linux_old1/drivers/hwmon/via686a.c

877 lines
29 KiB
C

/*
via686a.c - Part of lm_sensors, Linux kernel modules
for hardware monitoring
Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
Kyösti Mälkki <kmalkki@cc.hut.fi>,
Mark Studebaker <mdsxyz123@yahoo.com>,
and Bob Dougherty <bobd@stanford.edu>
(Some conversion-factor data were contributed by Jonathan Teh Soon Yew
<j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Supports the Via VT82C686A, VT82C686B south bridges.
Reports all as a 686A.
Warning - only supports a single device.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/jiffies.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <asm/io.h>
/* If force_addr is set to anything different from 0, we forcibly enable
the device at the given address. */
static unsigned short force_addr;
module_param(force_addr, ushort, 0);
MODULE_PARM_DESC(force_addr,
"Initialize the base address of the sensors");
static struct platform_device *pdev;
/*
The Via 686a southbridge has a LM78-like chip integrated on the same IC.
This driver is a customized copy of lm78.c
*/
/* Many VIA686A constants specified below */
/* Length of ISA address segment */
#define VIA686A_EXTENT 0x80
#define VIA686A_BASE_REG 0x70
#define VIA686A_ENABLE_REG 0x74
/* The VIA686A registers */
/* ins numbered 0-4 */
#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
#define VIA686A_REG_IN(nr) (0x22 + (nr))
/* fans numbered 1-2 */
#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
#define VIA686A_REG_FAN(nr) (0x28 + (nr))
/* temps numbered 1-3 */
static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
/* bits 7-6 */
#define VIA686A_REG_TEMP_LOW1 0x4b
/* 2 = bits 5-4, 3 = bits 7-6 */
#define VIA686A_REG_TEMP_LOW23 0x49
#define VIA686A_REG_ALARM1 0x41
#define VIA686A_REG_ALARM2 0x42
#define VIA686A_REG_FANDIV 0x47
#define VIA686A_REG_CONFIG 0x40
/* The following register sets temp interrupt mode (bits 1-0 for temp1,
3-2 for temp2, 5-4 for temp3). Modes are:
00 interrupt stays as long as value is out-of-range
01 interrupt is cleared once register is read (default)
10 comparator mode- like 00, but ignores hysteresis
11 same as 00 */
#define VIA686A_REG_TEMP_MODE 0x4b
/* We'll just assume that you want to set all 3 simultaneously: */
#define VIA686A_TEMP_MODE_MASK 0x3F
#define VIA686A_TEMP_MODE_CONTINUOUS 0x00
/* Conversions. Limit checking is only done on the TO_REG
variants.
********* VOLTAGE CONVERSIONS (Bob Dougherty) ********
From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
That is:
volts = (25*regVal+133)*factor
regVal = (volts/factor-133)/25
(These conversions were contributed by Jonathan Teh Soon Yew
<j.teh@iname.com>) */
static inline u8 IN_TO_REG(long val, int inNum)
{
/* To avoid floating point, we multiply constants by 10 (100 for +12V).
Rounding is done (120500 is actually 133000 - 12500).
Remember that val is expressed in 0.001V/bit, which is why we divide
by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
for the constants. */
if (inNum <= 1)
return (u8)
SENSORS_LIMIT((val * 21024 - 1205000) / 250000, 0, 255);
else if (inNum == 2)
return (u8)
SENSORS_LIMIT((val * 15737 - 1205000) / 250000, 0, 255);
else if (inNum == 3)
return (u8)
SENSORS_LIMIT((val * 10108 - 1205000) / 250000, 0, 255);
else
return (u8)
SENSORS_LIMIT((val * 41714 - 12050000) / 2500000, 0, 255);
}
static inline long IN_FROM_REG(u8 val, int inNum)
{
/* To avoid floating point, we multiply constants by 10 (100 for +12V).
We also multiply them by 1000 because we want 0.001V/bit for the
output value. Rounding is done. */
if (inNum <= 1)
return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
else if (inNum == 2)
return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
else if (inNum == 3)
return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
else
return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
}
/********* FAN RPM CONVERSIONS ********/
/* Higher register values = slower fans (the fan's strobe gates a counter).
But this chip saturates back at 0, not at 255 like all the other chips.
