->status &= ~DO_LINE_AS_REAR;
}
}
static void set_line_as_bass(struct cm_state *s, int use_line_as_bass)
{
if (!(s->capability & CAN_LINE_AS_BASS))
return;
if (use_line_as_bass) {
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0, CB2LIN);
s->status |= DO_LINE_AS_BASS;
} else {
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CB2LIN, 0);
s->status &= ~DO_LINE_AS_BASS;
}
}
static void set_mic_as_bass(struct cm_state *s, int use_mic_as_bass)
{
if (!(s->capability & CAN_MIC_AS_BASS))
return;
if (use_mic_as_bass) {
maskb(s->iobase + CODEC_CMI_MISC, ~0, 0x04);
s->status |= DO_MIC_AS_BASS;
} else {
maskb(s->iobase + CODEC_CMI_MISC, ~0x04, 0);
s->status &= ~DO_MIC_AS_BASS;
}
}
static void set_hw_copy(struct cm_state *s, int hw_copy)
{
if (s->max_channels > 2 && hw_copy)
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~0, N4SPK3D);
else
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~N4SPK3D, 0);
}
static void set_ac3(struct cm_state *s, unsigned rate)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
set_spdifout_unlocked(s, rate);
set_ac3_unlocked(s, rate);
spin_unlock_irqrestore(&s->lock, flags);
}
static int trans_ac3(struct cm_state *s, void *dest, const char __user *source, int size)
{
int i = size / 2;
unsigned long data;
unsigned short data16;
unsigned long *dst = (unsigned long *) dest;
unsigned short __user *src = (unsigned short __user *)source;
int err;
do {
if ((err = __get_user(data16, src++)))
return err;
data = (unsigned long)le16_to_cpu(data16);
data <<= 12; // ok for 16-bit data
if (s->spdif_counter == 2 || s->spdif_counter == 3)
data |= 0x40000000; // indicate AC-3 raw data
if (parity(data))
data |= 0x80000000; // parity
if (s->spdif_counter == 0)
data |= 3; // preamble 'M'
else if (s->spdif_counter & 1)
data |= 5; // odd, 'W'
else
data |= 9; // even, 'M'
*dst++ = cpu_to_le32(data);
s->spdif_counter++;
if (s->spdif_counter == 384)
s->spdif_counter = 0;
} while (--i);
return 0;
}
static void set_adc_rate_unlocked(struct cm_state *s, unsigned rate)
{
unsigned char freq = 4;
int i;
if (rate > 48000)
rate = 48000;
if (rate < 8000)
rate = 8000;
for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
rate = rate_lookup[i].rate;
freq = rate_lookup[i].freq;
break;
}
}
s->rateadc = rate;
freq <<= CM_FREQ_ADCSHIFT;
maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
}
static void set_adc_rate(struct cm_state *s, unsigned rate)
{
unsigned long flags;
unsigned char freq = 4;
int i;
if (rate > 48000)
rate = 48000;
if (rate < 8000)
rate = 8000;
for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
rate = rate_lookup[i].rate;
freq = rate_lookup[i].freq;
break;
}
}
s->rateadc = rate;
freq <<= CM_FREQ_ADCSHIFT;
spin_lock_irqsave(&s->lock, flags);
maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~ASFC, freq);
spin_unlock_irqrestore(&s->lock, flags);
}
static void set_dac_rate(struct cm_state *s, unsigned rate)
{
unsigned long flags;
unsigned char freq = 4;
int i;
if (rate > 48000)
rate = 48000;
if (rate < 8000)
rate = 8000;
for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) {
if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) {
rate = rate_lookup[i].rate;
freq = rate_lookup[i].freq;
break;
}
}
s->ratedac = rate;
freq <<= CM_FREQ_DACSHIFT;
spin_lock_irqsave(&s->lock, flags);
maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~DSFC, freq);
spin_unlock_irqrestore(&s->lock, flags);
if (s->curr_channels <= 2 && spdif_out)
set_spdifout(s, rate);
if (s->status & DO_DUAL_DAC)
set_dac1_rate(s, rate);
}
/* --------------------------------------------------------------------- */
static inline void reset_adc(struct cm_state *s)
{
/* reset bus master */
outb(s->enable | RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
udelay(10);
outb(s->enable & ~RSTADC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}
static inline void reset_dac(struct cm_state *s)
{
/* reset bus master */
outb(s->enable | RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
udelay(10);
outb(s->enable & ~RSTDAC, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
if (s->status & DO_DUAL_DAC)
reset_adc(s);
}
static inline void pause_adc(struct cm_state *s)
{
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEADC);
}
static inline void pause_dac(struct cm_state *s)
{
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, PAUSEDAC);
if (s->status & DO_DUAL_DAC)
pause_adc(s);
}
static inline void disable_adc(struct cm_state *s)
{
/* disable channel */
s->enable &= ~ENADC;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
reset_adc(s);
}
static inline void disable_dac(struct cm_state *s)
{
/* disable channel */
s->enable &= ~ENDAC;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
reset_dac(s);
if (s->status & DO_DUAL_DAC)
disable_adc(s);
}
static inline void enable_adc(struct cm_state *s)
{
if (!(s->enable & ENADC)) {
/* enable channel */
s->enable |= ENADC;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEADC, 0);
}
static inline void enable_dac_unlocked(struct cm_state *s)
{
if (!(s->enable & ENDAC)) {
/* enable channel */
s->enable |= ENDAC;
outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2);
}
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~PAUSEDAC, 0);
if (s->status & DO_DUAL_DAC)
enable_adc(s);
}
static inline void stop_adc_unlocked(struct cm_state *s)
{
if (s->enable & ENADC) {
/* disable interrupt */
maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENADCINT, 0);
disable_adc(s);
}
}
static inline void stop_adc(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
stop_adc_unlocked(s);
spin_unlock_irqrestore(&s->lock, flags);
}
static inline void stop_dac_unlocked(struct cm_state *s)
{
if (s->enable & ENDAC) {
/* disable interrupt */
maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~ENDACINT, 0);
disable_dac(s);
}
if (s->status & DO_DUAL_DAC)
stop_dac1_unlocked(s);
}
static inline void stop_dac(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
stop_dac_unlocked(s);
spin_unlock_irqrestore(&s->lock, flags);
}
static inline void start_adc_unlocked(struct cm_state *s)
{
if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize))
&& s->dma_adc.ready) {
/* enable interrupt */
maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
enable_adc(s);
}
}
static void start_adc(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
start_adc_unlocked(s);
spin_unlock_irqrestore(&s->lock, flags);
}
static void start_dac1_unlocked(struct cm_state *s)
{
if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) {
/* enable interrupt */
maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENADCINT);
enable_dac_unlocked(s);
}
}
static void start_dac_unlocked(struct cm_state *s)
{
if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) {
/* enable interrupt */
maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, ENDACINT);
enable_dac_unlocked(s);
}
if (s->status & DO_DUAL_DAC)
start_dac1_unlocked(s);
}
static void start_dac(struct cm_state *s)
{
unsigned long flags;
spin_lock_irqsave(&s->lock, flags);
start_dac_unlocked(s);
spin_unlock_irqrestore(&s->lock, flags);
}
static int prog_dmabuf(struct cm_state *s, unsigned rec);
static int set_dac_channels(struct cm_state *s, int channels)
{
unsigned long flags;
static unsigned int fmmute = 0;
spin_lock_irqsave(&s->lock, flags);
if ((channels > 2) && (channels <= s->max_channels)
