linux_old1/arch/x86/kernel/apic/x2apic_uv_x.c

652 lines
16 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV APIC functions (note: not an Intel compatible APIC)
*
* Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/cpumask.h>
#include <linux/hardirq.h>
#include <linux/proc_fs.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/io.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/current.h>
#include <asm/pgtable.h>
#include <asm/uv/bios.h>
#include <asm/uv/uv.h>
#include <asm/apic.h>
#include <asm/ipi.h>
#include <asm/smp.h>
DEFINE_PER_CPU(int, x2apic_extra_bits);
static enum uv_system_type uv_system_type;
static int early_get_nodeid(void)
{
union uvh_node_id_u node_id;
unsigned long *mmr;
mmr = early_ioremap(UV_LOCAL_MMR_BASE | UVH_NODE_ID, sizeof(*mmr));
node_id.v = *mmr;
early_iounmap(mmr, sizeof(*mmr));
return node_id.s.node_id;
}
static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
{
if (!strcmp(oem_id, "SGI")) {
if (!strcmp(oem_table_id, "UVL"))
uv_system_type = UV_LEGACY_APIC;
else if (!strcmp(oem_table_id, "UVX"))
uv_system_type = UV_X2APIC;
else if (!strcmp(oem_table_id, "UVH")) {
__get_cpu_var(x2apic_extra_bits) =
early_get_nodeid() << (UV_APIC_PNODE_SHIFT - 1);
uv_system_type = UV_NON_UNIQUE_APIC;
return 1;
}
}
return 0;
}
enum uv_system_type get_uv_system_type(void)
{
return uv_system_type;
}
int is_uv_system(void)
{
return uv_system_type != UV_NONE;
}
EXPORT_SYMBOL_GPL(is_uv_system);
DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
struct uv_blade_info *uv_blade_info;
EXPORT_SYMBOL_GPL(uv_blade_info);
short *uv_node_to_blade;
EXPORT_SYMBOL_GPL(uv_node_to_blade);
short *uv_cpu_to_blade;
EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
short uv_possible_blades;
EXPORT_SYMBOL_GPL(uv_possible_blades);
unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);
/* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
static const struct cpumask *uv_target_cpus(void)
{
return cpumask_of(0);
}
static void uv_vector_allocation_domain(int cpu, struct cpumask *retmask)
{
cpumask_clear(retmask);
cpumask_set_cpu(cpu, retmask);
}
static int __cpuinit uv_wakeup_secondary(int phys_apicid, unsigned long start_rip)
{
#ifdef CONFIG_SMP
unsigned long val;
int pnode;
pnode = uv_apicid_to_pnode(phys_apicid);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_INIT;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
mdelay(10);
val = (1UL << UVH_IPI_INT_SEND_SHFT) |
(phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
APIC_DM_STARTUP;
uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
atomic_set(&init_deasserted, 1);
#endif
return 0;
}
static void uv_send_IPI_one(int cpu, int vector)
{
unsigned long apicid;
int pnode;
apicid = per_cpu(x86_cpu_to_apicid, cpu);
pnode = uv_apicid_to_pnode(apicid);
uv_hub_send_ipi(pnode, apicid, vector);
}
static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
{
unsigned int cpu;
for_each_cpu(cpu, mask)
uv_send_IPI_one(cpu, vector);
}
static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
{
unsigned int this_cpu = smp_processor_id();
unsigned int cpu;
for_each_cpu(cpu, mask) {
if (cpu != this_cpu)
uv_send_IPI_one(cpu, vector);
}
}
static void uv_send_IPI_allbutself(int vector)
{
unsigned int this_cpu = smp_processor_id();
unsigned int cpu;
for_each_online_cpu(cpu) {
if (cpu != this_cpu)
uv_send_IPI_one(cpu, vector);
}
}
static void uv_send_IPI_all(int vector)
{
uv_send_IPI_mask(cpu_online_mask, vector);
}
static int uv_apic_id_registered(void)
{
return 1;
}
static void uv_init_apic_ldr(void)
{
}
static unsigned int uv_cpu_mask_to_apicid(const struct cpumask *cpumask)
{
/*
* We're using fixed IRQ delivery, can only return one phys APIC ID.