So, 0 means 0 RPM */
static inline u8 FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 0;
rpm = SENSORS_LIMIT(rpm, 1, 1000000);
return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
}
#define FAN_FROM_REG(val,div) ((val)==0?0:(val)==255?0:1350000/((val)*(div)))
/******** TEMP CONVERSIONS (Bob Dougherty) *********/
/* linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
if(temp<169)
return double(temp)*0.427-32.08;
else if(temp>=169 && temp<=202)
return double(temp)*0.582-58.16;
else
return double(temp)*0.924-127.33;
A fifth-order polynomial fits the unofficial data (provided by Alex van
Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
numbers on my machine (ie. they agree with what my BIOS tells me).
Here's the fifth-order fit to the 8-bit data:
temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
(2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
finding my typos in this formula!)
Alas, none of the elegant function-fit solutions will work because we
aren't allowed to use floating point in the kernel and doing it with
integers doesn't provide enough precision. So we'll do boring old
look-up table stuff. The unofficial data (see below) have effectively
7-bit resolution (they are rounded to the nearest degree). I'm assuming
that the transfer function of the device is monotonic and smooth, so a
smooth function fit to the data will allow us to get better precision.
I used the 5th-order poly fit described above and solved for
VIA register values 0-255. I *10 before rounding, so we get tenth-degree
precision. (I could have done all 1024 values for our 10-bit readings,
but the function is very linear in the useful range (0-80 deg C), so
we'll just use linear interpolation for 10-bit readings.) So, tempLUT
is the temp at via register values 0-255: */
static const s16 tempLUT[] =
{ -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
-503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
-362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
-255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
-173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
-108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
-44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
};
/* the original LUT values from Alex van Kaam <darkside@chello.nl>
(for via register values 12-240):
{-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
-30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
-15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
-3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
an extra term for a good fit to these inverse data!) and then
solving for each temp value from -50 to 110 (the useable range for
this chip). Here's the fit:
viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
- 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
Note that n=161: */
static const u8 viaLUT[] =
{ 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
239, 240
};
/* Converting temps to (8-bit) hyst and over registers
No interpolation here.
The +50 is because the temps start at -50 */
static inline u8 TEMP_TO_REG(long val)
{
return viaLUT[val <= -50000 ? 0 : val >= 110000 ? 160 :
(val < 0 ? val - 500 : val + 500) / 1000 + 50];
}
/* for 8-bit temperature hyst and over registers */
#define TEMP_FROM_REG(val) ((long)tempLUT[val] * 100)
/* for 10-bit temperature readings */
static inline long TEMP_FROM_REG10(u16 val)
{
u16 eightBits = val >> 2;
u16 twoBits = val & 3;
/* no interpolation for these */
if (twoBits == 0 || eightBits == 255)
return TEMP_FROM_REG(eightBits);
/* do some linear interpolation */
return (tempLUT[eightBits] * (4 - twoBits) +
tempLUT[eightBits + 1] * twoBits) * 25;
}
#define DIV_FROM_REG(val) (1 << (val))
#define DIV_TO_REG(val) ((val)==8?3:(val)==4?2:(val)==1?0:1)
/* For each registered chip, we need to keep some data in memory.
The structure is dynamically allocated. */
struct via686a_data {
unsigned short addr;
const char *name;
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[5]; /* Register value */
u8 in_max[5]; /* Register value */
u8 in_min[5]; /* Register value */
u8 fan[2]; /* Register value */
u8 fan_min[2]; /* Register value */
u16 temp[3]; /* Register value 10 bit */
u8 temp_over[3]; /* Register value */
u8 temp_hyst[3]; /* Register value */
u8 fan_div[2]; /* Register encoding, shifted right */
u16 alarms; /* Register encoding, combined */
};
static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
static int via686a_probe(struct platform_device *pdev);
static int __devexit via686a_remove(struct platform_device *pdev);
static inline int via686a_read_value(struct via686a_data *data, u8 reg)
{
return inb_p(data->addr + reg);
}
static inline void via686a_write_value(struct via686a_data *data, u8 reg,
u8 value)
{
outb_p(value, data->addr + reg);
}
static struct via686a_data *via686a_update_device(struct device *dev);