&& (((s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK) == (CM_CFMT_STEREO | CM_CFMT_16BIT))) {
set_spdifout_unlocked(s, 0);
if (s->capability & CAN_MULTI_CH_HW) {
// NXCHG
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0, NXCHG);
// CHB3D or CHB3D5C
maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), channels > 4 ? CHB3D5C : CHB3D);
// CHB3D6C
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, channels == 6 ? CHB3D6C : 0);
// ENCENTER
maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~ENCENTER, channels == 6 ? ENCENTER : 0);
s->status |= DO_MULTI_CH_HW;
} else if (s->capability & CAN_DUAL_DAC) {
unsigned char fmtm = ~0, fmts = 0;
ssize_t ret;
// ENDBDAC, turn on double DAC mode
// XCHGDAC, CH0 -> back, CH1->front
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, ENDBDAC|XCHGDAC);
// mute FM
fmmute = inb(s->iobase + CODEC_CMI_MIXER1) & FMMUTE;
maskb(s->iobase + CODEC_CMI_MIXER1, ~0, FMMUTE);
s->status |= DO_DUAL_DAC;
// prepare secondary buffer
spin_unlock_irqrestore(&s->lock, flags);
ret = prog_dmabuf(s, 1);
if (ret) return ret;
spin_lock_irqsave(&s->lock, flags);
// copy the hw state
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
// the HW only support 16-bit stereo
fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
set_fmt_unlocked(s, fmtm, fmts);
set_adc_rate_unlocked(s, s->ratedac);
}
// disable 4 speaker mode (analog duplicate)
set_hw_copy(s, 0);
s->curr_channels = channels;
// enable jack redirect
set_line_as_rear(s, use_line_as_rear);
if (channels > 4) {
set_line_as_bass(s, use_line_as_bass);
set_mic_as_bass(s, use_mic_as_bass);
}
} else {
if (s->status & DO_MULTI_CH_HW) {
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~NXCHG, 0);
maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~(CHB3D5C|CHB3D), 0);
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~CHB3D6C, 0);
} else if (s->status & DO_DUAL_DAC) {
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~ENDBDAC, 0);
maskb(s->iobase + CODEC_CMI_MIXER1, ~FMMUTE, fmmute);
}
// enable 4 speaker mode (analog duplicate)
set_hw_copy(s, hw_copy);
s->status &= ~DO_MULTI_CH;
s->curr_channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
// disable jack redirect
set_line_as_rear(s, hw_copy ? use_line_as_rear : 0);
set_line_as_bass(s, 0);
set_mic_as_bass(s, 0);
}
spin_unlock_irqrestore(&s->lock, flags);
return s->curr_channels;
}
/* --------------------------------------------------------------------- */
#define DMABUF_DEFAULTORDER (16-PAGE_SHIFT)
#define DMABUF_MINORDER 1
static void dealloc_dmabuf(struct cm_state *s, struct dmabuf *db)
{
struct page *pstart, *pend;
if (db->rawbuf) {
/* undo marking the pages as reserved */
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
ClearPageReserved(pstart);
pci_free_consistent(s->dev, PAGE_SIZE << db->buforder, db->rawbuf, db->dmaaddr);
}
db->rawbuf = NULL;
db->mapped = db->ready = 0;
}
/* Ch1 is used for playback, Ch0 is used for recording */
static int prog_dmabuf(struct cm_state *s, unsigned rec)
{
struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac;
unsigned rate = rec ? s->rateadc : s->ratedac;
int order;
unsigned bytepersec;
unsigned bufs;
struct page *pstart, *pend;
unsigned char fmt;
unsigned long flags;
fmt = s->fmt;
if (rec) {
stop_adc(s);
fmt >>= CM_CFMT_ADCSHIFT;
} else {
stop_dac(s);
fmt >>= CM_CFMT_DACSHIFT;
}
fmt &= CM_CFMT_MASK;
db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0;
if (!db->rawbuf) {
db->ready = db->mapped = 0;
for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--)
if ((db->rawbuf = pci_alloc_consistent(s->dev, PAGE_SIZE << order, &db->dmaaddr)))
break;
if (!db->rawbuf || !db->dmaaddr)
return -ENOMEM;
db->buforder = order;
/* now mark the pages as reserved; otherwise remap_pfn_range doesn't do what we want */
pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1);
for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++)
SetPageReserved(pstart);
}
bytepersec = rate << sample_shift[fmt];
bufs = PAGE_SIZE << db->buforder;
if (db->ossfragshift) {
if ((1000 << db->ossfragshift) < bytepersec)
db->fragshift = ld2(bytepersec/1000);
else
db->fragshift = db->ossfragshift;
} else {
db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1));
if (db->fragshift < 3)
db->fragshift = 3;
}
db->numfrag = bufs >> db->fragshift;
while (db->numfrag < 4 && db->fragshift > 3) {
db->fragshift--;
db->numfrag = bufs >> db->fragshift;
}
db->fragsize = 1 << db->fragshift;
if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag)
db->numfrag = db->ossmaxfrags;
/* to make fragsize >= 4096 */
db->fragsamples = db->fragsize >> sample_shift[fmt];
db->dmasize = db->numfrag << db->fragshift;
db->dmasamples = db->dmasize >> sample_shift[fmt];
memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize);
spin_lock_irqsave(&s->lock, flags);
if (rec) {
if (s->status & DO_DUAL_DAC)
set_dmadac1(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
else
set_dmaadc(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
/* program sample counts */
set_countdac(s, db->fragsamples);
} else {
set_dmadac(s, db->dmaaddr, db->dmasize >> sample_shift[fmt]);
/* program sample counts */
set_countdac(s, db->fragsamples);
}
spin_unlock_irqrestore(&s->lock, flags);
db->enabled = 1;
db->ready = 1;
return 0;
}
static inline void clear_advance(struct cm_state *s)
{
unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80;
unsigned char *buf = s->dma_dac.rawbuf;
unsigned char *buf1 = s->dma_adc.rawbuf;
unsigned bsize = s->dma_dac.dmasize;
unsigned bptr = s->dma_dac.swptr;
unsigned len = s->dma_dac.fragsize;
if (bptr + len > bsize) {
unsigned x = bsize - bptr;
memset(buf + bptr, c, x);
if (s->status & DO_DUAL_DAC)
memset(buf1 + bptr, c, x);
bptr = 0;
len -= x;
}
memset(buf + bptr, c, len);
if (s->status & DO_DUAL_DAC)
memset(buf1 + bptr, c, len);
}
/* call with spinlock held! */
static void cm_update_ptr(struct cm_state *s)
{
unsigned hwptr;
int diff;
/* update ADC pointer */
if (s->dma_adc.ready) {
if (s->status & DO_DUAL_DAC) {
/* the dac part will finish for this */
} else {
hwptr = get_dmaadc(s) % s->dma_adc.dmasize;
diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize;
s->dma_adc.hwptr = hwptr;
s->dma_adc.total_bytes += diff;
s->dma_adc.count += diff;
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
wake_up(&s->dma_adc.wait);
if (!s->dma_adc.mapped) {
if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) {
pause_adc(s);
s->dma_adc.error++;
}
}
}
}
/* update DAC pointer */
if (s->dma_dac.ready) {
hwptr = get_dmadac(s) % s->dma_dac.dmasize;
diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize;
s->dma_dac.hwptr = hwptr;
s->dma_dac.total_bytes += diff;
if (s->status & DO_DUAL_DAC) {
s->dma_adc.hwptr = hwptr;
s->dma_adc.total_bytes += diff;
}
if (s->dma_dac.mapped) {
s->dma_dac.count += diff;
if (s->status & DO_DUAL_DAC)
s->dma_adc.count += diff;
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
wake_up(&s->dma_dac.wait);
} else {
s->dma_dac.count -= diff;
if (s->status & DO_DUAL_DAC)
s->dma_adc.count -= diff;
if (s->dma_dac.count <= 0) {
pause_dac(s);
s->dma_dac.error++;
} else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) {
clear_advance(s);
s->dma_dac.endcleared = 1;
if (s->status & DO_DUAL_DAC)
s->dma_adc.endcleared = 1;
}
if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize)