* May as well be the first.
*/
int cpu = cpumask_first(cpumask);
if ((unsigned)cpu < nr_cpu_ids)
return per_cpu(x86_cpu_to_apicid, cpu);
else
return BAD_APICID;
}
static unsigned int
uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
const struct cpumask *andmask)
{
int cpu;
/*
* We're using fixed IRQ delivery, can only return one phys APIC ID.
* May as well be the first.
*/
for_each_cpu_and(cpu, cpumask, andmask) {
if (cpumask_test_cpu(cpu, cpu_online_mask))
break;
}
if (cpu < nr_cpu_ids)
return per_cpu(x86_cpu_to_apicid, cpu);
return BAD_APICID;
}
static unsigned int x2apic_get_apic_id(unsigned long x)
{
unsigned int id;
WARN_ON(preemptible() && num_online_cpus() > 1);
id = x | __get_cpu_var(x2apic_extra_bits);
return id;
}
static unsigned long set_apic_id(unsigned int id)
{
unsigned long x;
/* maskout x2apic_extra_bits ? */
x = id;
return x;
}
static unsigned int uv_read_apic_id(void)
{
return x2apic_get_apic_id(apic_read(APIC_ID));
}
static int uv_phys_pkg_id(int initial_apicid, int index_msb)
{
return uv_read_apic_id() >> index_msb;
}
static void uv_send_IPI_self(int vector)
{
apic_write(APIC_SELF_IPI, vector);
}
struct apic __refdata apic_x2apic_uv_x = {
.name = "UV large system",
.probe = NULL,
.acpi_madt_oem_check = uv_acpi_madt_oem_check,
.apic_id_registered = uv_apic_id_registered,
.irq_delivery_mode = dest_Fixed,
.irq_dest_mode = 0, /* physical */
.target_cpus = uv_target_cpus,
.disable_esr = 0,
.dest_logical = APIC_DEST_LOGICAL,
.check_apicid_used = NULL,
.check_apicid_present = NULL,
.vector_allocation_domain = uv_vector_allocation_domain,
.init_apic_ldr = uv_init_apic_ldr,
.ioapic_phys_id_map = NULL,
.setup_apic_routing = NULL,
.multi_timer_check = NULL,
.apicid_to_node = NULL,
.cpu_to_logical_apicid = NULL,
.cpu_present_to_apicid = default_cpu_present_to_apicid,
.apicid_to_cpu_present = NULL,
.setup_portio_remap = NULL,
.check_phys_apicid_present = default_check_phys_apicid_present,
.enable_apic_mode = NULL,
.phys_pkg_id = uv_phys_pkg_id,
.mps_oem_check = NULL,
.get_apic_id = x2apic_get_apic_id,
.set_apic_id = set_apic_id,
.apic_id_mask = 0xFFFFFFFFu,
.cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
.cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and,
.send_IPI_mask = uv_send_IPI_mask,
.send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
.send_IPI_allbutself = uv_send_IPI_allbutself,
.send_IPI_all = uv_send_IPI_all,
.send_IPI_self = uv_send_IPI_self,
.wakeup_secondary_cpu = uv_wakeup_secondary,
.trampoline_phys_low = DEFAULT_TRAMPOLINE_PHYS_LOW,
.trampoline_phys_high = DEFAULT_TRAMPOLINE_PHYS_HIGH,
.wait_for_init_deassert = NULL,
.smp_callin_clear_local_apic = NULL,
.inquire_remote_apic = NULL,
.read = native_apic_msr_read,
.write = native_apic_msr_write,
.icr_read = native_x2apic_icr_read,
.icr_write = native_x2apic_icr_write,
.wait_icr_idle = native_x2apic_wait_icr_idle,
.safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle,
};
static __cpuinit void set_x2apic_extra_bits(int pnode)
{
__get_cpu_var(x2apic_extra_bits) = (pnode << 6);
}
/*
* Called on boot cpu.
