linux_old1/drivers/net/pcmcia/xirc2ps_cs.c

1948 lines
58 KiB
C

/* [xirc2ps_cs.c wk 03.11.99] (1.40 1999/11/18 00:06:03)
* Xircom CreditCard Ethernet Adapter IIps driver
* Xircom Realport 10/100 (RE-100) driver
*
* This driver supports various Xircom CreditCard Ethernet adapters
* including the CE2, CE IIps, RE-10, CEM28, CEM33, CE33, CEM56,
* CE3-100, CE3B, RE-100, REM10BT, and REM56G-100.
*
* 2000-09-24 <psheer@icon.co.za> The Xircom CE3B-100 may not
* autodetect the media properly. In this case use the
* if_port=1 (for 10BaseT) or if_port=4 (for 100BaseT) options
* to force the media type.
*
* Written originally by Werner Koch based on David Hinds' skeleton of the
* PCMCIA driver.
*
* Copyright (c) 1997,1998 Werner Koch (dd9jn)
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
*
* ALTERNATIVELY, this driver may be distributed under the terms of
* the following license, in which case the provisions of this license
* are required INSTEAD OF the GNU General Public License. (This clause
* is necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include <linux/bitops.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ciscode.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#ifndef MANFID_COMPAQ
#define MANFID_COMPAQ 0x0138
#define MANFID_COMPAQ2 0x0183 /* is this correct? */
#endif
#include <pcmcia/ds.h>
/* Time in jiffies before concluding Tx hung */
#define TX_TIMEOUT ((400*HZ)/1000)
/****************
* Some constants used to access the hardware
*/
/* Register offsets and value constans */
#define XIRCREG_CR 0 /* Command register (wr) */
enum xirc_cr {
TransmitPacket = 0x01,
SoftReset = 0x02,
EnableIntr = 0x04,
ForceIntr = 0x08,
ClearTxFIFO = 0x10,
ClearRxOvrun = 0x20,
RestartTx = 0x40
};
#define XIRCREG_ESR 0 /* Ethernet status register (rd) */
enum xirc_esr {
FullPktRcvd = 0x01, /* full packet in receive buffer */
PktRejected = 0x04, /* a packet has been rejected */
TxPktPend = 0x08, /* TX Packet Pending */
IncorPolarity = 0x10,
MediaSelect = 0x20 /* set if TP, clear if AUI */
};
#define XIRCREG_PR 1 /* Page Register select */
#define XIRCREG_EDP 4 /* Ethernet Data Port Register */
#define XIRCREG_ISR 6 /* Ethernet Interrupt Status Register */
enum xirc_isr {
TxBufOvr = 0x01, /* TX Buffer Overflow */
PktTxed = 0x02, /* Packet Transmitted */
MACIntr = 0x04, /* MAC Interrupt occurred */
TxResGrant = 0x08, /* Tx Reservation Granted */
RxFullPkt = 0x20, /* Rx Full Packet */
RxPktRej = 0x40, /* Rx Packet Rejected */
ForcedIntr= 0x80 /* Forced Interrupt */
};
#define XIRCREG1_IMR0 12 /* Ethernet Interrupt Mask Register (on page 1)*/
#define XIRCREG1_IMR1 13
#define XIRCREG0_TSO 8 /* Transmit Space Open Register (on page 0)*/
#define XIRCREG0_TRS 10 /* Transmit reservation Size Register (page 0)*/
#define XIRCREG0_DO 12 /* Data Offset Register (page 0) (wr) */
#define XIRCREG0_RSR 12 /* Receive Status Register (page 0) (rd) */
enum xirc_rsr {
PhyPkt = 0x01, /* set:physical packet, clear: multicast packet */
BrdcstPkt = 0x02, /* set if it is a broadcast packet */
PktTooLong = 0x04, /* set if packet length > 1518 */
AlignErr = 0x10, /* incorrect CRC and last octet not complete */
CRCErr = 0x20, /* incorrect CRC and last octet is complete */
PktRxOk = 0x80 /* received ok */
};
#define XIRCREG0_PTR 13 /* packets transmitted register (rd) */
#define XIRCREG0_RBC 14 /* receive byte count regsister (rd) */
#define XIRCREG1_ECR 14 /* ethernet configurationn register */
enum xirc_ecr {
FullDuplex = 0x04, /* enable full duplex mode */
LongTPMode = 0x08, /* adjust for longer lengths of TP cable */
DisablePolCor = 0x10,/* disable auto polarity correction */
DisableLinkPulse = 0x20, /* disable link pulse generation */
DisableAutoTx = 0x40, /* disable auto-transmit */
};
#define XIRCREG2_RBS 8 /* receive buffer start register */
#define XIRCREG2_LED 10 /* LED Configuration register */
/* values for the leds: Bits 2-0 for led 1
* 0 disabled Bits 5-3 for led 2
* 1 collision
* 2 noncollision
* 3 link_detected
* 4 incor_polarity
* 5 jabber
* 6 auto_assertion
* 7 rx_tx_activity
*/
#define XIRCREG2_MSR 12 /* Mohawk specific register */
#define XIRCREG4_GPR0 8 /* General Purpose Register 0 */
#define XIRCREG4_GPR1 9 /* General Purpose Register 1 */
#define XIRCREG2_GPR2 13 /* General Purpose Register 2 (page2!)*/
#define XIRCREG4_BOV 10 /* Bonding Version Register */
#define XIRCREG4_LMA 12 /* Local Memory Address Register */
#define XIRCREG4_LMD 14 /* Local Memory Data Port */
/* MAC register can only by accessed with 8 bit operations */
#define XIRCREG40_CMD0 8 /* Command Register (wr) */
enum xirc_cmd { /* Commands */
Transmit = 0x01,
EnableRecv = 0x04,
DisableRecv = 0x08,
Abort = 0x10,
Online = 0x20,
IntrAck = 0x40,
Offline = 0x80
};
#define XIRCREG5_RHSA0 10 /* Rx Host Start Address */
#define XIRCREG40_RXST0 9 /* Receive Status Register */
#define XIRCREG40_TXST0 11 /* Transmit Status Register 0 */
#define XIRCREG40_TXST1 12 /* Transmit Status Register 10 */
#define XIRCREG40_RMASK0 13 /* Receive Mask Register */
#define XIRCREG40_TMASK0 14 /* Transmit Mask Register 0 */
#define XIRCREG40_TMASK1 15 /* Transmit Mask Register 0 */
#define XIRCREG42_SWC0 8 /* Software Configuration 0 */
#define XIRCREG42_SWC1 9 /* Software Configuration 1 */
#define XIRCREG42_BOC 10 /* Back-Off Configuration */
#define XIRCREG44_TDR0 8 /* Time Domain Reflectometry 0 */
#define XIRCREG44_TDR1 9 /* Time Domain Reflectometry 1 */
#define XIRCREG44_RXBC_LO 10 /* Rx Byte Count 0 (rd) */
#define XIRCREG44_RXBC_HI 11 /* Rx Byte Count 1 (rd) */
#define XIRCREG45_REV 15 /* Revision Register (rd) */
#define XIRCREG50_IA 8 /* Individual Address (8-13) */
static const char *if_names[] = { "Auto", "10BaseT", "10Base2", "AUI", "100BaseT" };
/****************
* All the PCMCIA modules use PCMCIA_DEBUG to control debugging. If
* you do not define PCMCIA_DEBUG at all, all the debug code will be
* left out. If you compile with PCMCIA_DEBUG=0, the debug code will
* be present but disabled -- but it can then be enabled for specific
* modules at load time with a 'pc_debug=#' option to insmod.
*/
#ifdef PCMCIA_DEBUG
static int pc_debug = PCMCIA_DEBUG;
module_param(pc_debug, int, 0);
#define DEBUG(n, args...) if (pc_debug>(n)) printk(KDBG_XIRC args)
#else
#define DEBUG(n, args...)