wake_up(&s->dma_dac.wait);
}
}
}
static irqreturn_t cm_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct cm_state *s = (struct cm_state *)dev_id;
unsigned int intsrc, intstat;
unsigned char mask = 0;
/* fastpath out, to ease interrupt sharing */
intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS);
if (!(intsrc & 0x80000000))
return IRQ_NONE;
spin_lock(&s->lock);
intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2);
/* acknowledge interrupt */
if (intsrc & ADCINT)
mask |= ENADCINT;
if (intsrc & DACINT)
mask |= ENDACINT;
outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2);
cm_update_ptr(s);
spin_unlock(&s->lock);
#ifdef CONFIG_SOUND_CMPCI_MIDI
if (intsrc & 0x00010000) { // UART interrupt
if (s->midi_devc && intchk_mpu401((void *)s->midi_devc))
mpuintr(irq, (void *)s->midi_devc, regs);
else
inb(s->iomidi);// dummy read
}
#endif
return IRQ_HANDLED;
}
/* --------------------------------------------------------------------- */
static const char invalid_magic[] = KERN_CRIT "cmpci: invalid magic value\n";
#define VALIDATE_STATE(s) \
({ \
if (!(s) || (s)->magic != CM_MAGIC) { \
printk(invalid_magic); \
return -ENXIO; \
} \
})
/* --------------------------------------------------------------------- */
#define MT_4 1
#define MT_5MUTE 2
#define MT_4MUTEMONO 3
#define MT_6MUTE 4
#define MT_5MUTEMONO 5
static const struct {
unsigned left;
unsigned right;
unsigned type;
unsigned rec;
unsigned play;
} mixtable[SOUND_MIXER_NRDEVICES] = {
[SOUND_MIXER_CD] = { DSP_MIX_CDVOLIDX_L, DSP_MIX_CDVOLIDX_R, MT_5MUTE, 0x04, 0x06 },
[SOUND_MIXER_LINE] = { DSP_MIX_LINEVOLIDX_L, DSP_MIX_LINEVOLIDX_R, MT_5MUTE, 0x10, 0x18 },
[SOUND_MIXER_MIC] = { DSP_MIX_MICVOLIDX, DSP_MIX_MICVOLIDX, MT_5MUTEMONO, 0x01, 0x01 },
[SOUND_MIXER_SYNTH] = { DSP_MIX_FMVOLIDX_L, DSP_MIX_FMVOLIDX_R, MT_5MUTE, 0x40, 0x00 },
[SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE, 0x00, 0x00 },
[SOUND_MIXER_PCM] = { DSP_MIX_VOICEVOLIDX_L, DSP_MIX_VOICEVOLIDX_R, MT_5MUTE, 0x00, 0x00 },
[SOUND_MIXER_LINE1] = { DSP_MIX_AUXVOL_L, DSP_MIX_AUXVOL_R, MT_5MUTE, 0x80, 0x60 },
[SOUND_MIXER_SPEAKER]= { DSP_MIX_SPKRVOLIDX, DSP_MIX_SPKRVOLIDX, MT_5MUTEMONO, 0x00, 0x01 }
};
static const unsigned char volidx[SOUND_MIXER_NRDEVICES] =
{
[SOUND_MIXER_CD] = 1,
[SOUND_MIXER_LINE] = 2,
[SOUND_MIXER_MIC] = 3,
[SOUND_MIXER_SYNTH] = 4,
[SOUND_MIXER_VOLUME] = 5,
[SOUND_MIXER_PCM] = 6,
[SOUND_MIXER_LINE1] = 7,
[SOUND_MIXER_SPEAKER]= 8
};
static unsigned mixer_outmask(struct cm_state *s)
{
unsigned long flags;
int i, j, k;
spin_lock_irqsave(&s->lock, flags);
j = rdmixer(s, DSP_MIX_OUTMIXIDX);
spin_unlock_irqrestore(&s->lock, flags);
for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (j & mixtable[i].play)
k |= 1 << i;
return k;
}
static unsigned mixer_recmask(struct cm_state *s)
{
unsigned long flags;
int i, j, k;
spin_lock_irqsave(&s->lock, flags);
j = rdmixer(s, DSP_MIX_ADCMIXIDX_L);
spin_unlock_irqrestore(&s->lock, flags);
for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (j & mixtable[i].rec)
k |= 1 << i;
return k;
}
static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg)
{
unsigned long flags;
int i, val, j;
unsigned char l, r, rl, rr;
void __user *argp = (void __user *)arg;
int __user *p = argp;
VALIDATE_STATE(s);
if (cmd == SOUND_MIXER_INFO) {
mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, "cmpci", sizeof(info.id));
strlcpy(info.name, "C-Media PCI", sizeof(info.name));
info.modify_counter = s->mix.modcnt;
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == SOUND_OLD_MIXER_INFO) {
_old_mixer_info info;
memset(&info, 0, sizeof(info));
strlcpy(info.id, "cmpci", sizeof(info.id));
strlcpy(info.name, "C-Media cmpci", sizeof(info.name));
if (copy_to_user(argp, &info, sizeof(info)))
return -EFAULT;
return 0;
}
if (cmd == OSS_GETVERSION)
return put_user(SOUND_VERSION, p);
if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
return -EINVAL;
if (_SIOC_DIR(cmd) == _SIOC_READ) {
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
val = mixer_recmask(s);
return put_user(val, p);
case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
val = mixer_outmask(s);
return put_user(val, p);
case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].type)
val |= 1 << i;
return put_user(val, p);
case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].rec)
val |= 1 << i;
return put_user(val, p);
case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].play)
val |= 1 << i;
return put_user(val, p);
case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */
for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO)
val |= 1 << i;
return put_user(val, p);
case SOUND_MIXER_CAPS:
return put_user(0, p);
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
return -EINVAL;
if (!volidx[i])
return -EINVAL;
return put_user(s->mix.vol[volidx[i]-1], p);
}
}
if (_SIOC_DIR(cmd) != (_SIOC_READ|_SIOC_WRITE))
return -EINVAL;
s->mix.modcnt++;
switch (_IOC_NR(cmd)) {
case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */
if (get_user(val, p))
return -EFAULT;
i = hweight32(val);
for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if (!(val & (1 << i)))
continue;
if (!mixtable[i].rec) {
val &= ~(1 << i);
continue;
}
j |= mixtable[i].rec;
}
spin_lock_irqsave(&s->lock, flags);
wrmixer(s, DSP_MIX_ADCMIXIDX_L, j);
wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1) | (j & 0x80));
spin_unlock_irqrestore(&s->lock, flags);
return 0;
case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */
if (get_user(val, p))
return -EFAULT;
for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) {
if (!(val & (1 << i)))
continue;
if (!mixtable[i].play) {
val &= ~(1 << i);
continue;
}
j |= mixtable[i].play;
}
spin_lock_irqsave(&s->lock, flags);
wrmixer(s, DSP_MIX_OUTMIXIDX, j);
spin_unlock_irqrestore(&s->lock, flags);
return 0;
default:
i = _IOC_NR(cmd);
if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type)
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
l = val & 0xff;
r = (val >> 8) & 0xff;
if (l > 100)
l = 100;
if (r > 100)
r = 100;
spin_lock_irqsave(&s->lock, flags);
switch (mixtable[i].type) {
case MT_4:
if (l >= 10)
l -= 10;
if (r >= 10)
r -= 10;
frobindir(s, mixtable[i].left, 0xf0, l / 6);
frobindir(s, mixtable[i].right, 0xf0, l / 6);
break;
case MT_4MUTEMONO:
rl = (l < 4 ? 0 : (l - 5) / 3) & 31;
rr = (rl >> 2) & 7;
wrmixer(s, mixtable[i].left, rl<<3);
if (i == SOUND_MIXER_MIC)
maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
break;
case MT_5MUTEMONO:
rl = l < 4 ? 0 : (l - 5) / 3;
wrmixer(s, mixtable[i].left, rl<<3);
l = rdmixer(s, DSP_MIX_OUTMIXIDX) & ~mixtable[i].play;
r = rl ? mixtable[i].play : 0;
wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
/* for recording */
if (i == SOUND_MIXER_MIC) {
if (s->chip_version >= 37) {
rr = rl >> 1;
maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, (rr&0x07)<<1);
frobindir(s, DSP_MIX_EXTENSION, ~0x01, rr>>3);
} else {
rr = rl >> 2;
maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1);
}
}
break;
case MT_5MUTE:
rl = l < 4 ? 0 : (l - 5) / 3;
rr = r < 4 ? 0 : (r - 5) / 3;
wrmixer(s, mixtable[i].left, rl<<3);
wrmixer(s, mixtable[i].right, rr<<3);
l = rdmixer(s, DSP_MIX_OUTMIXIDX);
l &= ~mixtable[i].play;
r = (rl|rr) ? mixtable[i].play : 0;
wrmixer(s, DSP_MIX_OUTMIXIDX, l | r);
break;
case MT_6MUTE:
if (l < 6)
rl = 0x00;
else
