linux_old1/arch/x86/mm/init_64.c

1045 lines
25 KiB
C

/*
* linux/arch/x86_64/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/pfn.h>
#include <linux/poison.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/nmi.h>
#include <linux/gfp.h>
#include <asm/processor.h>
#include <asm/bios_ebda.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/numa.h>
#include <asm/cacheflush.h>
#include <asm/init.h>
static int __init parse_direct_gbpages_off(char *arg)
{
direct_gbpages = 0;
return 0;
}
early_param("nogbpages", parse_direct_gbpages_off);
static int __init parse_direct_gbpages_on(char *arg)
{
direct_gbpages = 1;
return 0;
}
early_param("gbpages", parse_direct_gbpages_on);
/*
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
* physical space so we can cache the place of the first one and move
* around without checking the pgd every time.
*/
pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
EXPORT_SYMBOL_GPL(__supported_pte_mask);
int force_personality32;
/*
* noexec32=on|off
* Control non executable heap for 32bit processes.
* To control the stack too use noexec=off
*
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
* off PROT_READ implies PROT_EXEC
*/
static int __init nonx32_setup(char *str)
{
if (!strcmp(str, "on"))
force_personality32 &= ~READ_IMPLIES_EXEC;
else if (!strcmp(str, "off"))
force_personality32 |= READ_IMPLIES_EXEC;
return 1;
}
__setup("noexec32=", nonx32_setup);
/*
* When memory was added/removed make sure all the processes MM have
* suitable PGD entries in the local PGD level page.
*/
void sync_global_pgds(unsigned long start, unsigned long end)
{
unsigned long address;
for (address = start; address <= end; address += PGDIR_SIZE) {
const pgd_t *pgd_ref = pgd_offset_k(address);
unsigned long flags;
struct page *page;
if (pgd_none(*pgd_ref))
continue;
spin_lock_irqsave(&pgd_lock, flags);
list_for_each_entry(page, &pgd_list, lru) {
pgd_t *pgd;
spinlock_t *pgt_lock;
pgd = (pgd_t *)page_address(page) + pgd_index(address);
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
spin_lock(pgt_lock);
if (pgd_none(*pgd))
set_pgd(pgd, *pgd_ref);
else
BUG_ON(pgd_page_vaddr(*pgd)
!= pgd_page_vaddr(*pgd_ref));
spin_unlock(pgt_lock);
}
spin_unlock_irqrestore(&pgd_lock, flags);
}
}
/*
* NOTE: This function is marked __ref because it calls __init function
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
*/
static __ref void *spp_getpage(void)
{
void *ptr;
if (after_bootmem)
ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
else
ptr = alloc_bootmem_pages(PAGE_SIZE);
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
panic("set_pte_phys: cannot allocate page data %s\n",
after_bootmem ? "after bootmem" : "");
}
pr_debug("spp_getpage %p\n", ptr);
return ptr;
}
static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
{
if (pgd_none(*pgd)) {
pud_t *pud = (pud_t *)spp_getpage();
pgd_populate(&init_mm, pgd, pud);
if (pud != pud_offset(pgd, 0))
printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
pud, pud_offset(pgd, 0));
}
return pud_offset(pgd, vaddr);
}
static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
{
if (pud_none(*pud)) {
pmd_t *pmd = (pmd_t *) spp_getpage();
pud_populate(&init_mm, pud, pmd);
if (pmd != pmd_offset(pud, 0))
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
pmd, pmd_offset(pud, 0));
}
return pmd_offset(pud, vaddr);
}
static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
{
if (pmd_none(*pmd)) {
pte_t *pte = (pte_t *) spp_getpage();
pmd_populate_kernel(&init_mm, pmd, pte);
if (pte != pte_offset_kernel(pmd, 0))
printk(KERN_ERR "PAGETABLE BUG #02!\n");
}
return pte_offset_kernel(pmd, vaddr);
}
void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
{
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pud = pud_page + pud_index(vaddr);
pmd = fill_pmd(pud, vaddr);
pte = fill_pte(pmd, vaddr);
set_pte(pte, new_pte);
/*
* It's enough to flush this one mapping.
* (PGE mappings get flushed as well)
*/
__flush_tlb_one(vaddr);
}
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
{
pgd_t *pgd;
pud_t *pud_page;
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
pgd = pgd_offset_k(vaddr);
if (pgd_none(*pgd)) {
printk(KERN_ERR
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
return;
}
pud_page = (pud_t*)pgd_page_vaddr(*pgd);
set_pte_vaddr_pud(pud_page, vaddr, pteval);
}
pmd_t * __init populate_extra_pmd(unsigned long vaddr)
{
pgd_t *pgd;
pud_t *pud;
pgd = pgd_offset_k(vaddr);
pud = fill_pud(pgd, vaddr);
return fill_pmd(pud, vaddr);
}
pte_t * __init populate_extra_pte(unsigned long vaddr)
{
pmd_t *pmd;
pmd = populate_extra_pmd(vaddr);
return fill_pte(pmd, vaddr);
}
/*
* Create large page table mappings for a range of physical addresses.