#endif
#define KDBG_XIRC KERN_DEBUG "xirc2ps_cs: "
#define KERR_XIRC KERN_ERR "xirc2ps_cs: "
#define KWRN_XIRC KERN_WARNING "xirc2ps_cs: "
#define KNOT_XIRC KERN_NOTICE "xirc2ps_cs: "
#define KINF_XIRC KERN_INFO "xirc2ps_cs: "
/* card types */
#define XIR_UNKNOWN 0 /* unknown: not supported */
#define XIR_CE 1 /* (prodid 1) different hardware: not supported */
#define XIR_CE2 2 /* (prodid 2) */
#define XIR_CE3 3 /* (prodid 3) */
#define XIR_CEM 4 /* (prodid 1) different hardware: not supported */
#define XIR_CEM2 5 /* (prodid 2) */
#define XIR_CEM3 6 /* (prodid 3) */
#define XIR_CEM33 7 /* (prodid 4) */
#define XIR_CEM56M 8 /* (prodid 5) */
#define XIR_CEM56 9 /* (prodid 6) */
#define XIR_CM28 10 /* (prodid 3) modem only: not supported here */
#define XIR_CM33 11 /* (prodid 4) modem only: not supported here */
#define XIR_CM56 12 /* (prodid 5) modem only: not supported here */
#define XIR_CG 13 /* (prodid 1) GSM modem only: not supported */
#define XIR_CBE 14 /* (prodid 1) cardbus ethernet: not supported */
/*====================================================================*/
/* Module parameters */
MODULE_DESCRIPTION("Xircom PCMCIA ethernet driver");
MODULE_LICENSE("Dual MPL/GPL");
#define INT_MODULE_PARM(n, v) static int n = v; module_param(n, int, 0)
INT_MODULE_PARM(if_port, 0);
INT_MODULE_PARM(full_duplex, 0);
INT_MODULE_PARM(do_sound, 1);
INT_MODULE_PARM(lockup_hack, 0); /* anti lockup hack */
/*====================================================================*/
/* We do not process more than these number of bytes during one
* interrupt. (Of course we receive complete packets, so this is not
* an exact value).
* Something between 2000..22000; first value gives best interrupt latency,
* the second enables the usage of the complete on-chip buffer. We use the
* high value as the initial value.
*/
static unsigned maxrx_bytes = 22000;
/* MII management prototypes */
static void mii_idle(kio_addr_t ioaddr);
static void mii_putbit(kio_addr_t ioaddr, unsigned data);
static int mii_getbit(kio_addr_t ioaddr);
static void mii_wbits(kio_addr_t ioaddr, unsigned data, int len);
static unsigned mii_rd(kio_addr_t ioaddr, u_char phyaddr, u_char phyreg);
static void mii_wr(kio_addr_t ioaddr, u_char phyaddr, u_char phyreg,
unsigned data, int len);
/*
* The event() function is this driver's Card Services event handler.
* It will be called by Card Services when an appropriate card status
* event is received. The config() and release() entry points are
* used to configure or release a socket, in response to card insertion
* and ejection events. They are invoked from the event handler.
*/
static int has_ce2_string(struct pcmcia_device * link);
static int xirc2ps_config(struct pcmcia_device * link);
static void xirc2ps_release(struct pcmcia_device * link);
/****************
* The attach() and detach() entry points are used to create and destroy
* "instances" of the driver, where each instance represents everything
* needed to manage one actual PCMCIA card.
*/
static void xirc2ps_detach(struct pcmcia_device *p_dev);
/****************
* You'll also need to prototype all the functions that will actually
* be used to talk to your device. See 'pcmem_cs' for a good example
* of a fully self-sufficient driver; the other drivers rely more or
* less on other parts of the kernel.
*/
static irqreturn_t xirc2ps_interrupt(int irq, void *dev_id, struct pt_regs *regs);
/****************
* A linked list of "instances" of the device. Each actual
* PCMCIA card corresponds to one device instance, and is described
* by one struct pcmcia_device structure (defined in ds.h).
*
* You may not want to use a linked list for this -- for example, the
* memory card driver uses an array of struct pcmcia_device pointers, where minor
* device numbers are used to derive the corresponding array index.
*/
/****************
* A driver needs to provide a dev_node_t structure for each device
* on a card. In some cases, there is only one device per card (for
* example, ethernet cards, modems). In other cases, there may be
* many actual or logical devices (SCSI adapters, memory cards with
* multiple partitions). The dev_node_t structures need to be kept
* in a linked list starting at the 'dev' field of a struct pcmcia_device
* structure. We allocate them in the card's private data structure,
* because they generally can't be allocated dynamically.
*/
typedef struct local_info_t {
struct pcmcia_device *p_dev;
dev_node_t node;
struct net_device_stats stats;
int card_type;
int probe_port;
int silicon; /* silicon revision. 0=old CE2, 1=Scipper, 4=Mohawk */
int mohawk; /* a CE3 type card */
int dingo; /* a CEM56 type card */
int new_mii; /* has full 10baseT/100baseT MII */
int modem; /* is a multi function card (i.e with a modem) */
void __iomem *dingo_ccr; /* only used for CEM56 cards */
unsigned last_ptr_value; /* last packets transmitted value */
const char *manf_str;
} local_info_t;
/****************
* Some more prototypes
*/
static int do_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void do_tx_timeout(struct net_device *dev);
static struct net_device_stats *do_get_stats(struct net_device *dev);
static void set_addresses(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static int set_card_type(struct pcmcia_device *link, const void *s);
static int do_config(struct net_device *dev, struct ifmap *map);
static int do_open(struct net_device *dev);
static int do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static struct ethtool_ops netdev_ethtool_ops;
static void hardreset(struct net_device *dev);
static void do_reset(struct net_device *dev, int full);
static int init_mii(struct net_device *dev);
static void do_powerdown(struct net_device *dev);
static int do_stop(struct net_device *dev);
/*=============== Helper functions =========================*/
static int
first_tuple(struct pcmcia_device *handle, tuple_t *tuple, cisparse_t *parse)
{
int err;
if ((err = pcmcia_get_first_tuple(handle, tuple)) == 0 &&
(err = pcmcia_get_tuple_data(handle, tuple)) == 0)
err = pcmcia_parse_tuple(handle, tuple, parse);
return err;
}
static int
next_tuple(struct pcmcia_device *handle, tuple_t *tuple, cisparse_t *parse)
{
int err;
if ((err = pcmcia_get_next_tuple(handle, tuple)) == 0 &&
(err = pcmcia_get_tuple_data(handle, tuple)) == 0)
err = pcmcia_parse_tuple(handle, tuple, parse);
return err;
}
#define SelectPage(pgnr) outb((pgnr), ioaddr + XIRCREG_PR)
#define GetByte(reg) ((unsigned)inb(ioaddr + (reg)))
#define GetWord(reg) ((unsigned)inw(ioaddr + (reg)))
#define PutByte(reg,value) outb((value), ioaddr+(reg))
#define PutWord(reg,value) outw((value), ioaddr+(reg))
/*====== Functions used for debugging =================================*/
#if defined(PCMCIA_DEBUG) && 0 /* reading regs may change system status */
static void
PrintRegisters(struct net_device *dev)
{
kio_addr_t ioaddr = dev->base_addr;
if (pc_debug > 1) {
int i, page;
printk(KDBG_XIRC "Register common: ");
for (i = 0; i < 8; i++)
printk(" %2.2x", GetByte(i));
printk("\n");
for (page = 0; page <= 8; page++) {
printk(KDBG_XIRC "Register page %2x: ", page);
SelectPage(page);
for (i = 8; i < 16; i++)
printk(" %2.2x", GetByte(i));
printk("\n");
}