rl = l * 2 / 3;
if (r < 6)
rr = 0x00;
else
rr = r * 2 / 3;
wrmixer(s, mixtable[i].left, rl);
wrmixer(s, mixtable[i].right, rr);
break;
}
spin_unlock_irqrestore(&s->lock, flags);
if (!volidx[i])
return -EINVAL;
s->mix.vol[volidx[i]-1] = val;
return put_user(s->mix.vol[volidx[i]-1], p);
}
}
/* --------------------------------------------------------------------- */
static int cm_open_mixdev(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
struct list_head *list;
struct cm_state *s;
for (list = devs.next; ; list = list->next) {
if (list == &devs)
return -ENODEV;
s = list_entry(list, struct cm_state, devs);
if (s->dev_mixer == minor)
break;
}
VALIDATE_STATE(s);
file->private_data = s;
return nonseekable_open(inode, file);
}
static int cm_release_mixdev(struct inode *inode, struct file *file)
{
struct cm_state *s = (struct cm_state *)file->private_data;
VALIDATE_STATE(s);
return 0;
}
static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg);
}
static /*const*/ struct file_operations cm_mixer_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.ioctl = cm_ioctl_mixdev,
.open = cm_open_mixdev,
.release = cm_release_mixdev,
};
/* --------------------------------------------------------------------- */
static int drain_dac(struct cm_state *s, int nonblock)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int count, tmo;
if (s->dma_dac.mapped || !s->dma_dac.ready)
return 0;
add_wait_queue(&s->dma_dac.wait, &wait);
for (;;) {
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&s->lock, flags);
count = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
if (count <= 0)
break;
if (signal_pending(current))
break;
if (nonblock) {
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
return -EBUSY;
}
tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac;
tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK];
if (!schedule_timeout(tmo + 1))
DBG(printk(KERN_DEBUG "cmpci: dma timed out??\n");)
}
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
return 0;
}
/* --------------------------------------------------------------------- */
static ssize_t cm_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct cm_state *s = (struct cm_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
if (!access_ok(VERIFY_WRITE, buffer, count))
return -EFAULT;
ret = 0;
add_wait_queue(&s->dma_adc.wait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
swptr = s->dma_adc.swptr;
cnt = s->dma_adc.dmasize-swptr;
if (s->dma_adc.count < cnt)
cnt = s->dma_adc.count;
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if (cnt <= 0) {
if (s->dma_adc.enabled)
start_adc(s);
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
if (!schedule_timeout(HZ)) {
printk(KERN_DEBUG "cmpci: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count,
s->dma_adc.hwptr, s->dma_adc.swptr);
spin_lock_irqsave(&s->lock, flags);
stop_adc_unlocked(s);
set_dmaadc(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
/* program sample counts */
set_countadc(s, s->dma_adc.fragsamples);
s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
spin_unlock_irqrestore(&s->lock, flags);
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out;
}
continue;
}
if (s->status & DO_BIGENDIAN_R) {
int i, err;
unsigned char *src;
char __user *dst = buffer;
unsigned char data[2];
src = (unsigned char *) (s->dma_adc.rawbuf + swptr);
// copy left/right sample at one time
for (i = 0; i < cnt / 2; i++) {
data[0] = src[1];
data[1] = src[0];
if ((err = __put_user(data[0], dst++))) {
ret = err;
goto out;
}
if ((err = __put_user(data[1], dst++))) {
ret = err;
goto out;
}
src += 2;
}
} else if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) {
if (!ret)
ret = -EFAULT;
goto out;
}
swptr = (swptr + cnt) % s->dma_adc.dmasize;
spin_lock_irqsave(&s->lock, flags);
s->dma_adc.swptr = swptr;
s->dma_adc.count -= cnt;
count -= cnt;
buffer += cnt;
ret += cnt;
if (s->dma_adc.enabled)
start_adc_unlocked(s);
spin_unlock_irqrestore(&s->lock, flags);
}
out:
remove_wait_queue(&s->dma_adc.wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
static ssize_t cm_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct cm_state *s = (struct cm_state *)file->private_data;
DECLARE_WAITQUEUE(wait, current);
ssize_t ret;
unsigned long flags;
unsigned swptr;
int cnt;
VALIDATE_STATE(s);
if (s->dma_dac.mapped)
return -ENXIO;
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
if (s->status & DO_DUAL_DAC) {
if (s->dma_adc.mapped)
return -ENXIO;
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
}
if (!access_ok(VERIFY_READ, buffer, count))
return -EFAULT;
ret = 0;
add_wait_queue(&s->dma_dac.wait, &wait);
while (count > 0) {
spin_lock_irqsave(&s->lock, flags);
if (s->dma_dac.count < 0) {
s->dma_dac.count = 0;
s->dma_dac.swptr = s->dma_dac.hwptr;
}
if (s->status & DO_DUAL_DAC) {
s->dma_adc.swptr = s->dma_dac.swptr;
s->dma_adc.count = s->dma_dac.count;
s->dma_adc.endcleared = s->dma_dac.endcleared;
}
swptr = s->dma_dac.swptr;
cnt = s->dma_dac.dmasize-swptr;
if (s->status & DO_AC3_SW) {
if (s->dma_dac.count + 2 * cnt > s->dma_dac.dmasize)
cnt = (s->dma_dac.dmasize - s->dma_dac.count) / 2;
} else {
if (s->dma_dac.count + cnt > s->dma_dac.dmasize)
cnt = s->dma_dac.dmasize - s->dma_dac.count;
}
if (cnt <= 0)
__set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&s->lock, flags);
if (cnt > count)
cnt = count;
if ((s->status & DO_DUAL_DAC) && (cnt > count / 2))
cnt = count / 2;
if (cnt <= 0) {
if (s->dma_dac.enabled)
start_dac(s);
if (file->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
goto out;
}
if (!schedule_timeout(HZ)) {
printk(KERN_DEBUG "cmpci: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n",
s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count,
s->dma_dac.hwptr, s->dma_dac.swptr);
spin_lock_irqsave(&s->lock, flags);
stop_dac_unlocked(s);
set_dmadac(s, s->dma_dac.dmaaddr, s->dma_dac.dmasamples);
/* program sample counts */
set_countdac(s, s->dma_dac.fragsamples);
s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0;
if (s->status & DO_DUAL_DAC) {
set_dmadac1(s, s->dma_adc.dmaaddr, s->dma_adc.dmasamples);
s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0;
}
spin_unlock_irqrestore(&s->lock, flags);
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
goto out;
}
continue;
}
if (s->status & DO_AC3_SW) {
int err;
// clip exceeded data, caught by 033 and 037
if (swptr + 2 * cnt > s->dma_dac.dmasize)
cnt = (s->dma_dac.dmasize - swptr) / 2;
if ((err = trans_ac3(s, s->dma_dac.rawbuf + swptr, buffer, cnt))) {
ret = err;
goto out;
}
swptr = (swptr + 2 * cnt) % s->dma_dac.dmasize;
} else if ((s->status & DO_DUAL_DAC) && (s->status & DO_BIGENDIAN_W)) {
int i, err;
const char __user *src = buffer;
unsigned char *dst0, *dst1;
unsigned char data[8];
dst0 = (unsigned char *) (s->dma_dac.rawbuf + swptr);
dst1 = (unsigned char *) (s->dma_adc.rawbuf + swptr);
// copy left/right sample at one time
for (i = 0; i < cnt / 4; i++) {
if ((err = __get_user(data[0], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[1], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[2], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[3], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[4], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[5], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[6], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[7], src++))) {