static void via686a_init_device(struct via686a_data *data);
/* following are the sysfs callback functions */
/* 7 voltage sensors */
static ssize_t show_in(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
const char *buf, size_t count) {
struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[nr] = IN_TO_REG(val, nr);
via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
const char *buf, size_t count) {
struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[nr] = IN_TO_REG(val, nr);
via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_in_offset(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset);
show_in_offset(0);
show_in_offset(1);
show_in_offset(2);
show_in_offset(3);
show_in_offset(4);
/* 3 temperatures */
static ssize_t show_temp(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
}
static ssize_t show_temp_over(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
}
static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
}
static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
const char *buf, size_t count) {
struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_over[nr] = TEMP_TO_REG(val);
via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
data->temp_over[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
const char *buf, size_t count) {
struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_hyst[nr] = TEMP_TO_REG(val);
via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
data->temp_hyst[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_temp_offset(offset) \
static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
show_temp, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
show_temp_over, set_temp_over, offset - 1); \
static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
show_temp_hyst, set_temp_hyst, offset - 1);
show_temp_offset(1);
show_temp_offset(2);
show_temp_offset(3);
/* 2 Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
DIV_FROM_REG(data->fan_div[nr])) );
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%d\n",
FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])) );
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
char *buf) {
struct via686a_data *data = via686a_update_device(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]) );
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
const char *buf, size_t count) {
struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
int val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
const char *buf, size_t count) {
struct via686a_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
int nr = attr->index;
int val = simple_strtol(buf, NULL, 10);
int old;
mutex_lock(&data->update_lock);
old = via686a_read_value(data, VIA686A_REG_FANDIV);
data->fan_div[nr] = DIV_TO_REG(val);
old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
via686a_write_value(data, VIA686A_REG_FANDIV, old);
mutex_unlock(&data->update_lock);
return count;
}
#define show_fan_offset(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
show_fan_div, set_fan_div, offset - 1);
show_fan_offset(1);
show_fan_offset(2);
/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) {
struct via686a_data *data = via686a_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_name(struct device *dev, struct device_attribute
*devattr, char *buf)
{
struct via686a_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
static struct attribute *via686a_attributes[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_name.attr,
NULL
};
static const struct attribute_group via686a_group = {
.attrs = via686a_attributes,
};
static struct platform_driver via686a_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "via686a",
},
.probe = via686a_probe,
.remove = __devexit_p(via686a_remove),
};
/* This is called when the module is loaded */
static int __devinit via686a_probe(struct platform_device *pdev)
{
struct via686a_data *data;
struct resource *res;
int err;
/* Reserve the ISA region */
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!request_region(res->start, VIA686A_EXTENT,
via686a_driver.driver.name)) {
dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
(unsigned long)res->start, (unsigned long)res->end);
return -ENODEV;
}
if (!(data = kzalloc(sizeof(struct via686a_data), GFP_KERNEL))) {
err = -ENOMEM;
goto exit_release;
}
platform_set_drvdata(pdev, data);
data->addr = res->start;
data->name = "via686a";
mutex_init(&data->update_lock);
/* Initialize the VIA686A chip */
via686a_init_device(data);
/* Register sysfs hooks */
if ((err = sysfs_create_group(&pdev->dev.kobj, &via686a_group)))
goto exit_free;
data->hwmon_dev = hwmon_device_register(&pdev->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
exit_free:
kfree(data);
exit_release:
release_region(res->start, VIA686A_EXTENT);
return err;
}
static int __devexit via686a_remove(struct platform_device *pdev)
{