for (page=0x40 ; page <= 0x5f; page++) {
if (page == 0x43 || (page >= 0x46 && page <= 0x4f)
|| (page >= 0x51 && page <=0x5e))
continue;
printk(KDBG_XIRC "Register page %2x: ", page);
SelectPage(page);
for (i = 8; i < 16; i++)
printk(" %2.2x", GetByte(i));
printk("\n");
}
}
}
#endif /* PCMCIA_DEBUG */
/*============== MII Management functions ===============*/
/****************
* Turn around for read
*/
static void
mii_idle(kio_addr_t ioaddr)
{
PutByte(XIRCREG2_GPR2, 0x04|0); /* drive MDCK low */
udelay(1);
PutByte(XIRCREG2_GPR2, 0x04|1); /* and drive MDCK high */
udelay(1);
}
/****************
* Write a bit to MDI/O
*/
static void
mii_putbit(kio_addr_t ioaddr, unsigned data)
{
#if 1
if (data) {
PutByte(XIRCREG2_GPR2, 0x0c|2|0); /* set MDIO */
udelay(1);
PutByte(XIRCREG2_GPR2, 0x0c|2|1); /* and drive MDCK high */
udelay(1);
} else {
PutByte(XIRCREG2_GPR2, 0x0c|0|0); /* clear MDIO */
udelay(1);
PutByte(XIRCREG2_GPR2, 0x0c|0|1); /* and drive MDCK high */
udelay(1);
}
#else
if (data) {
PutWord(XIRCREG2_GPR2-1, 0x0e0e);
udelay(1);
PutWord(XIRCREG2_GPR2-1, 0x0f0f);
udelay(1);
} else {
PutWord(XIRCREG2_GPR2-1, 0x0c0c);
udelay(1);
PutWord(XIRCREG2_GPR2-1, 0x0d0d);
udelay(1);
}
#endif
}
/****************
* Get a bit from MDI/O
*/
static int
mii_getbit(kio_addr_t ioaddr)
{
unsigned d;
PutByte(XIRCREG2_GPR2, 4|0); /* drive MDCK low */
udelay(1);
d = GetByte(XIRCREG2_GPR2); /* read MDIO */
PutByte(XIRCREG2_GPR2, 4|1); /* drive MDCK high again */
udelay(1);
return d & 0x20; /* read MDIO */
}
static void
mii_wbits(kio_addr_t ioaddr, unsigned data, int len)
{
unsigned m = 1 << (len-1);
for (; m; m >>= 1)
mii_putbit(ioaddr, data & m);
}
static unsigned
mii_rd(kio_addr_t ioaddr, u_char phyaddr, u_char phyreg)
{
int i;
unsigned data=0, m;
SelectPage(2);
for (i=0; i < 32; i++) /* 32 bit preamble */
mii_putbit(ioaddr, 1);
mii_wbits(ioaddr, 0x06, 4); /* Start and opcode for read */
mii_wbits(ioaddr, phyaddr, 5); /* PHY address to be accessed */
mii_wbits(ioaddr, phyreg, 5); /* PHY register to read */
mii_idle(ioaddr); /* turn around */
mii_getbit(ioaddr);
for (m = 1<<15; m; m >>= 1)
if (mii_getbit(ioaddr))
data |= m;
mii_idle(ioaddr);
return data;
}
static void
mii_wr(kio_addr_t ioaddr, u_char phyaddr, u_char phyreg, unsigned data, int len)
{
int i;
SelectPage(2);
for (i=0; i < 32; i++) /* 32 bit preamble */
mii_putbit(ioaddr, 1);
mii_wbits(ioaddr, 0x05, 4); /* Start and opcode for write */
mii_wbits(ioaddr, phyaddr, 5); /* PHY address to be accessed */
mii_wbits(ioaddr, phyreg, 5); /* PHY Register to write */
mii_putbit(ioaddr, 1); /* turn around */
mii_putbit(ioaddr, 0);
mii_wbits(ioaddr, data, len); /* And write the data */
mii_idle(ioaddr);
}
/*============= Main bulk of functions =========================*/
/****************
* xirc2ps_attach() creates an "instance" of the driver, allocating
* local data structures for one device. The device is registered
* with Card Services.
*
* The dev_link structure is initialized, but we don't actually
* configure the card at this point -- we wait until we receive a
* card insertion event.
*/
static int
xirc2ps_probe(struct pcmcia_device *link)
{
struct net_device *dev;
local_info_t *local;
DEBUG(0, "attach()\n");
/* Allocate the device structure */
dev = alloc_etherdev(sizeof(local_info_t));
if (!dev)
return -ENOMEM;
local = netdev_priv(dev);
local->p_dev = link;
link->priv = dev;
/* General socket configuration */
link->conf.Attributes = CONF_ENABLE_IRQ;
link->conf.IntType = INT_MEMORY_AND_IO;
link->conf.ConfigIndex = 1;
link->conf.Present = PRESENT_OPTION;
link->irq.Handler = xirc2ps_interrupt;
link->irq.Instance = dev;
/* Fill in card specific entries */
SET_MODULE_OWNER(dev);
dev->hard_start_xmit = &do_start_xmit;
dev->set_config = &do_config;
dev->get_stats = &do_get_stats;
dev->do_ioctl = &do_ioctl;
SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
dev->set_multicast_list = &set_multicast_list;
dev->open = &do_open;
dev->stop = &do_stop;
#ifdef HAVE_TX_TIMEOUT
dev->tx_timeout = do_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#endif
return xirc2ps_config(link);
} /* xirc2ps_attach */
/****************
* This deletes a driver "instance". The device is de-registered
* with Card Services. If it has been released, all local data
* structures are freed. Otherwise, the structures will be freed
* when the device is released.
*/
static void
xirc2ps_detach(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
DEBUG(0, "detach(0x%p)\n", link);
if (link->dev_node)
unregister_netdev(dev);
xirc2ps_release(link);
free_netdev(dev);
} /* xirc2ps_detach */
/****************
* Detect the type of the card. s is the buffer with the data of tuple 0x20
* Returns: 0 := not supported
* mediaid=11 and prodid=47
* Media-Id bits:
* Ethernet 0x01
* Tokenring 0x02
* Arcnet 0x04
* Wireless 0x08
* Modem 0x10
* GSM only 0x20
* Prod-Id bits:
* Pocket 0x10
* External 0x20
* Creditcard 0x40
* Cardbus 0x80
*
*/
static int
set_card_type(struct pcmcia_device *link, const void *s)
{
struct net_device *dev = link->priv;
local_info_t *local = netdev_priv(dev);
#ifdef PCMCIA_DEBUG
unsigned cisrev = ((const unsigned char *)s)[2];
#endif
unsigned mediaid= ((const unsigned char *)s)[3];
unsigned prodid = ((const unsigned char *)s)[4];
DEBUG(0, "cisrev=%02x mediaid=%02x prodid=%02x\n",
cisrev, mediaid, prodid);
local->mohawk = 0;
local->dingo = 0;
local->modem = 0;
local->card_type = XIR_UNKNOWN;
if (!(prodid & 0x40)) {
printk(KNOT_XIRC "Ooops: Not a creditcard\n");
return 0;
}
if (!(mediaid & 0x01)) {
printk(KNOT_XIRC "Not an Ethernet card\n");
return 0;
}
if (mediaid & 0x10) {
local->modem = 1;
switch(prodid & 15) {
case 1: local->card_type = XIR_CEM ; break;
case 2: local->card_type = XIR_CEM2 ; break;
case 3: local->card_type = XIR_CEM3 ; break;
case 4: local->card_type = XIR_CEM33 ; break;
case 5: local->card_type = XIR_CEM56M;
local->mohawk = 1;
break;
case 6:
case 7: /* 7 is the RealPort 10/56 */
local->card_type = XIR_CEM56 ;
local->mohawk = 1;
local->dingo = 1;
break;
}
} else {
switch(prodid & 15) {
case 1: local->card_type = has_ce2_string(link)? XIR_CE2 : XIR_CE ;
break;
case 2: local->card_type = XIR_CE2; break;
case 3: local->card_type = XIR_CE3;
local->mohawk = 1;
break;
}
}
if (local->card_type == XIR_CE || local->card_type == XIR_CEM) {
printk(KNOT_XIRC "Sorry, this is an old CE card\n");
return 0;
}
if (local->card_type == XIR_UNKNOWN)
printk(KNOT_XIRC "unknown card (mediaid=%02x prodid=%02x)\n",
mediaid, prodid);
return 1;
}
/****************
* There are some CE2 cards out which claim to be a CE card.
* This function looks for a "CE2" in the 3rd version field.
* Returns: true if this is a CE2
*/
static int
has_ce2_string(struct pcmcia_device * link)
{
tuple_t tuple;
cisparse_t parse;
u_char buf[256];
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = 254;
tuple.TupleOffset = 0;
tuple.DesiredTuple = CISTPL_VERS_1;
if (!first_tuple(link, &tuple, &parse) && parse.version_1.ns > 2) {
if (strstr(parse.version_1.str + parse.version_1.ofs[2], "CE2"))
return 1;
}
return 0;
}
/****************
* xirc2ps_config() is scheduled to run after a CARD_INSERTION event
* is received, to configure the PCMCIA socket, and to make the
* ethernet device available to the system.