ret = err;
goto out;
}
dst0[0] = data[1];
dst0[1] = data[0];
dst0[2] = data[3];
dst0[3] = data[2];
dst1[0] = data[5];
dst1[1] = data[4];
dst1[2] = data[7];
dst1[3] = data[6];
dst0 += 4;
dst1 += 4;
}
swptr = (swptr + cnt) % s->dma_dac.dmasize;
} else if (s->status & DO_DUAL_DAC) {
int i, err;
unsigned long __user *src = (unsigned long __user *) buffer;
unsigned long *dst0, *dst1;
dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr);
dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr);
// copy left/right sample at one time
for (i = 0; i < cnt / 4; i++) {
if ((err = __get_user(*dst0++, src++))) {
ret = err;
goto out;
}
if ((err = __get_user(*dst1++, src++))) {
ret = err;
goto out;
}
}
swptr = (swptr + cnt) % s->dma_dac.dmasize;
} else if (s->status & DO_BIGENDIAN_W) {
int i, err;
const char __user *src = buffer;
unsigned char *dst;
unsigned char data[2];
dst = (unsigned char *) (s->dma_dac.rawbuf + swptr);
// swap hi/lo bytes for each sample
for (i = 0; i < cnt / 2; i++) {
if ((err = __get_user(data[0], src++))) {
ret = err;
goto out;
}
if ((err = __get_user(data[1], src++))) {
ret = err;
goto out;
}
dst[0] = data[1];
dst[1] = data[0];
dst += 2;
}
swptr = (swptr + cnt) % s->dma_dac.dmasize;
} else {
if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) {
if (!ret)
ret = -EFAULT;
goto out;
}
swptr = (swptr + cnt) % s->dma_dac.dmasize;
}
spin_lock_irqsave(&s->lock, flags);
s->dma_dac.swptr = swptr;
s->dma_dac.count += cnt;
if (s->status & DO_AC3_SW)
s->dma_dac.count += cnt;
s->dma_dac.endcleared = 0;
spin_unlock_irqrestore(&s->lock, flags);
count -= cnt;
buffer += cnt;
ret += cnt;
if (s->status & DO_DUAL_DAC) {
count -= cnt;
buffer += cnt;
ret += cnt;
}
if (s->dma_dac.enabled)
start_dac(s);
}
out:
remove_wait_queue(&s->dma_dac.wait, &wait);
set_current_state(TASK_RUNNING);
return ret;
}
static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned long flags;
unsigned int mask = 0;
VALIDATE_STATE(s);
if (file->f_mode & FMODE_WRITE) {
if (!s->dma_dac.ready && prog_dmabuf(s, 0))
return 0;
poll_wait(file, &s->dma_dac.wait, wait);
}
if (file->f_mode & FMODE_READ) {
if (!s->dma_adc.ready && prog_dmabuf(s, 1))
return 0;
poll_wait(file, &s->dma_adc.wait, wait);
}
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
if (file->f_mode & FMODE_READ) {
if (s->dma_adc.count >= (signed)s->dma_adc.fragsize)
mask |= POLLIN | POLLRDNORM;
}
if (file->f_mode & FMODE_WRITE) {
if (s->dma_dac.mapped) {
if (s->dma_dac.count >= (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
} else {
if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize)
mask |= POLLOUT | POLLWRNORM;
}
}
spin_unlock_irqrestore(&s->lock, flags);
return mask;
}
static int cm_mmap(struct file *file, struct vm_area_struct *vma)
{
struct cm_state *s = (struct cm_state *)file->private_data;
struct dmabuf *db;
int ret = -EINVAL;
unsigned long size;
VALIDATE_STATE(s);
lock_kernel();
if (vma->vm_flags & VM_WRITE) {
if ((ret = prog_dmabuf(s, 0)) != 0)
goto out;
db = &s->dma_dac;
} else if (vma->vm_flags & VM_READ) {
if ((ret = prog_dmabuf(s, 1)) != 0)
goto out;
db = &s->dma_adc;
} else
goto out;
ret = -EINVAL;
if (vma->vm_pgoff != 0)
goto out;
size = vma->vm_end - vma->vm_start;
if (size > (PAGE_SIZE << db->buforder))
goto out;
ret = -EINVAL;
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(db->rawbuf) >> PAGE_SHIFT,
size, vma->vm_page_prot))
goto out;
db->mapped = 1;
ret = 0;
out:
unlock_kernel();
return ret;
}
#define SNDCTL_SPDIF_COPYRIGHT _SIOW('S', 0, int) // set/reset S/PDIF copy protection
#define SNDCTL_SPDIF_LOOP _SIOW('S', 1, int) // set/reset S/PDIF loop
#define SNDCTL_SPDIF_MONITOR _SIOW('S', 2, int) // set S/PDIF monitor
#define SNDCTL_SPDIF_LEVEL _SIOW('S', 3, int) // set/reset S/PDIF out level
#define SNDCTL_SPDIF_INV _SIOW('S', 4, int) // set/reset S/PDIF in inverse
#define SNDCTL_SPDIF_SEL2 _SIOW('S', 5, int) // set S/PDIF in #2
#define SNDCTL_SPDIF_VALID _SIOW('S', 6, int) // set S/PDIF valid
#define SNDCTL_SPDIFOUT _SIOW('S', 7, int) // set S/PDIF out
#define SNDCTL_SPDIFIN _SIOW('S', 8, int) // set S/PDIF out
static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct cm_state *s = (struct cm_state *)file->private_data;
unsigned long flags;
audio_buf_info abinfo;
count_info cinfo;
int val, mapped, ret;
unsigned char fmtm, fmtd;
void __user *argp = (void __user *)arg;
int __user *p = argp;
VALIDATE_STATE(s);
mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
switch (cmd) {
case OSS_GETVERSION:
return put_user(SOUND_VERSION, p);
case SNDCTL_DSP_SYNC:
if (file->f_mode & FMODE_WRITE)
return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/);
return 0;
case SNDCTL_DSP_SETDUPLEX:
return 0;
case SNDCTL_DSP_GETCAPS:
return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP | DSP_CAP_BIND, p);
case SNDCTL_DSP_RESET:
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
synchronize_irq(s->irq);
s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0;
if (s->status & DO_DUAL_DAC)
s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
synchronize_irq(s->irq);
s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0;
}
return 0;
case SNDCTL_DSP_SPEED:
if (get_user(val, p))
return -EFAULT;
if (val >= 0) {
if (file->f_mode & FMODE_READ) {
spin_lock_irqsave(&s->lock, flags);
stop_adc_unlocked(s);
s->dma_adc.ready = 0;
set_adc_rate_unlocked(s, val);
spin_unlock_irqrestore(&s->lock, flags);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (s->status & DO_DUAL_DAC)
s->dma_adc.ready = 0;
set_dac_rate(s, val);
}
}
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
case SNDCTL_DSP_STEREO:
if (get_user(val, p))
return -EFAULT;
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val)
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val)
fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
if (s->status & DO_DUAL_DAC) {
s->dma_adc.ready = 0;
if (val)
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
}
set_fmt(s, fmtm, fmtd);
return 0;
case SNDCTL_DSP_CHANNELS:
if (get_user(val, p))
return -EFAULT;
if (val != 0) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val >= 2)
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val >= 2)
fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT);
if (s->status & DO_DUAL_DAC) {
s->dma_adc.ready = 0;
if (val >= 2)
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
}
set_fmt(s, fmtm, fmtd);
if ((s->capability & CAN_MULTI_CH)
&& (file->f_mode & FMODE_WRITE)) {
val = set_dac_channels(s, val);
return put_user(val, p);
}
}
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT)
: (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);
case SNDCTL_DSP_GETFMTS: /* Returns a mask */
return put_user(AFMT_S16_BE|AFMT_S16_LE|AFMT_U8|
((s->capability & CAN_AC3) ? AFMT_AC3 : 0), p);
case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
if (get_user(val, p))
return -EFAULT;
if (val != AFMT_QUERY) {
fmtd = 0;
fmtm = ~0;
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val == AFMT_S16_BE || val == AFMT_S16_LE)
fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT);
if (val == AFMT_S16_BE)
s->status |= DO_BIGENDIAN_R;
else
s->status &= ~DO_BIGENDIAN_R;
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val == AFMT_S16_BE || val == AFMT_S16_LE || val == AFMT_AC3)
fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
else
fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT);
if (val == AFMT_AC3) {
fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT;
set_ac3(s, 48000);
} else
set_ac3(s, 0);
if (s->status & DO_DUAL_DAC) {
s->dma_adc.ready = 0;
if (val == AFMT_S16_BE || val == AFMT_S16_LE)
fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT;
else
fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT);
}
if (val == AFMT_S16_BE)
s->status |= DO_BIGENDIAN_W;
else
s->status &= ~DO_BIGENDIAN_W;
}
set_fmt(s, fmtm, fmtd);
}
if (s->status & DO_AC3) return put_user(AFMT_AC3, p);
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT)
: (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? val : AFMT_U8, p);
case SNDCTL_DSP_POST:
return 0;
case SNDCTL_DSP_GETTRIGGER:
val = 0;
if (s->status & DO_DUAL_DAC) {
if (file->f_mode & FMODE_WRITE &&
(s->enable & ENDAC) &&
(s->enable & ENADC))
val |= PCM_ENABLE_OUTPUT;
return put_user(val, p);
}
if (file->f_mode & FMODE_READ && s->enable & ENADC)
val |= PCM_ENABLE_INPUT;
if (file->f_mode & FMODE_WRITE && s->enable & ENDAC)
val |= PCM_ENABLE_OUTPUT;
return put_user(val, p);
case SNDCTL_DSP_SETTRIGGER:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
if (val & PCM_ENABLE_INPUT) {
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
s->dma_adc.enabled = 1;
start_adc(s);
} else {
s->dma_adc.enabled = 0;
stop_adc(s);
}
}
if (file->f_mode & FMODE_WRITE) {
if (val & PCM_ENABLE_OUTPUT) {
if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0)))
return ret;
if (s->status & DO_DUAL_DAC) {
if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1)))
return ret;
}
s->dma_dac.enabled = 1;
start_dac(s);
} else {
s->dma_dac.enabled = 0;
stop_dac(s);
}
}
return 0;
case SNDCTL_DSP_GETOSPACE:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
if (!(s->enable & ENDAC) && (val = prog_dmabuf(s, 0)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
abinfo.fragsize = s->dma_dac.fragsize;
abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count;
abinfo.fragstotal = s->dma_dac.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETISPACE:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
if (!(s->enable & ENADC) && (val = prog_dmabuf(s, 1)) != 0)
return val;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
abinfo.fragsize = s->dma_adc.fragsize;
abinfo.bytes = s->dma_adc.count;
abinfo.fragstotal = s->dma_adc.numfrag;
abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_NONBLOCK:
file->f_flags |= O_NONBLOCK;
return 0;
case SNDCTL_DSP_GETODELAY:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
val = s->dma_dac.count;
spin_unlock_irqrestore(&s->lock, flags);
return put_user(val, p);
case SNDCTL_DSP_GETIPTR:
if (!(file->f_mode & FMODE_READ))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
cinfo.bytes = s->dma_adc.total_bytes;
cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift;
cinfo.ptr = s->dma_adc.hwptr;
if (s->dma_adc.mapped)
s->dma_adc.count &= s->dma_adc.fragsize-1;
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETOPTR:
if (!(file->f_mode & FMODE_WRITE))
return -EINVAL;
spin_lock_irqsave(&s->lock, flags);
cm_update_ptr(s);
cinfo.bytes = s->dma_dac.total_bytes;
cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift;
cinfo.ptr = s->dma_dac.hwptr;
if (s->dma_dac.mapped)
s->dma_dac.count &= s->dma_dac.fragsize-1;
if (s->status & DO_DUAL_DAC) {
if (s->dma_adc.mapped)
s->dma_adc.count &= s->dma_adc.fragsize-1;
}
spin_unlock_irqrestore(&s->lock, flags);
return copy_to_user(argp, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
case SNDCTL_DSP_GETBLKSIZE:
if (file->f_mode & FMODE_WRITE) {
if ((val = prog_dmabuf(s, 0)))
return val;
if (s->status & DO_DUAL_DAC) {
if ((val = prog_dmabuf(s, 1)))
return val;
return put_user(2 * s->dma_dac.fragsize, p);
}
return put_user(s->dma_dac.fragsize, p);
}
if ((val = prog_dmabuf(s, 1)))
return val;
return put_user(s->dma_adc.fragsize, p);
case SNDCTL_DSP_SETFRAGMENT:
if (get_user(val, p))
return -EFAULT;
if (file->f_mode & FMODE_READ) {
s->dma_adc.ossfragshift = val & 0xffff;
s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_adc.ossfragshift < 4)
s->dma_adc.ossfragshift = 4;
if (s->dma_adc.ossfragshift > 15)
s->dma_adc.ossfragshift = 15;
if (s->dma_adc.ossmaxfrags < 4)
s->dma_adc.ossmaxfrags = 4;
}
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.ossfragshift = val & 0xffff;
s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff;
if (s->dma_dac.ossfragshift < 4)
s->dma_dac.ossfragshift = 4;
if (s->dma_dac.ossfragshift > 15)
s->dma_dac.ossfragshift = 15;
if (s->dma_dac.ossmaxfrags < 4)
s->dma_dac.ossmaxfrags = 4;
if (s->status & DO_DUAL_DAC) {
s->dma_adc.ossfragshift = s->dma_dac.ossfragshift;
s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags;
}
}
return 0;
case SNDCTL_DSP_SUBDIVIDE:
if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) ||
(file->f_mode & FMODE_WRITE && s->dma_dac.subdivision))
return -EINVAL;
if (get_user(val, p))
return -EFAULT;
if (val != 1 && val != 2 && val != 4)
return -EINVAL;
if (file->f_mode & FMODE_READ)
s->dma_adc.subdivision = val;
if (file->f_mode & FMODE_WRITE) {
s->dma_dac.subdivision = val;
if (s->status & DO_DUAL_DAC)
s->dma_adc.subdivision = val;
}
return 0;
case SOUND_PCM_READ_RATE:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
case SOUND_PCM_READ_CHANNELS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, p);
case SOUND_PCM_READ_BITS:
return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, p);
case SOUND_PCM_READ_FILTER:
return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, p);
case SNDCTL_DSP_GETCHANNELMASK:
return put_user(DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE|DSP_BIND_SPDIF, p);
case SNDCTL_DSP_BIND_CHANNEL:
if (get_user(val, p))
return -EFAULT;
if (val == DSP_BIND_QUERY) {
val = DSP_BIND_FRONT;
if (s->status & DO_SPDIF_OUT)
val |= DSP_BIND_SPDIF;
else {
if (s->curr_channels == 4)
val |= DSP_BIND_SURR;
if (s->curr_channels > 4)
val |= DSP_BIND_CENTER_LFE;
}
} else {
if (file->f_mode & FMODE_READ) {
stop_adc(s);
s->dma_adc.ready = 0;
if (val & DSP_BIND_SPDIF) {
set_spdifin(s, s->rateadc);
if (!(s->status & DO_SPDIF_OUT))
val &= ~DSP_BIND_SPDIF;
}
}
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
s->dma_dac.ready = 0;
if (val & DSP_BIND_SPDIF) {
set_spdifout(s, s->ratedac);
set_dac_channels(s, s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1);
if (!(s->status & DO_SPDIF_OUT))
val &= ~DSP_BIND_SPDIF;
} else {
int channels;
int mask;
mask = val & (DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE);
switch (mask) {
case DSP_BIND_FRONT:
channels = 2;
break;
case DSP_BIND_FRONT|DSP_BIND_SURR:
channels = 4;
break;
case DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE:
channels = 6;
break;
default:
channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1;
break;
}
set_dac_channels(s, channels);
}
}
}
return put_user(val, p);
case SOUND_PCM_WRITE_FILTER:
case SNDCTL_DSP_MAPINBUF:
case SNDCTL_DSP_MAPOUTBUF:
case SNDCTL_DSP_SETSYNCRO:
return -EINVAL;
case SNDCTL_SPDIF_COPYRIGHT:
if (get_user(val, p))
return -EFAULT;
set_spdif_copyright(s, val);
return 0;
case SNDCTL_SPDIF_LOOP:
if (get_user(val, p))
return -EFAULT;
set_spdif_loop(s, val);
return 0;
case SNDCTL_SPDIF_MONITOR:
if (get_user(val, p))
return -EFAULT;
set_spdif_monitor(s, val);
return 0;
case SNDCTL_SPDIF_LEVEL:
if (get_user(val, p))
return -EFAULT;
set_spdifout_level(s, val);
return 0;
case SNDCTL_SPDIF_INV:
if (get_user(val, p))
return -EFAULT;
set_spdifin_inverse(s, val);
return 0;
case SNDCTL_SPDIF_SEL2:
if (get_user(val, p))
return -EFAULT;
set_spdifin_channel2(s, val);
return 0;
case SNDCTL_SPDIF_VALID:
if (get_user(val, p))
return -EFAULT;
set_spdifin_valid(s, val);
return 0;
case SNDCTL_SPDIFOUT:
if (get_user(val, p))
return -EFAULT;
set_spdifout(s, val ? s->ratedac : 0);
return 0;
case SNDCTL_SPDIFIN:
if (get_user(val, p))
return -EFAULT;
set_spdifin(s, val ? s->rateadc : 0);
return 0;
}
return mixer_ioctl(s, cmd, arg);
}
static int cm_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
unsigned char fmtm = ~0, fmts = 0;
struct list_head *list;
struct cm_state *s;
for (list = devs.next; ; list = list->next) {
if (list == &devs)
return -ENODEV;
s = list_entry(list, struct cm_state, devs);
if (!((s->dev_audio ^ minor) & ~0xf))
break;
}
VALIDATE_STATE(s);
file->private_data = s;
/* wait for device to become free */
mutex_lock(&s->open_mutex);
while (s->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
mutex_unlock(&s->open_mutex);
return -EBUSY;
}
add_wait_queue(&s->open_wait, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
mutex_unlock(&s->open_mutex);
schedule();
remove_wait_queue(&s->open_wait, &wait);
set_current_state(TASK_RUNNING);
if (signal_pending(current))
return -ERESTARTSYS;
mutex_lock(&s->open_mutex);
}
if (file->f_mode & FMODE_READ) {
s->status &= ~DO_BIGENDIAN_R;
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT;
s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0;
s->dma_adc.enabled = 1;
set_adc_rate(s, 8000);
// spdif-in is turnned off by default
set_spdifin(s, 0);
}
if (file->f_mode & FMODE_WRITE) {
s->status &= ~DO_BIGENDIAN_W;
fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT);
if ((minor & 0xf) == SND_DEV_DSP16)
fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT;
s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0;
s->dma_dac.enabled = 1;
set_dac_rate(s, 8000);
// clear previous multichannel, spdif, ac3 state
set_spdifout(s, 0);
set_ac3(s, 0);
set_dac_channels(s, 1);
}
set_fmt(s, fmtm, fmts);
s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
mutex_unlock(&s->open_mutex);
return nonseekable_open(inode, file);
}
static int cm_release(struct inode *inode, struct file *file)
{
struct cm_state *s = (struct cm_state *)file->private_data;
VALIDATE_STATE(s);
lock_kernel();
if (file->f_mode & FMODE_WRITE)
drain_dac(s, file->f_flags & O_NONBLOCK);
mutex_lock(&s->open_mutex);
if (file->f_mode & FMODE_WRITE) {
stop_dac(s);
dealloc_dmabuf(s, &s->dma_dac);
if (s->status & DO_DUAL_DAC)
dealloc_dmabuf(s, &s->dma_adc);
if (s->status & DO_MULTI_CH)
set_dac_channels(s, 1);
if (s->status & DO_AC3)
set_ac3(s, 0);
if (s->status & DO_SPDIF_OUT)
set_spdifout(s, 0);
/* enable SPDIF loop */
set_spdif_loop(s, spdif_loop);
s->status &= ~DO_BIGENDIAN_W;
}
if (file->f_mode & FMODE_READ) {
stop_adc(s);
dealloc_dmabuf(s, &s->dma_adc);
s->status &= ~DO_BIGENDIAN_R;
}
s->open_mode &= ~(file->f_mode & (FMODE_READ|FMODE_WRITE));
mutex_unlock(&s->open_mutex);
wake_up(&s->open_wait);
unlock_kernel();
return 0;
}
static /*const*/ struct file_operations cm_audio_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = cm_read,
.write = cm_write,
.poll = cm_poll,
.ioctl = cm_ioctl,
.mmap = cm_mmap,
.open = cm_open,
.release = cm_release,
};
/* --------------------------------------------------------------------- */
static struct initvol {
int mixch;
int vol;
} initvol[] __devinitdata = {
{ SOUND_MIXER_WRITE_CD, 0x4f4f },
{ SOUND_MIXER_WRITE_LINE, 0x4f4f },
{ SOUND_MIXER_WRITE_MIC, 0x4f4f },
{ SOUND_MIXER_WRITE_SYNTH, 0x4f4f },
{ SOUND_MIXER_WRITE_VOLUME, 0x4f4f },
{ SOUND_MIXER_WRITE_PCM, 0x4f4f }
};
/* check chip version and capability */
static int query_chip(struct cm_state *s)
{
int ChipVersion = -1;
unsigned char RegValue;
// check reg 0Ch, bit 24-31
RegValue = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 3);
if (RegValue == 0) {
// check reg 08h, bit 24-28
RegValue = inb(s->iobase + CODEC_CMI_CHFORMAT + 3);
RegValue &= 0x1f;
if (RegValue == 0) {
ChipVersion = 33;
s->max_channels = 4;
s->capability |= CAN_AC3_SW;
s->capability |= CAN_DUAL_DAC;
} else {
ChipVersion = 37;
s->max_channels = 4;
s->capability |= CAN_AC3_HW;
s->capability |= CAN_DUAL_DAC;
}
} else {
// check reg 0Ch, bit 26
if (RegValue & (1 << (26-24))) {
ChipVersion = 39;
if (RegValue & (1 << (24-24)))
s->max_channels = 6;
else
s->max_channels = 4;
s->capability |= CAN_AC3_HW;
s->capability |= CAN_DUAL_DAC;
s->capability |= CAN_MULTI_CH_HW;
s->capability |= CAN_LINE_AS_BASS;
s->capability |= CAN_MIC_AS_BASS;
} else {
ChipVersion = 55; // 4 or 6 channels
s->max_channels = 6;
s->capability |= CAN_AC3_HW;
s->capability |= CAN_DUAL_DAC;
s->capability |= CAN_MULTI_CH_HW;
s->capability |= CAN_LINE_AS_BASS;
s->capability |= CAN_MIC_AS_BASS;
}
}
s->capability |= CAN_LINE_AS_REAR;
return ChipVersion;
}
#ifdef CONFIG_SOUND_CMPCI_JOYSTICK
static int __devinit cm_create_gameport(struct cm_state *s, int io_port)
{
struct gameport *gp;
if (!request_region(io_port, CM_EXTENT_GAME, "cmpci GAME")) {
printk(KERN_ERR "cmpci: gameport io ports 0x%#x in use\n", io_port);
return -EBUSY;
}
if (!(s->gameport = gp = gameport_allocate_port())) {
printk(KERN_ERR "cmpci: can not allocate memory for gameport\n");
release_region(io_port, CM_EXTENT_GAME);
return -ENOMEM;
}
gameport_set_name(gp, "C-Media GP");
gameport_set_phys(gp, "pci%s/gameport0", pci_name(s->dev));
gp->dev.parent = &s->dev->dev;
gp->io = io_port;
/* enable joystick */
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x02);
gameport_register_port(gp);
return 0;
}
static void __devexit cm_free_gameport(struct cm_state *s)
{
if (s->gameport) {
int gpio = s->gameport->io;
gameport_unregister_port(s->gameport);
s->gameport = NULL;
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
release_region(gpio, CM_EXTENT_GAME);
}
}
#else
static inline int cm_create_gameport(struct cm_state *s, int io_port) { return -ENOSYS; }
static inline void cm_free_gameport(struct cm_state *s) { }
#endif
#define echo_option(x)\
if (x) strcat(options, "" #x " ")
static int __devinit cm_probe(struct pci_dev *pcidev, const struct pci_device_id *pciid)
{
struct cm_state *s;
mm_segment_t fs;
int i, val, ret;
unsigned char reg_mask;
int timeout;
struct resource *ports;
struct {
unsigned short deviceid;
char *devicename;
} devicetable[] = {
{ PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" },
{ PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" },
{ PCI_DEVICE_ID_CMEDIA_CM8738, "CM8738" },
{ PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" },
};
char *devicename = "unknown";
char options[256];
if ((ret = pci_enable_device(pcidev)))
return ret;
if (!(pci_resource_flags(pcidev, 0) & IORESOURCE_IO))
return -ENODEV;
if (pcidev->irq == 0)
return -ENODEV;
i = pci_set_dma_mask(pcidev, DMA_32BIT_MASK);
if (i) {
printk(KERN_WARNING "cmpci: architecture does not support 32bit PCI busmaster DMA\n");
return i;
}
s = kmalloc(sizeof(*s), GFP_KERNEL);
if (!s) {
printk(KERN_WARNING "cmpci: out of memory\n");
return -ENOMEM;
}
/* search device name */
for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++) {
if (devicetable[i].deviceid == pcidev->device) {