struct via686a_data *data = platform_get_drvdata(pdev);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
release_region(data->addr, VIA686A_EXTENT);
platform_set_drvdata(pdev, NULL);
kfree(data);
return 0;
}
static void __devinit via686a_init_device(struct via686a_data *data)
{
u8 reg;
/* Start monitoring */
reg = via686a_read_value(data, VIA686A_REG_CONFIG);
via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
/* Configure temp interrupt mode for continuous-interrupt operation */
reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
via686a_write_value(data, VIA686A_REG_TEMP_MODE,
(reg & ~VIA686A_TEMP_MODE_MASK)
| VIA686A_TEMP_MODE_CONTINUOUS);
}
static struct via686a_data *via686a_update_device(struct device *dev)
{
struct via686a_data *data = dev_get_drvdata(dev);
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
for (i = 0; i <= 4; i++) {
data->in[i] =
via686a_read_value(data, VIA686A_REG_IN(i));
data->in_min[i] = via686a_read_value(data,
VIA686A_REG_IN_MIN
(i));
data->in_max[i] =
via686a_read_value(data, VIA686A_REG_IN_MAX(i));
}
for (i = 1; i <= 2; i++) {
data->fan[i - 1] =
via686a_read_value(data, VIA686A_REG_FAN(i));
data->fan_min[i - 1] = via686a_read_value(data,
VIA686A_REG_FAN_MIN(i));
}
for (i = 0; i <= 2; i++) {
data->temp[i] = via686a_read_value(data,
VIA686A_REG_TEMP[i]) << 2;
data->temp_over[i] =
via686a_read_value(data,
VIA686A_REG_TEMP_OVER[i]);
data->temp_hyst[i] =
via686a_read_value(data,
VIA686A_REG_TEMP_HYST[i]);
}
/* add in lower 2 bits
temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
*/
data->temp[0] |= (via686a_read_value(data,
VIA686A_REG_TEMP_LOW1)
& 0xc0) >> 6;
data->temp[1] |=
(via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
0x30) >> 4;
data->temp[2] |=
(via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
0xc0) >> 6;
i = via686a_read_value(data, VIA686A_REG_FANDIV);
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms =
via686a_read_value(data,
VIA686A_REG_ALARM1) |
(via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
static struct pci_device_id via686a_pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
static int __devinit via686a_device_add(unsigned short address)
{
struct resource res = {
.start = address,
.end = address + VIA686A_EXTENT - 1,
.name = "via686a",
.flags = IORESOURCE_IO,
};
int err;
pdev = platform_device_alloc("via686a", address);
if (!pdev) {
err = -ENOMEM;
printk(KERN_ERR "via686a: Device allocation failed\n");
goto exit;
}
err = platform_device_add_resources(pdev, &res, 1);
if (err) {
printk(KERN_ERR "via686a: Device resource addition failed "
"(%d)\n", err);
goto exit_device_put;
}
err = platform_device_add(pdev);
if (err) {
printk(KERN_ERR "via686a: Device addition failed (%d)\n",
err);
goto exit_device_put;
}
return 0;
exit_device_put:
platform_device_put(pdev);
exit:
return err;
}
static int __devinit via686a_pci_probe(struct pci_dev *dev,
const struct pci_device_id *id)
{
u16 address, val;
if (force_addr) {
address = force_addr & ~(VIA686A_EXTENT - 1);
dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL !=
pci_read_config_word(dev, VIA686A_BASE_REG, &val))
return -ENODEV;
address = val & ~(VIA686A_EXTENT - 1);
if (address == 0) {
dev_err(&dev->dev, "base address not set - upgrade BIOS "
"or use force_addr=0xaddr\n");
return -ENODEV;
}
if (PCIBIOS_SUCCESSFUL !=
pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
return -ENODEV;
if (!(val & 0x0001)) {
if (!force_addr) {
dev_warn(&dev->dev, "Sensors disabled, enable "
"with force_addr=0x%x\n", address);
return -ENODEV;
}
dev_warn(&dev->dev, "Enabling sensors\n");
if (PCIBIOS_SUCCESSFUL !=
pci_write_config_word(dev, VIA686A_ENABLE_REG,
val | 0x0001))
return -ENODEV;
}
if (platform_driver_register(&via686a_driver))
goto exit;
/* Sets global pdev as a side effect */
if (via686a_device_add(address))
goto exit_unregister;
/* Always return failure here. This is to allow other drivers to bind
* to this pci device. We don't really want to have control over the
* pci device, we only wanted to read as few register values from it.
*/
s_bridge = pci_dev_get(dev);
return -ENODEV;
exit_unregister:
platform_driver_unregister(&via686a_driver);
exit:
return -ENODEV;
}
static struct pci_driver via686a_pci_driver = {
.name = "via686a",
.id_table = via686a_pci_ids,
.probe = via686a_pci_probe,
};
static int __init sm_via686a_init(void)
{
return pci_register_driver(&via686a_pci_driver);
}
static void __exit sm_via686a_exit(void)
{
pci_unregister_driver(&via686a_pci_driver);
if (s_bridge != NULL) {
platform_device_unregister(pdev);
platform_driver_unregister(&via686a_driver);
pci_dev_put(s_bridge);
s_bridge = NULL;
}
}
MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
"Mark Studebaker <mdsxyz123@yahoo.com> "
"and Bob Dougherty <bobd@stanford.edu>");
MODULE_DESCRIPTION("VIA 686A Sensor device");
MODULE_LICENSE("GPL");
module_init(sm_via686a_init);
module_exit(sm_via686a_exit);