*/
static int
xirc2ps_config(struct pcmcia_device * link)
{
struct net_device *dev = link->priv;
local_info_t *local = netdev_priv(dev);
tuple_t tuple;
cisparse_t parse;
kio_addr_t ioaddr;
int err, i;
u_char buf[64];
cistpl_lan_node_id_t *node_id = (cistpl_lan_node_id_t*)parse.funce.data;
cistpl_cftable_entry_t *cf = &parse.cftable_entry;
local->dingo_ccr = NULL;
DEBUG(0, "config(0x%p)\n", link);
/*
* This reads the card's CONFIG tuple to find its configuration
* registers.
*/
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = 64;
tuple.TupleOffset = 0;
/* Is this a valid card */
tuple.DesiredTuple = CISTPL_MANFID;
if ((err=first_tuple(link, &tuple, &parse))) {
printk(KNOT_XIRC "manfid not found in CIS\n");
goto failure;
}
switch(parse.manfid.manf) {
case MANFID_XIRCOM:
local->manf_str = "Xircom";
break;
case MANFID_ACCTON:
local->manf_str = "Accton";
break;
case MANFID_COMPAQ:
case MANFID_COMPAQ2:
local->manf_str = "Compaq";
break;
case MANFID_INTEL:
local->manf_str = "Intel";
break;
case MANFID_TOSHIBA:
local->manf_str = "Toshiba";
break;
default:
printk(KNOT_XIRC "Unknown Card Manufacturer ID: 0x%04x\n",
(unsigned)parse.manfid.manf);
goto failure;
}
DEBUG(0, "found %s card\n", local->manf_str);
if (!set_card_type(link, buf)) {
printk(KNOT_XIRC "this card is not supported\n");
goto failure;
}
/* get configuration stuff */
tuple.DesiredTuple = CISTPL_CONFIG;
if ((err=first_tuple(link, &tuple, &parse)))
goto cis_error;
link->conf.ConfigBase = parse.config.base;
link->conf.Present = parse.config.rmask[0];
/* get the ethernet address from the CIS */
tuple.DesiredTuple = CISTPL_FUNCE;
for (err = first_tuple(link, &tuple, &parse); !err;
err = next_tuple(link, &tuple, &parse)) {
/* Once I saw two CISTPL_FUNCE_LAN_NODE_ID entries:
* the first one with a length of zero the second correct -
* so I skip all entries with length 0 */
if (parse.funce.type == CISTPL_FUNCE_LAN_NODE_ID
&& ((cistpl_lan_node_id_t *)parse.funce.data)->nb)
break;
}
if (err) { /* not found: try to get the node-id from tuple 0x89 */
tuple.DesiredTuple = 0x89; /* data layout looks like tuple 0x22 */
if ((err = pcmcia_get_first_tuple(link, &tuple)) == 0 &&
(err = pcmcia_get_tuple_data(link, &tuple)) == 0) {
if (tuple.TupleDataLen == 8 && *buf == CISTPL_FUNCE_LAN_NODE_ID)
memcpy(&parse, buf, 8);
else
err = -1;
}
}
if (err) { /* another try (James Lehmer's CE2 version 4.1)*/
tuple.DesiredTuple = CISTPL_FUNCE;
for (err = first_tuple(link, &tuple, &parse); !err;
err = next_tuple(link, &tuple, &parse)) {
if (parse.funce.type == 0x02 && parse.funce.data[0] == 1
&& parse.funce.data[1] == 6 && tuple.TupleDataLen == 13) {
buf[1] = 4;
memcpy(&parse, buf+1, 8);
break;
}
}
}
if (err) {
printk(KNOT_XIRC "node-id not found in CIS\n");
goto failure;
}
node_id = (cistpl_lan_node_id_t *)parse.funce.data;
if (node_id->nb != 6) {
printk(KNOT_XIRC "malformed node-id in CIS\n");
goto failure;
}
for (i=0; i < 6; i++)
dev->dev_addr[i] = node_id->id[i];
link->io.IOAddrLines =10;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;
link->irq.Attributes = IRQ_HANDLE_PRESENT;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
if (local->modem) {
int pass;
if (do_sound) {
link->conf.Attributes |= CONF_ENABLE_SPKR;
link->conf.Status |= CCSR_AUDIO_ENA;
}
link->irq.Attributes |= IRQ_TYPE_DYNAMIC_SHARING|IRQ_FIRST_SHARED ;
link->io.NumPorts2 = 8;
link->io.Attributes2 = IO_DATA_PATH_WIDTH_8;
if (local->dingo) {
/* Take the Modem IO port from the CIS and scan for a free
* Ethernet port */
link->io.NumPorts1 = 16; /* no Mako stuff anymore */
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
for (err = first_tuple(link, &tuple, &parse); !err;
err = next_tuple(link, &tuple, &parse)) {
if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8) {
for (ioaddr = 0x300; ioaddr < 0x400; ioaddr += 0x10) {
link->conf.ConfigIndex = cf->index ;
link->io.BasePort2 = cf->io.win[0].base;
link->io.BasePort1 = ioaddr;
if (!(err=pcmcia_request_io(link, &link->io)))
goto port_found;
}
}
}
} else {
link->io.NumPorts1 = 18;
/* We do 2 passes here: The first one uses the regular mapping and
* the second tries again, thereby considering that the 32 ports are
* mirrored every 32 bytes. Actually we use a mirrored port for
* the Mako if (on the first pass) the COR bit 5 is set.
*/
for (pass=0; pass < 2; pass++) {
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
for (err = first_tuple(link, &tuple, &parse); !err;
err = next_tuple(link, &tuple, &parse)){
if (cf->io.nwin > 0 && (cf->io.win[0].base & 0xf) == 8){
link->conf.ConfigIndex = cf->index ;
link->io.BasePort2 = cf->io.win[0].base;
link->io.BasePort1 = link->io.BasePort2
+ (pass ? (cf->index & 0x20 ? -24:8)
: (cf->index & 0x20 ? 8:-24));
if (!(err=pcmcia_request_io(link, &link->io)))
goto port_found;
}
}
}
/* if special option:
* try to configure as Ethernet only.
* .... */
}
printk(KNOT_XIRC "no ports available\n");
} else {
link->irq.Attributes |= IRQ_TYPE_EXCLUSIVE;
link->io.NumPorts1 = 16;
for (ioaddr = 0x300; ioaddr < 0x400; ioaddr += 0x10) {
link->io.BasePort1 = ioaddr;
if (!(err=pcmcia_request_io(link, &link->io)))
goto port_found;
}
link->io.BasePort1 = 0; /* let CS decide */
if ((err=pcmcia_request_io(link, &link->io))) {
cs_error(link, RequestIO, err);
goto config_error;
}
}
port_found:
if (err)
goto config_error;
/****************
* Now allocate an interrupt line. Note that this does not
* actually assign a handler to the interrupt.
*/
if ((err=pcmcia_request_irq(link, &link->irq))) {
cs_error(link, RequestIRQ, err);
goto config_error;
}
/****************
* This actually configures the PCMCIA socket -- setting up
* the I/O windows and the interrupt mapping.
*/
if ((err=pcmcia_request_configuration(link, &link->conf))) {
cs_error(link, RequestConfiguration, err);
goto config_error;
}
if (local->dingo) {
conf_reg_t reg;
win_req_t req;
memreq_t mem;
/* Reset the modem's BAR to the correct value
* This is necessary because in the RequestConfiguration call,
* the base address of the ethernet port (BasePort1) is written
* to the BAR registers of the modem.
*/
reg.Action = CS_WRITE;
reg.Offset = CISREG_IOBASE_0;
reg.Value = link->io.BasePort2 & 0xff;
if ((err = pcmcia_access_configuration_register(link, &reg))) {
cs_error(link, AccessConfigurationRegister, err);
goto config_error;
}
reg.Action = CS_WRITE;
reg.Offset = CISREG_IOBASE_1;
reg.Value = (link->io.BasePort2 >> 8) & 0xff;
if ((err = pcmcia_access_configuration_register(link, &reg))) {
cs_error(link, AccessConfigurationRegister, err);
goto config_error;
}
/* There is no config entry for the Ethernet part which
* is at 0x0800. So we allocate a window into the attribute
* memory and write direct to the CIS registers
*/
req.Attributes = WIN_DATA_WIDTH_8|WIN_MEMORY_TYPE_AM|WIN_ENABLE;
req.Base = req.Size = 0;
req.AccessSpeed = 0;
if ((err = pcmcia_request_window(&link, &req, &link->win))) {
cs_error(link, RequestWindow, err);
goto config_error;
}
local->dingo_ccr = ioremap(req.Base,0x1000) + 0x0800;
mem.CardOffset = 0x0;
mem.Page = 0;
if ((err = pcmcia_map_mem_page(link->win, &mem))) {
cs_error(link, MapMemPage, err);
goto config_error;
}
/* Setup the CCRs; there are no infos in the CIS about the Ethernet
* part.