devicename = devicetable[i].devicename;
break;
}
}
memset(s, 0, sizeof(struct cm_state));
init_waitqueue_head(&s->dma_adc.wait);
init_waitqueue_head(&s->dma_dac.wait);
init_waitqueue_head(&s->open_wait);
mutex_init(&s->open_mutex);
spin_lock_init(&s->lock);
s->magic = CM_MAGIC;
s->dev = pcidev;
s->iobase = pci_resource_start(pcidev, 0);
s->iosynth = fmio;
s->iomidi = mpuio;
#ifdef CONFIG_SOUND_CMPCI_MIDI
s->midi_devc = 0;
#endif
s->status = 0;
if (s->iobase == 0)
return -ENODEV;
s->irq = pcidev->irq;
if (!request_region(s->iobase, CM_EXTENT_CODEC, "cmpci")) {
printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1);
ret = -EBUSY;
goto err_region5;
}
/* dump parameters */
strcpy(options, "cmpci: ");
echo_option(joystick);
echo_option(spdif_inverse);
echo_option(spdif_loop);
echo_option(spdif_out);
echo_option(use_line_as_rear);
echo_option(use_line_as_bass);
echo_option(use_mic_as_bass);
echo_option(mic_boost);
echo_option(hw_copy);
printk(KERN_INFO "%s\n", options);
/* initialize codec registers */
outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */
outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
/* reset mixer */
wrmixer(s, DSP_MIX_DATARESETIDX, 0);
/* request irq */
if ((ret = request_irq(s->irq, cm_interrupt, IRQF_SHARED, "cmpci", s))) {
printk(KERN_ERR "cmpci: irq %u in use\n", s->irq);
goto err_irq;
}
printk(KERN_INFO "cmpci: found %s adapter at io %#x irq %u\n",
devicename, s->iobase, s->irq);
/* register devices */
if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0) {
ret = s->dev_audio;
goto err_dev1;
}
if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0) {
ret = s->dev_mixer;
goto err_dev2;
}
pci_set_master(pcidev); /* enable bus mastering */
/* initialize the chips */
fs = get_fs();
set_fs(KERNEL_DS);
/* set mixer output */
frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f);
/* set mixer input */
val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC;
mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val);
for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) {
val = initvol[i].vol;
mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val);
}
set_fs(fs);
/* use channel 1 for playback, channel 0 for record */
maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~CHADC1, CHADC0);
/* turn off VMIC3 - mic boost */
if (mic_boost)
maskb(s->iobase + CODEC_CMI_MIXER2, ~1, 0);
else
maskb(s->iobase + CODEC_CMI_MIXER2, ~0, 1);
s->deviceid = pcidev->device;
if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738
|| pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
/* chip version and hw capability check */
s->chip_version = query_chip(s);
printk(KERN_INFO "cmpci: chip version = 0%d\n", s->chip_version);
/* set SPDIF-in inverse before enable SPDIF loop */
set_spdifin_inverse(s, spdif_inverse);
/* use SPDIF in #1 */
set_spdifin_channel2(s, 0);
} else {
s->chip_version = 0;
/* 8338 will fall here */
s->max_channels = 4;
s->capability |= CAN_DUAL_DAC;
s->capability |= CAN_LINE_AS_REAR;
}
/* enable SPDIF loop */
set_spdif_loop(s, spdif_loop);
// enable 4 speaker mode (analog duplicate)
set_hw_copy(s, hw_copy);
reg_mask = 0;
#ifdef CONFIG_SOUND_CMPCI_FM
/* disable FM */
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
if (s->iosynth) {
/* don't enable OPL3 if there is one */
if (opl3_detect(s->iosynth, NULL)) {
s->iosynth = 0;
} else {
/* set IO based at 0x388 */
switch (s->iosynth) {
case 0x388:
reg_mask = 0;
break;
case 0x3C8:
reg_mask = 0x01;
break;
case 0x3E0:
reg_mask = 0x02;
break;
case 0x3E8:
reg_mask = 0x03;
break;
default:
s->iosynth = 0;
break;
}
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x03, reg_mask);
/* enable FM */
if (s->iosynth) {
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 8);
if (opl3_detect(s->iosynth, NULL))
ret = opl3_init(s->iosynth, NULL, THIS_MODULE);
else {
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
s->iosynth = 0;
}
}
}
}
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
switch (s->iomidi) {
case 0x330:
reg_mask = 0;
break;
case 0x320:
reg_mask = 0x20;
break;
case 0x310:
reg_mask = 0x40;
break;
case 0x300:
reg_mask = 0x60;
break;
default:
s->iomidi = 0;
goto skip_mpu;
}
ports = request_region(s->iomidi, 2, "mpu401");
if (!ports)
goto skip_mpu;
/* disable MPU-401 */
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
s->mpu_data.name = "cmpci mpu";
s->mpu_data.io_base = s->iomidi;
s->mpu_data.irq = -s->irq; // tell mpu401 to share irq
if (probe_mpu401(&s->mpu_data, ports)) {
release_region(s->iomidi, 2);
s->iomidi = 0;
goto skip_mpu;
}
maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x60, reg_mask);
/* enable MPU-401 */
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
/* clear all previously received interrupt */
for (timeout = 900000; timeout > 0; timeout--) {
if ((inb(s->iomidi + 1) && 0x80) == 0)
inb(s->iomidi);
else
break;
}
if (!probe_mpu401(&s->mpu_data, ports)) {
release_region(s->iomidi, 2);
s->iomidi = 0;
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04);
} else {
attach_mpu401(&s->mpu_data, THIS_MODULE);
s->midi_devc = s->mpu_data.slots[1];
}
skip_mpu:
#endif
/* disable joystick port */
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0);
if (joystick)
cm_create_gameport(s, 0x200);
/* store it in the driver field */
pci_set_drvdata(pcidev, s);
/* put it into driver list */
list_add_tail(&s->devs, &devs);
/* increment devindex */
if (devindex < NR_DEVICE-1)
devindex++;
return 0;
err_dev2:
unregister_sound_dsp(s->dev_audio);
err_dev1:
printk(KERN_ERR "cmpci: cannot register misc device\n");
free_irq(s->irq, s);
err_irq:
release_region(s->iobase, CM_EXTENT_CODEC);
err_region5:
kfree(s);
return ret;
}
/* --------------------------------------------------------------------- */
MODULE_AUTHOR("ChenLi Tien, cltien@cmedia.com.tw");
MODULE_DESCRIPTION("CM8x38 Audio Driver");
MODULE_LICENSE("GPL");
static void __devexit cm_remove(struct pci_dev *dev)
{
struct cm_state *s = pci_get_drvdata(dev);
if (!s)
return;
cm_free_gameport(s);
#ifdef CONFIG_SOUND_CMPCI_FM
if (s->iosynth) {
/* disable FM */
maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0);
}
#endif
#ifdef CONFIG_SOUND_CMPCI_MIDI
if (s->iomidi) {
unload_mpu401(&s->mpu_data);
/* disable MPU-401 */
maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0);
}
#endif
set_spdif_loop(s, 0);
list_del(&s->devs);
outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */
synchronize_irq(s->irq);
outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */
free_irq(s->irq, s);
/* reset mixer */
wrmixer(s, DSP_MIX_DATARESETIDX, 0);
release_region(s->iobase, CM_EXTENT_CODEC);
unregister_sound_dsp(s->dev_audio);
unregister_sound_mixer(s->dev_mixer);
kfree(s);
pci_set_drvdata(dev, NULL);
}
static struct pci_device_id id_table[] __devinitdata = {
{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, id_table);
static struct pci_driver cm_driver = {
.name = "cmpci",
.id_table = id_table,
.probe = cm_probe,
.remove = __devexit_p(cm_remove)
};
static int __init init_cmpci(void)
{
printk(KERN_INFO "cmpci: version $Revision: 6.82 $ time " __TIME__ " " __DATE__ "\n");
return pci_register_driver(&cm_driver);
}
static void __exit cleanup_cmpci(void)
{
printk(KERN_INFO "cmpci: unloading\n");
pci_unregister_driver(&cm_driver);
}
module_init(init_cmpci);
module_exit(cleanup_cmpci);