*/
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
pgprot_t prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
pgd = pgd_offset_k((unsigned long)__va(phys));
if (pgd_none(*pgd)) {
pud = (pud_t *) spp_getpage();
set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
_PAGE_USER));
}
pud = pud_offset(pgd, (unsigned long)__va(phys));
if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
_PAGE_USER));
}
pmd = pmd_offset(pud, phys);
BUG_ON(!pmd_none(*pmd));
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
}
}
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
{
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
}
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
{
__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
}
/*
* The head.S code sets up the kernel high mapping:
*
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
*
* phys_addr holds the negative offset to the kernel, which is added
* to the compile time generated pmds. This results in invalid pmds up
* to the point where we hit the physaddr 0 mapping.
*
* We limit the mappings to the region from _text to _end. _end is
* rounded up to the 2MB boundary. This catches the invalid pmds as
* well, as they are located before _text:
*/
void __init cleanup_highmap(void)
{
unsigned long vaddr = __START_KERNEL_map;
unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
pmd_t *pmd = level2_kernel_pgt;
pmd_t *last_pmd = pmd + PTRS_PER_PMD;
for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
if (pmd_none(*pmd))
continue;
if (vaddr < (unsigned long) _text || vaddr > end)
set_pmd(pmd, __pmd(0));
}
}
static __ref void *alloc_low_page(unsigned long *phys)
{
unsigned long pfn = e820_table_end++;
void *adr;
if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
*phys = __pa(adr);
return adr;
}
if (pfn >= e820_table_top)
panic("alloc_low_page: ran out of memory");
adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
clear_page(adr);
*phys = pfn * PAGE_SIZE;
return adr;
}
static __ref void *map_low_page(void *virt)
{
void *adr;
unsigned long phys, left;
if (after_bootmem)
return virt;
phys = __pa(virt);
left = phys & (PAGE_SIZE - 1);
adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
adr = (void *)(((unsigned long)adr) | left);
return adr;
}
static __ref void unmap_low_page(void *adr)
{
if (after_bootmem)
return;
early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
}
static unsigned long __meminit
phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
pgprot_t prot)
{
unsigned pages = 0;
unsigned long last_map_addr = end;
int i;
pte_t *pte = pte_page + pte_index(addr);
for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
if (addr >= end) {
if (!after_bootmem) {
for(; i < PTRS_PER_PTE; i++, pte++)
set_pte(pte, __pte(0));
}
break;
}
/*
* We will re-use the existing mapping.
* Xen for example has some special requirements, like mapping
* pagetable pages as RO. So assume someone who pre-setup
* these mappings are more intelligent.
*/
if (pte_val(*pte)) {
pages++;
continue;
}
if (0)
printk(" pte=%p addr=%lx pte=%016lx\n",
pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
pages++;
set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
}
update_page_count(PG_LEVEL_4K, pages);
return last_map_addr;
}
static unsigned long __meminit
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
unsigned long page_size_mask, pgprot_t prot)
{
unsigned long pages = 0;
unsigned long last_map_addr = end;
int i = pmd_index(address);
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
unsigned long pte_phys;
pmd_t *pmd = pmd_page + pmd_index(address);
pte_t *pte;
pgprot_t new_prot = prot;
if (address >= end) {
if (!after_bootmem) {
for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0));
}
break;
}
if (pmd_val(*pmd)) {
if (!pmd_large(*pmd)) {
spin_lock(&init_mm.page_table_lock);
pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
last_map_addr = phys_pte_init(pte, address,
end, prot);
unmap_low_page(pte);
spin_unlock(&init_mm.page_table_lock);
continue;
}
/*
* If we are ok with PG_LEVEL_2M mapping, then we will
* use the existing mapping,
*
* Otherwise, we will split the large page mapping but
* use the same existing protection bits except for
* large page, so that we don't violate Intel's TLB
* Application note (317080) which says, while changing
* the page sizes, new and old translations should
* not differ with respect to page frame and
* attributes.