*/
writeb(0x47, local->dingo_ccr + CISREG_COR);
ioaddr = link->io.BasePort1;
writeb(ioaddr & 0xff , local->dingo_ccr + CISREG_IOBASE_0);
writeb((ioaddr >> 8)&0xff , local->dingo_ccr + CISREG_IOBASE_1);
#if 0
{
u_char tmp;
printk(KERN_INFO "ECOR:");
for (i=0; i < 7; i++) {
tmp = readb(local->dingo_ccr + i*2);
printk(" %02x", tmp);
}
printk("\n");
printk(KERN_INFO "DCOR:");
for (i=0; i < 4; i++) {
tmp = readb(local->dingo_ccr + 0x20 + i*2);
printk(" %02x", tmp);
}
printk("\n");
printk(KERN_INFO "SCOR:");
for (i=0; i < 10; i++) {
tmp = readb(local->dingo_ccr + 0x40 + i*2);
printk(" %02x", tmp);
}
printk("\n");
}
#endif
writeb(0x01, local->dingo_ccr + 0x20);
writeb(0x0c, local->dingo_ccr + 0x22);
writeb(0x00, local->dingo_ccr + 0x24);
writeb(0x00, local->dingo_ccr + 0x26);
writeb(0x00, local->dingo_ccr + 0x28);
}
/* The if_port symbol can be set when the module is loaded */
local->probe_port=0;
if (!if_port) {
local->probe_port = dev->if_port = 1;
} else if ((if_port >= 1 && if_port <= 2) ||
(local->mohawk && if_port==4))
dev->if_port = if_port;
else
printk(KNOT_XIRC "invalid if_port requested\n");
/* we can now register the device with the net subsystem */
dev->irq = link->irq.AssignedIRQ;
dev->base_addr = link->io.BasePort1;
if (local->dingo)
do_reset(dev, 1); /* a kludge to make the cem56 work */
link->dev_node = &local->node;
SET_NETDEV_DEV(dev, &handle_to_dev(link));
if ((err=register_netdev(dev))) {
printk(KNOT_XIRC "register_netdev() failed\n");
link->dev_node = NULL;
goto config_error;
}
strcpy(local->node.dev_name, dev->name);
/* give some infos about the hardware */
printk(KERN_INFO "%s: %s: port %#3lx, irq %d, hwaddr",
dev->name, local->manf_str,(u_long)dev->base_addr, (int)dev->irq);
for (i = 0; i < 6; i++)
printk("%c%02X", i?':':' ', dev->dev_addr[i]);
printk("\n");
return 0;
config_error:
xirc2ps_release(link);
return -ENODEV;
cis_error:
printk(KNOT_XIRC "unable to parse CIS\n");
failure:
return -ENODEV;
} /* xirc2ps_config */
/****************
* After a card is removed, xirc2ps_release() will unregister the net
* device, and release the PCMCIA configuration. If the device is
* still open, this will be postponed until it is closed.
*/
static void
xirc2ps_release(struct pcmcia_device *link)
{
DEBUG(0, "release(0x%p)\n", link);
if (link->win) {
struct net_device *dev = link->priv;
local_info_t *local = netdev_priv(dev);
if (local->dingo)
iounmap(local->dingo_ccr - 0x0800);
}
pcmcia_disable_device(link);
} /* xirc2ps_release */
/*====================================================================*/
static int xirc2ps_suspend(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
if (link->open) {
netif_device_detach(dev);
do_powerdown(dev);
}
return 0;
}
static int xirc2ps_resume(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
if (link->open) {
do_reset(dev,1);
netif_device_attach(dev);
}
return 0;
}
/*====================================================================*/
/****************
* This is the Interrupt service route.
*/
static irqreturn_t
xirc2ps_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_id;
local_info_t *lp = netdev_priv(dev);
kio_addr_t ioaddr;
u_char saved_page;
unsigned bytes_rcvd;
unsigned int_status, eth_status, rx_status, tx_status;
unsigned rsr, pktlen;
ulong start_ticks = jiffies; /* fixme: jiffies rollover every 497 days
* is this something to worry about?
* -- on a laptop?
*/
if (!netif_device_present(dev))
return IRQ_HANDLED;
ioaddr = dev->base_addr;
if (lp->mohawk) { /* must disable the interrupt */
PutByte(XIRCREG_CR, 0);
}
DEBUG(6, "%s: interrupt %d at %#x.\n", dev->name, irq, ioaddr);
saved_page = GetByte(XIRCREG_PR);
/* Read the ISR to see whats the cause for the interrupt.
* This also clears the interrupt flags on CE2 cards
*/
int_status = GetByte(XIRCREG_ISR);
bytes_rcvd = 0;
loop_entry:
if (int_status == 0xff) { /* card may be ejected */
DEBUG(3, "%s: interrupt %d for dead card\n", dev->name, irq);
goto leave;
}
eth_status = GetByte(XIRCREG_ESR);
SelectPage(0x40);
rx_status = GetByte(XIRCREG40_RXST0);
PutByte(XIRCREG40_RXST0, (~rx_status & 0xff));
tx_status = GetByte(XIRCREG40_TXST0);
tx_status |= GetByte(XIRCREG40_TXST1) << 8;
PutByte(XIRCREG40_TXST0, 0);
PutByte(XIRCREG40_TXST1, 0);
DEBUG(3, "%s: ISR=%#2.2x ESR=%#2.2x RSR=%#2.2x TSR=%#4.4x\n",
dev->name, int_status, eth_status, rx_status, tx_status);
/***** receive section ******/
SelectPage(0);
while (eth_status & FullPktRcvd) {
rsr = GetByte(XIRCREG0_RSR);
if (bytes_rcvd > maxrx_bytes && (rsr & PktRxOk)) {
/* too many bytes received during this int, drop the rest of the
* packets */
lp->stats.rx_dropped++;
DEBUG(2, "%s: RX drop, too much done\n", dev->name);
} else if (rsr & PktRxOk) {
struct sk_buff *skb;
pktlen = GetWord(XIRCREG0_RBC);
bytes_rcvd += pktlen;
DEBUG(5, "rsr=%#02x packet_length=%u\n", rsr, pktlen);
skb = dev_alloc_skb(pktlen+3); /* 1 extra so we can use insw */
if (!skb) {
printk(KNOT_XIRC "low memory, packet dropped (size=%u)\n",
pktlen);
lp->stats.rx_dropped++;
} else { /* okay get the packet */
skb_reserve(skb, 2);
if (lp->silicon == 0 ) { /* work around a hardware bug */
unsigned rhsa; /* receive start address */
SelectPage(5);
rhsa = GetWord(XIRCREG5_RHSA0);
SelectPage(0);
rhsa += 3; /* skip control infos */
if (rhsa >= 0x8000)
rhsa = 0;
if (rhsa + pktlen > 0x8000) {
unsigned i;
u_char *buf = skb_put(skb, pktlen);
for (i=0; i < pktlen ; i++, rhsa++) {
buf[i] = GetByte(XIRCREG_EDP);
if (rhsa == 0x8000) {
rhsa = 0;
i--;
}
}
} else {
insw(ioaddr+XIRCREG_EDP,
skb_put(skb, pktlen), (pktlen+1)>>1);
}
}
#if 0
else if (lp->mohawk) {
/* To use this 32 bit access we should use
* a manual optimized loop
* Also the words are swapped, we can get more
* performance by using 32 bit access and swapping
* the words in a register. Will need this for cardbus
*
* Note: don't forget to change the ALLOC_SKB to .. +3
*/
unsigned i;
u_long *p = skb_put(skb, pktlen);
register u_long a;
kio_addr_t edpreg = ioaddr+XIRCREG_EDP-2;
for (i=0; i < len ; i += 4, p++) {
a = inl(edpreg);
__asm__("rorl $16,%0\n\t"
:"=q" (a)
: "0" (a));
*p = a;
}
}
#endif
else {
insw(ioaddr+XIRCREG_EDP, skb_put(skb, pktlen),
(pktlen+1)>>1);
}
skb->protocol = eth_type_trans(skb, dev);
skb->dev = dev;
netif_rx(skb);
dev->last_rx = jiffies;
lp->stats.rx_packets++;
lp->stats.rx_bytes += pktlen;
if (!(rsr & PhyPkt))
lp->stats.multicast++;
}
} else { /* bad packet */
DEBUG(5, "rsr=%#02x\n", rsr);
}
if (rsr & PktTooLong) {
lp->stats.rx_frame_errors++;
DEBUG(3, "%s: Packet too long\n", dev->name);
}
if (rsr & CRCErr) {
lp->stats.rx_crc_errors++;
DEBUG(3, "%s: CRC error\n", dev->name);
}
if (rsr & AlignErr) {
lp->stats.rx_fifo_errors++; /* okay ? */
DEBUG(3, "%s: Alignment error\n", dev->name);
}
/* clear the received/dropped/error packet */
PutWord(XIRCREG0_DO, 0x8000); /* issue cmd: skip_rx_packet */
/* get the new ethernet status */
eth_status = GetByte(XIRCREG_ESR);
}
if (rx_status & 0x10) { /* Receive overrun */
lp->stats.rx_over_errors++;
PutByte(XIRCREG_CR, ClearRxOvrun);
DEBUG(3, "receive overrun cleared\n");
}
/***** transmit section ******/
if (int_status & PktTxed) {
unsigned n, nn;
n = lp->last_ptr_value;
nn = GetByte(XIRCREG0_PTR);
lp->last_ptr_value = nn;
if (nn < n) /* rollover */
lp->stats.tx_packets += 256 - n;
else if (n == nn) { /* happens sometimes - don't know why */
DEBUG(0, "PTR not changed?\n");
} else
lp->stats.tx_packets += lp->last_ptr_value - n;
netif_wake_queue(dev);
}
if (tx_status & 0x0002) { /* Execessive collissions */
DEBUG(0, "tx restarted due to execssive collissions\n");
PutByte(XIRCREG_CR, RestartTx); /* restart transmitter process */
}
if (tx_status & 0x0040)
lp->stats.tx_aborted_errors++;
/* recalculate our work chunk so that we limit the duration of this
* ISR to about 1/10 of a second.