*/
static __init int boot_pnode_to_blade(int pnode)
{
int blade;
for (blade = 0; blade < uv_num_possible_blades(); blade++)
if (pnode == uv_blade_info[blade].pnode)
return blade;
BUG();
}
struct redir_addr {
unsigned long redirect;
unsigned long alias;
};
#define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
static __initdata struct redir_addr redir_addrs[] = {
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
{UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
};
static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{
union uvh_si_alias0_overlay_config_u alias;
union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
int i;
for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
alias.v = uv_read_local_mmr(redir_addrs[i].alias);
if (alias.s.base == 0) {
*size = (1UL << alias.s.m_alias);
redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
return;
}
}
BUG();
}
enum map_type {map_wb, map_uc};
static __init void map_high(char *id, unsigned long base, int shift,
int max_pnode, enum map_type map_type)
{
unsigned long bytes, paddr;
paddr = base << shift;
bytes = (1UL << shift) * (max_pnode + 1);
printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
paddr + bytes);
if (map_type == map_uc)
init_extra_mapping_uc(paddr, bytes);
else
init_extra_mapping_wb(paddr, bytes);
}
static __init void map_gru_high(int max_pnode)
{
union uvh_rh_gam_gru_overlay_config_mmr_u gru;
int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
if (gru.s.enable)
map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
}
static __init void map_mmioh_high(int max_pnode)
{
union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
if (mmioh.s.enable)
map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
}
static __init void uv_rtc_init(void)
{
long status;
u64 ticks_per_sec;
status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
&ticks_per_sec);
if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
printk(KERN_WARNING
"unable to determine platform RTC clock frequency, "
"guessing.\n");
/* BIOS gives wrong value for clock freq. so guess */
sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
} else
sn_rtc_cycles_per_second = ticks_per_sec;
}
/*
* percpu heartbeat timer
*/
static void uv_heartbeat(unsigned long ignored)
{
struct timer_list *timer = &uv_hub_info->scir.timer;
unsigned char bits = uv_hub_info->scir.state;
/* flip heartbeat bit */
bits ^= SCIR_CPU_HEARTBEAT;
/* is this cpu idle? */
if (idle_cpu(raw_smp_processor_id()))
bits &= ~SCIR_CPU_ACTIVITY;
else
bits |= SCIR_CPU_ACTIVITY;
/* update system controller interface reg */
uv_set_scir_bits(bits);
/* enable next timer period */
mod_timer_pinned(timer, jiffies + SCIR_CPU_HB_INTERVAL);
}
static void __cpuinit uv_heartbeat_enable(int cpu)
{
if (!uv_cpu_hub_info(cpu)->scir.enabled) {
struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer;
uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY);
setup_timer(timer, uv_heartbeat, cpu);
timer->expires = jiffies + SCIR_CPU_HB_INTERVAL;
add_timer_on(timer, cpu);
uv_cpu_hub_info(cpu)->scir.enabled = 1;
}
/* check boot cpu */
if (!uv_cpu_hub_info(0)->scir.enabled)
uv_heartbeat_enable(0);
}
#ifdef CONFIG_HOTPLUG_CPU
static void __cpuinit uv_heartbeat_disable(int cpu)
{
if (uv_cpu_hub_info(cpu)->scir.enabled) {
uv_cpu_hub_info(cpu)->scir.enabled = 0;
del_timer(&uv_cpu_hub_info(cpu)->scir.timer);
}
uv_set_cpu_scir_bits(cpu, 0xff);
}
/*
* cpu hotplug notifier
*/
static __cpuinit int uv_scir_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
switch (action) {
case CPU_ONLINE:
uv_heartbeat_enable(cpu);
break;
case CPU_DOWN_PREPARE:
uv_heartbeat_disable(cpu);
break;
default:
break;
}
return NOTIFY_OK;
}
static __init void uv_scir_register_cpu_notifier(void)
{
hotcpu_notifier(uv_scir_cpu_notify, 0);
}
#else /* !CONFIG_HOTPLUG_CPU */
static __init void uv_scir_register_cpu_notifier(void)
{
}
static __init int uv_init_heartbeat(void)
{
int cpu;
if (is_uv_system())
for_each_online_cpu(cpu)
uv_heartbeat_enable(cpu);
return 0;
}
late_initcall(uv_init_heartbeat);
#endif /* !CONFIG_HOTPLUG_CPU */
/*
* Called on each cpu to initialize the per_cpu UV data area.