* Calculate only if we received a reasonable amount of bytes.
*/
if (bytes_rcvd > 1000) {
u_long duration = jiffies - start_ticks;
if (duration >= HZ/10) { /* if more than about 1/10 second */
maxrx_bytes = (bytes_rcvd * (HZ/10)) / duration;
if (maxrx_bytes < 2000)
maxrx_bytes = 2000;
else if (maxrx_bytes > 22000)
maxrx_bytes = 22000;
DEBUG(1, "set maxrx=%u (rcvd=%u ticks=%lu)\n",
maxrx_bytes, bytes_rcvd, duration);
} else if (!duration && maxrx_bytes < 22000) {
/* now much faster */
maxrx_bytes += 2000;
if (maxrx_bytes > 22000)
maxrx_bytes = 22000;
DEBUG(1, "set maxrx=%u\n", maxrx_bytes);
}
}
leave:
if (lockup_hack) {
if (int_status != 0xff && (int_status = GetByte(XIRCREG_ISR)) != 0)
goto loop_entry;
}
SelectPage(saved_page);
PutByte(XIRCREG_CR, EnableIntr); /* re-enable interrupts */
/* Instead of dropping packets during a receive, we could
* force an interrupt with this command:
* PutByte(XIRCREG_CR, EnableIntr|ForceIntr);
*/
return IRQ_HANDLED;
} /* xirc2ps_interrupt */
/*====================================================================*/
static void
do_tx_timeout(struct net_device *dev)
{
local_info_t *lp = netdev_priv(dev);
printk(KERN_NOTICE "%s: transmit timed out\n", dev->name);
lp->stats.tx_errors++;
/* reset the card */
do_reset(dev,1);
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
static int
do_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
local_info_t *lp = netdev_priv(dev);
kio_addr_t ioaddr = dev->base_addr;
int okay;
unsigned freespace;
unsigned pktlen = skb? skb->len : 0;
DEBUG(1, "do_start_xmit(skb=%p, dev=%p) len=%u\n",
skb, dev, pktlen);
/* adjust the packet length to min. required
* and hope that the buffer is large enough
* to provide some random data.
* fixme: For Mohawk we can change this by sending
* a larger packetlen than we actually have; the chip will
* pad this in his buffer with random bytes
*/
if (pktlen < ETH_ZLEN)
{
skb = skb_padto(skb, ETH_ZLEN);
if (skb == NULL)
return 0;
pktlen = ETH_ZLEN;
}
netif_stop_queue(dev);
SelectPage(0);
PutWord(XIRCREG0_TRS, (u_short)pktlen+2);
freespace = GetWord(XIRCREG0_TSO);
okay = freespace & 0x8000;
freespace &= 0x7fff;
/* TRS doesn't work - (indeed it is eliminated with sil-rev 1) */
okay = pktlen +2 < freespace;
DEBUG(2 + (okay ? 2 : 0), "%s: avail. tx space=%u%s\n",
dev->name, freespace, okay ? " (okay)":" (not enough)");
if (!okay) { /* not enough space */
return 1; /* upper layer may decide to requeue this packet */
}
/* send the packet */
PutWord(XIRCREG_EDP, (u_short)pktlen);
outsw(ioaddr+XIRCREG_EDP, skb->data, pktlen>>1);
if (pktlen & 1)
PutByte(XIRCREG_EDP, skb->data[pktlen-1]);
if (lp->mohawk)
PutByte(XIRCREG_CR, TransmitPacket|EnableIntr);
dev_kfree_skb (skb);
dev->trans_start = jiffies;
lp->stats.tx_bytes += pktlen;
netif_start_queue(dev);
return 0;
}
static struct net_device_stats *
do_get_stats(struct net_device *dev)
{
local_info_t *lp = netdev_priv(dev);
/* lp->stats.rx_missed_errors = GetByte(?) */
return &lp->stats;
}
/****************
* Set all addresses: This first one is the individual address,
* the next 9 addresses are taken from the multicast list and
* the rest is filled with the individual address.
*/
static void
set_addresses(struct net_device *dev)
{
kio_addr_t ioaddr = dev->base_addr;
local_info_t *lp = netdev_priv(dev);
struct dev_mc_list *dmi = dev->mc_list;
char *addr;
int i,j,k,n;
SelectPage(k=0x50);
for (i=0,j=8,n=0; ; i++, j++) {
if (i > 5) {
if (++n > 9)
break;
i = 0;
}
if (j > 15) {
j = 8;
k++;
SelectPage(k);
}
if (n && n <= dev->mc_count && dmi) {
addr = dmi->dmi_addr;
dmi = dmi->next;
} else
addr = dev->dev_addr;
if (lp->mohawk)
PutByte(j, addr[5-i]);
else
PutByte(j, addr[i]);
}
SelectPage(0);
}
/****************
* Set or clear the multicast filter for this adaptor.
* We can filter up to 9 addresses, if more are requested we set
* multicast promiscuous mode.
*/
static void
set_multicast_list(struct net_device *dev)
{
kio_addr_t ioaddr = dev->base_addr;
SelectPage(0x42);
if (dev->flags & IFF_PROMISC) { /* snoop */
PutByte(XIRCREG42_SWC1, 0x06); /* set MPE and PME */
} else if (dev->mc_count > 9 || (dev->flags & IFF_ALLMULTI)) {
PutByte(XIRCREG42_SWC1, 0x06); /* set MPE */
} else if (dev->mc_count) {
/* the chip can filter 9 addresses perfectly */
PutByte(XIRCREG42_SWC1, 0x00);
SelectPage(0x40);
PutByte(XIRCREG40_CMD0, Offline);
set_addresses(dev);
SelectPage(0x40);
PutByte(XIRCREG40_CMD0, EnableRecv | Online);
} else { /* standard usage */
PutByte(XIRCREG42_SWC1, 0x00);
}
SelectPage(0);
}
static int
do_config(struct net_device *dev, struct ifmap *map)
{
local_info_t *local = netdev_priv(dev);
DEBUG(0, "do_config(%p)\n", dev);
if (map->port != 255 && map->port != dev->if_port) {
if (map->port > 4)
return -EINVAL;
if (!map->port) {
local->probe_port = 1;
dev->if_port = 1;
} else {
local->probe_port = 0;
dev->if_port = map->port;
}
printk(KERN_INFO "%s: switching to %s port\n",
dev->name, if_names[dev->if_port]);
do_reset(dev,1); /* not the fine way :-) */
}
return 0;
}
/****************
* Open the driver
*/
static int
do_open(struct net_device *dev)
{
local_info_t *lp = netdev_priv(dev);
struct pcmcia_device *link = lp->p_dev;
DEBUG(0, "do_open(%p)\n", dev);
/* Check that the PCMCIA card is still here. */
/* Physical device present signature. */
if (!pcmcia_dev_present(link))
return -ENODEV;
/* okay */
link->open++;
netif_start_queue(dev);
do_reset(dev,1);
return 0;
}
static void netdev_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, "xirc2ps_cs");
sprintf(info->bus_info, "PCMCIA 0x%lx", dev->base_addr);
}
static struct ethtool_ops netdev_ethtool_ops = {
.get_drvinfo = netdev_get_drvinfo,
};
static int
do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
local_info_t *local = netdev_priv(dev);
kio_addr_t ioaddr = dev->base_addr;
u16 *data = (u16 *)&rq->ifr_ifru;
DEBUG(1, "%s: ioctl(%-.6s, %#04x) %04x %04x %04x %04x\n",
dev->name, rq->ifr_ifrn.ifrn_name, cmd,
data[0], data[1], data[2], data[3]);
if (!local->mohawk)
return -EOPNOTSUPP;
switch(cmd) {
case SIOCGMIIPHY: /* Get the address of the PHY in use. */
data[0] = 0; /* we have only this address */
/* fall through */
case SIOCGMIIREG: /* Read the specified MII register. */
data[3] = mii_rd(ioaddr, data[0] & 0x1f, data[1] & 0x1f);
break;
case SIOCSMIIREG: /* Write the specified MII register */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
mii_wr(ioaddr, data[0] & 0x1f, data[1] & 0x1f, data[2], 16);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static void
hardreset(struct net_device *dev)
{
local_info_t *local = netdev_priv(dev);
kio_addr_t ioaddr = dev->base_addr;
SelectPage(4);
udelay(1);
PutByte(XIRCREG4_GPR1, 0); /* clear bit 0: power down */
msleep(40); /* wait 40 msec */
if (local->mohawk)
PutByte(XIRCREG4_GPR1, 1); /* set bit 0: power up */
else
PutByte(XIRCREG4_GPR1, 1 | 4); /* set bit 0: power up, bit 2: AIC */
msleep(20); /* wait 20 msec */
}
static void
do_reset(struct net_device *dev, int full)
{
local_info_t *local = netdev_priv(dev);
kio_addr_t ioaddr = dev->base_addr;
unsigned value;
DEBUG(0, "%s: do_reset(%p,%d)\n", dev? dev->name:"eth?", dev, full);
hardreset(dev);
PutByte(XIRCREG_CR, SoftReset); /* set */
msleep(20); /* wait 20 msec */
PutByte(XIRCREG_CR, 0); /* clear */
msleep(40); /* wait 40 msec */
if (local->mohawk) {
SelectPage(4);
/* set pin GP1 and GP2 to output (0x0c)
* set GP1 to low to power up the ML6692 (0x00)
* set GP2 to high to power up the 10Mhz chip (0x02)
*/
PutByte(XIRCREG4_GPR0, 0x0e);
}
/* give the circuits some time to power up */
msleep(500); /* about 500ms */
local->last_ptr_value = 0;
local->silicon = local->mohawk ? (GetByte(XIRCREG4_BOV) & 0x70) >> 4
: (GetByte(XIRCREG4_BOV) & 0x30) >> 4;
if (local->probe_port) {
if (!local->mohawk) {
SelectPage(4);
PutByte(XIRCREG4_GPR0, 4);
local->probe_port = 0;
}
} else if (dev->if_port == 2) { /* enable 10Base2 */
SelectPage(0x42);
PutByte(XIRCREG42_SWC1, 0xC0);
} else { /* enable 10BaseT */
SelectPage(0x42);
PutByte(XIRCREG42_SWC1, 0x80);
}
msleep(40); /* wait 40 msec to let it complete */
#ifdef PCMCIA_DEBUG
if (pc_debug) {
SelectPage(0);
value = GetByte(XIRCREG_ESR); /* read the ESR */
printk(KERN_DEBUG "%s: ESR is: %#02x\n", dev->name, value);
}
#endif
/* setup the ECR */
SelectPage(1);
PutByte(XIRCREG1_IMR0, 0xff); /* allow all ints */
PutByte(XIRCREG1_IMR1, 1 ); /* and Set TxUnderrunDetect */
value = GetByte(XIRCREG1_ECR);
#if 0
if (local->mohawk)
value |= DisableLinkPulse;
PutByte(XIRCREG1_ECR, value);
#endif
DEBUG(0, "%s: ECR is: %#02x\n", dev->name, value);
SelectPage(0x42);
PutByte(XIRCREG42_SWC0, 0x20); /* disable source insertion */
if (local->silicon != 1) {
/* set the local memory dividing line.
* The comments in the sample code say that this is only
* settable with the scipper version 2 which is revision 0.
* Always for CE3 cards
*/
SelectPage(2);
PutWord(XIRCREG2_RBS, 0x2000);
}
if (full)
set_addresses(dev);
/* Hardware workaround:
* The receive byte pointer after reset is off by 1 so we need
* to move the offset pointer back to 0.
*/
SelectPage(0);
PutWord(XIRCREG0_DO, 0x2000); /* change offset command, off=0 */
/* setup MAC IMRs and clear status registers */
SelectPage(0x40); /* Bit 7 ... bit 0 */
PutByte(XIRCREG40_RMASK0, 0xff); /* ROK, RAB, rsv, RO, CRC, AE, PTL, MP */
PutByte(XIRCREG40_TMASK0, 0xff); /* TOK, TAB, SQE, LL, TU, JAB, EXC, CRS */
PutByte(XIRCREG40_TMASK1, 0xb0); /* rsv, rsv, PTD, EXT, rsv,rsv,rsv, rsv*/
PutByte(XIRCREG40_RXST0, 0x00); /* ROK, RAB, REN, RO, CRC, AE, PTL, MP */
PutByte(XIRCREG40_TXST0, 0x00); /* TOK, TAB, SQE, LL, TU, JAB, EXC, CRS */
PutByte(XIRCREG40_TXST1, 0x00); /* TEN, rsv, PTD, EXT, retry_counter:4 */
if (full && local->mohawk && init_mii(dev)) {
if (dev->if_port == 4 || local->dingo || local->new_mii) {
printk(KERN_INFO "%s: MII selected\n", dev->name);
SelectPage(2);
PutByte(XIRCREG2_MSR, GetByte(XIRCREG2_MSR) | 0x08);
msleep(20);
} else {
printk(KERN_INFO "%s: MII detected; using 10mbs\n",
dev->name);
SelectPage(0x42);
if (dev->if_port == 2) /* enable 10Base2 */
PutByte(XIRCREG42_SWC1, 0xC0);
else /* enable 10BaseT */
PutByte(XIRCREG42_SWC1, 0x80);
msleep(40); /* wait 40 msec to let it complete */
}
if (full_duplex)
PutByte(XIRCREG1_ECR, GetByte(XIRCREG1_ECR | FullDuplex));
} else { /* No MII */
SelectPage(0);
value = GetByte(XIRCREG_ESR); /* read the ESR */
dev->if_port = (value & MediaSelect) ? 1 : 2;
}
/* configure the LEDs */
SelectPage(2);
if (dev->if_port == 1 || dev->if_port == 4) /* TP: Link and Activity */
PutByte(XIRCREG2_LED, 0x3b);
else /* Coax: Not-Collision and Activity */
PutByte(XIRCREG2_LED, 0x3a);
if (local->dingo)
PutByte(0x0b, 0x04); /* 100 Mbit LED */
/* enable receiver and put the mac online */
if (full) {
SelectPage(0x40);
PutByte(XIRCREG40_CMD0, EnableRecv | Online);
}
/* setup Ethernet IMR and enable interrupts */
SelectPage(1);
PutByte(XIRCREG1_IMR0, 0xff);
udelay(1);
SelectPage(0);
PutByte(XIRCREG_CR, EnableIntr);
if (local->modem && !local->dingo) { /* do some magic */
if (!(GetByte(0x10) & 0x01))
PutByte(0x10, 0x11); /* unmask master-int bit */
}
if (full)
printk(KERN_INFO "%s: media %s, silicon revision %d\n",
dev->name, if_names[dev->if_port], local->silicon);
/* We should switch back to page 0 to avoid a bug in revision 0
* where regs with offset below 8 can't be read after an access
* to the MAC registers */
SelectPage(0);
}
/****************
* Initialize the Media-Independent-Interface
* Returns: True if we have a good MII
*/
static int
init_mii(struct net_device *dev)
{
local_info_t *local = netdev_priv(dev);
kio_addr_t ioaddr = dev->base_addr;
unsigned control, status, linkpartner;
int i;
if (if_port == 4 || if_port == 1) { /* force 100BaseT or 10BaseT */
dev->if_port = if_port;
local->probe_port = 0;
return 1;
}
status = mii_rd(ioaddr, 0, 1);
if ((status & 0xff00) != 0x7800)
return 0; /* No MII */
local->new_mii = (mii_rd(ioaddr, 0, 2) != 0xffff);
if (local->probe_port)
control = 0x1000; /* auto neg */
else if (dev->if_port == 4)
control = 0x2000; /* no auto neg, 100mbs mode */
else
control = 0x0000; /* no auto neg, 10mbs mode */
mii_wr(ioaddr, 0, 0, control, 16);
udelay(100);
control = mii_rd(ioaddr, 0, 0);
if (control & 0x0400) {
printk(KERN_NOTICE "%s can't take PHY out of isolation mode\n",
dev->name);
local->probe_port = 0;
return 0;
}
if (local->probe_port) {
/* according to the DP83840A specs the auto negotiation process
* may take up to 3.5 sec, so we use this also for our ML6692
* Fixme: Better to use a timer here!