* FIXME: hotplug not supported yet
*/
void __cpuinit uv_cpu_init(void)
{
/* CPU 0 initilization will be done via uv_system_init. */
if (!uv_blade_info)
return;
uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
set_x2apic_extra_bits(uv_hub_info->pnode);
}
void __init uv_system_init(void)
{
union uvh_si_addr_map_config_u m_n_config;
union uvh_node_id_u node_id;
unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
int gnode_extra, max_pnode = 0;
unsigned long mmr_base, present, paddr;
unsigned short pnode_mask;
m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
m_val = m_n_config.s.m_skt;
n_val = m_n_config.s.n_skt;
mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
~UV_MMR_ENABLE;
pnode_mask = (1 << n_val) - 1;
node_id.v = uv_read_local_mmr(UVH_NODE_ID);
gnode_extra = (node_id.s.node_id & ~((1 << n_val) - 1)) >> 1;
gnode_upper = ((unsigned long)gnode_extra << m_val);
printk(KERN_DEBUG "UV: N %d, M %d, gnode_upper 0x%lx, gnode_extra 0x%x\n",
n_val, m_val, gnode_upper, gnode_extra);
printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
uv_possible_blades +=
hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
uv_blade_info = kmalloc(bytes, GFP_KERNEL);
BUG_ON(!uv_blade_info);
for (blade = 0; blade < uv_num_possible_blades(); blade++)
uv_blade_info[blade].memory_nid = -1;
get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
BUG_ON(!uv_node_to_blade);
memset(uv_node_to_blade, 255, bytes);
bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
BUG_ON(!uv_cpu_to_blade);
memset(uv_cpu_to_blade, 255, bytes);
blade = 0;
for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
for (j = 0; j < 64; j++) {
if (!test_bit(j, &present))
continue;
uv_blade_info[blade].pnode = (i * 64 + j);
uv_blade_info[blade].nr_possible_cpus = 0;
uv_blade_info[blade].nr_online_cpus = 0;
blade++;
}
}
uv_bios_init();
uv_bios_get_sn_info(0, &uv_type, &sn_partition_id,
&sn_coherency_id, &sn_region_size);
uv_rtc_init();
for_each_present_cpu(cpu) {
nid = cpu_to_node(cpu);
pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
blade = boot_pnode_to_blade(pnode);
lcpu = uv_blade_info[blade].nr_possible_cpus;
uv_blade_info[blade].nr_possible_cpus++;
/* Any node on the blade, else will contain -1. */
uv_blade_info[blade].memory_nid = nid;
uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size;
uv_cpu_hub_info(cpu)->m_val = m_val;
uv_cpu_hub_info(cpu)->n_val = m_val;
uv_cpu_hub_info(cpu)->numa_blade_id = blade;
uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
uv_cpu_hub_info(cpu)->pnode = pnode;
uv_cpu_hub_info(cpu)->pnode_mask = pnode_mask;
uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
uv_cpu_hub_info(cpu)->gnode_extra = gnode_extra;
uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id;
uv_cpu_hub_info(cpu)->scir.offset = SCIR_LOCAL_MMR_BASE + lcpu;
uv_node_to_blade[nid] = blade;
uv_cpu_to_blade[cpu] = blade;
max_pnode = max(pnode, max_pnode);
printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
"lcpu %d, blade %d\n",
cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
lcpu, blade);
}
/* Add blade/pnode info for nodes without cpus */
for_each_online_node(nid) {
if (uv_node_to_blade[nid] >= 0)
continue;
paddr = node_start_pfn(nid) << PAGE_SHIFT;
paddr = uv_soc_phys_ram_to_gpa(paddr);
pnode = (paddr >> m_val) & pnode_mask;
blade = boot_pnode_to_blade(pnode);
uv_node_to_blade[nid] = blade;
max_pnode = max(pnode, max_pnode);
}
map_gru_high(max_pnode);
map_mmioh_high(max_pnode);
uv_cpu_init();
uv_scir_register_cpu_notifier();
proc_mkdir("sgi_uv", NULL);
}