*/
for (i=0; i < 35; i++) {
msleep(100); /* wait 100 msec */
status = mii_rd(ioaddr, 0, 1);
if ((status & 0x0020) && (status & 0x0004))
break;
}
if (!(status & 0x0020)) {
printk(KERN_INFO "%s: autonegotiation failed;"
" using 10mbs\n", dev->name);
if (!local->new_mii) {
control = 0x0000;
mii_wr(ioaddr, 0, 0, control, 16);
udelay(100);
SelectPage(0);
dev->if_port = (GetByte(XIRCREG_ESR) & MediaSelect) ? 1 : 2;
}
} else {
linkpartner = mii_rd(ioaddr, 0, 5);
printk(KERN_INFO "%s: MII link partner: %04x\n",
dev->name, linkpartner);
if (linkpartner & 0x0080) {
dev->if_port = 4;
} else
dev->if_port = 1;
}
}
return 1;
}
static void
do_powerdown(struct net_device *dev)
{
kio_addr_t ioaddr = dev->base_addr;
DEBUG(0, "do_powerdown(%p)\n", dev);
SelectPage(4);
PutByte(XIRCREG4_GPR1, 0); /* clear bit 0: power down */
SelectPage(0);
}
static int
do_stop(struct net_device *dev)
{
kio_addr_t ioaddr = dev->base_addr;
local_info_t *lp = netdev_priv(dev);
struct pcmcia_device *link = lp->p_dev;
DEBUG(0, "do_stop(%p)\n", dev);
if (!link)
return -ENODEV;
netif_stop_queue(dev);
SelectPage(0);
PutByte(XIRCREG_CR, 0); /* disable interrupts */
SelectPage(0x01);
PutByte(XIRCREG1_IMR0, 0x00); /* forbid all ints */
SelectPage(4);
PutByte(XIRCREG4_GPR1, 0); /* clear bit 0: power down */
SelectPage(0);
link->open--;
return 0;
}
static struct pcmcia_device_id xirc2ps_ids[] = {
PCMCIA_PFC_DEVICE_MANF_CARD(0, 0x0089, 0x110a),
PCMCIA_PFC_DEVICE_MANF_CARD(0, 0x0138, 0x110a),
PCMCIA_PFC_DEVICE_PROD_ID13(0, "Xircom", "CEM28", 0x2e3ee845, 0x0ea978ea),
PCMCIA_PFC_DEVICE_PROD_ID13(0, "Xircom", "CEM33", 0x2e3ee845, 0x80609023),
PCMCIA_PFC_DEVICE_PROD_ID13(0, "Xircom", "CEM56", 0x2e3ee845, 0xa650c32a),
PCMCIA_PFC_DEVICE_PROD_ID13(0, "Xircom", "REM10", 0x2e3ee845, 0x76df1d29),
PCMCIA_PFC_DEVICE_PROD_ID13(0, "Xircom", "XEM5600", 0x2e3ee845, 0xf1403719),
PCMCIA_PFC_DEVICE_PROD_ID12(0, "Xircom", "CreditCard Ethernet+Modem II", 0x2e3ee845, 0xeca401bf),
PCMCIA_DEVICE_MANF_CARD(0x01bf, 0x010a),
PCMCIA_DEVICE_PROD_ID13("Toshiba Information Systems", "TPCENET", 0x1b3b94fe, 0xf381c1a2),
PCMCIA_DEVICE_PROD_ID13("Xircom", "CE3-10/100", 0x2e3ee845, 0x0ec0ac37),
PCMCIA_DEVICE_PROD_ID13("Xircom", "PS-CE2-10", 0x2e3ee845, 0x947d9073),
PCMCIA_DEVICE_PROD_ID13("Xircom", "R2E-100BTX", 0x2e3ee845, 0x2464a6e3),
PCMCIA_DEVICE_PROD_ID13("Xircom", "RE-10", 0x2e3ee845, 0x3e08d609),
PCMCIA_DEVICE_PROD_ID13("Xircom", "XE2000", 0x2e3ee845, 0xf7188e46),
PCMCIA_DEVICE_PROD_ID12("Compaq", "Ethernet LAN Card", 0x54f7c49c, 0x9fd2f0a2),
PCMCIA_DEVICE_PROD_ID12("Compaq", "Netelligent 10/100 PC Card", 0x54f7c49c, 0xefe96769),
PCMCIA_DEVICE_PROD_ID12("Intel", "EtherExpress(TM) PRO/100 PC Card Mobile Adapter16", 0x816cc815, 0x174397db),
PCMCIA_DEVICE_PROD_ID12("Toshiba", "10/100 Ethernet PC Card", 0x44a09d9c, 0xb44deecf),
/* also matches CFE-10 cards! */
/* PCMCIA_DEVICE_MANF_CARD(0x0105, 0x010a), */
PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, xirc2ps_ids);
static struct pcmcia_driver xirc2ps_cs_driver = {
.owner = THIS_MODULE,
.drv = {
.name = "xirc2ps_cs",
},
.probe = xirc2ps_probe,
.remove = xirc2ps_detach,
.id_table = xirc2ps_ids,
.suspend = xirc2ps_suspend,
.resume = xirc2ps_resume,
};
static int __init
init_xirc2ps_cs(void)
{
return pcmcia_register_driver(&xirc2ps_cs_driver);
}
static void __exit
exit_xirc2ps_cs(void)
{
pcmcia_unregister_driver(&xirc2ps_cs_driver);
}
module_init(init_xirc2ps_cs);
module_exit(exit_xirc2ps_cs);
#ifndef MODULE
static int __init setup_xirc2ps_cs(char *str)
{
/* if_port, full_duplex, do_sound, lockup_hack
*/
int ints[10] = { -1 };
str = get_options(str, 9, ints);
#define MAYBE_SET(X,Y) if (ints[0] >= Y && ints[Y] != -1) { X = ints[Y]; }
MAYBE_SET(if_port, 3);
MAYBE_SET(full_duplex, 4);
MAYBE_SET(do_sound, 5);
MAYBE_SET(lockup_hack, 6);
#undef MAYBE_SET
return 1;
}
__setup("xirc2ps_cs=", setup_xirc2ps_cs);
#endif