*/
if (page_size_mask & (1 << PG_LEVEL_2M)) {
pages++;
continue;
}
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
}
if (page_size_mask & (1<<PG_LEVEL_2M)) {
pages++;
spin_lock(&init_mm.page_table_lock);
set_pte((pte_t *)pmd,
pfn_pte(address >> PAGE_SHIFT,
__pgprot(pgprot_val(prot) | _PAGE_PSE)));
spin_unlock(&init_mm.page_table_lock);
last_map_addr = (address & PMD_MASK) + PMD_SIZE;
continue;
}
pte = alloc_low_page(&pte_phys);
last_map_addr = phys_pte_init(pte, address, end, new_prot);
unmap_low_page(pte);
spin_lock(&init_mm.page_table_lock);
pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
spin_unlock(&init_mm.page_table_lock);
}
update_page_count(PG_LEVEL_2M, pages);
return last_map_addr;
}
static unsigned long __meminit
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
unsigned long page_size_mask)
{
unsigned long pages = 0;
unsigned long last_map_addr = end;
int i = pud_index(addr);
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd;
pgprot_t prot = PAGE_KERNEL;
if (addr >= end)
break;
if (!after_bootmem &&
!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
set_pud(pud, __pud(0));
continue;
}
if (pud_val(*pud)) {
if (!pud_large(*pud)) {
pmd = map_low_page(pmd_offset(pud, 0));
last_map_addr = phys_pmd_init(pmd, addr, end,
page_size_mask, prot);
unmap_low_page(pmd);
__flush_tlb_all();
continue;
}
/*
* If we are ok with PG_LEVEL_1G mapping, then we will
* use the existing mapping.
*
* Otherwise, we will split the gbpage mapping but use
* the same existing protection bits except for large
* page, so that we don't violate Intel's TLB
* Application note (317080) which says, while changing
* the page sizes, new and old translations should
* not differ with respect to page frame and
* attributes.
*/
if (page_size_mask & (1 << PG_LEVEL_1G)) {
pages++;
continue;
}
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
}
if (page_size_mask & (1<<PG_LEVEL_1G)) {
pages++;
spin_lock(&init_mm.page_table_lock);
set_pte((pte_t *)pud,
pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
spin_unlock(&init_mm.page_table_lock);
last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
continue;
}
pmd = alloc_low_page(&pmd_phys);
last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
prot);
unmap_low_page(pmd);
spin_lock(&init_mm.page_table_lock);
pud_populate(&init_mm, pud, __va(pmd_phys));
spin_unlock(&init_mm.page_table_lock);
}
__flush_tlb_all();
update_page_count(PG_LEVEL_1G, pages);
return last_map_addr;
}
unsigned long __meminit
kernel_physical_mapping_init(unsigned long start,
unsigned long end,
unsigned long page_size_mask)
{
bool pgd_changed = false;
unsigned long next, last_map_addr = end;
unsigned long addr;
start = (unsigned long)__va(start);
end = (unsigned long)__va(end);
addr = start;
for (; start < end; start = next) {
pgd_t *pgd = pgd_offset_k(start);
unsigned long pud_phys;
pud_t *pud;
next = (start + PGDIR_SIZE) & PGDIR_MASK;
if (next > end)
next = end;
if (pgd_val(*pgd)) {
pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
last_map_addr = phys_pud_init(pud, __pa(start),
__pa(end), page_size_mask);
unmap_low_page(pud);
continue;
}
pud = alloc_low_page(&pud_phys);
last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
page_size_mask);
unmap_low_page(pud);
spin_lock(&init_mm.page_table_lock);
pgd_populate(&init_mm, pgd, __va(pud_phys));
spin_unlock(&init_mm.page_table_lock);
pgd_changed = true;
}
if (pgd_changed)
sync_global_pgds(addr, end);
__flush_tlb_all();
return last_map_addr;
}
#ifndef CONFIG_NUMA
void __init initmem_init(void)
{
memblock_x86_register_active_regions(0, 0, max_pfn);
init_memory_mapping_high();
}
#endif
struct mapping_work_data {
unsigned long start;
unsigned long end;
unsigned long pfn_mapped;
};
static int __init_refok
mapping_work_fn(unsigned long start_pfn, unsigned long end_pfn, void *datax)
{
struct mapping_work_data *data = datax;
unsigned long pfn_mapped;
unsigned long final_start, final_end;
final_start = max_t(unsigned long, start_pfn<<PAGE_SHIFT, data->start);
final_end = min_t(unsigned long, end_pfn<<PAGE_SHIFT, data->end);
if (final_end <= final_start)
return 0;
pfn_mapped = init_memory_mapping(final_start, final_end);
if (pfn_mapped > data->pfn_mapped)
data->pfn_mapped = pfn_mapped;
return 0;
}
static unsigned long __init_refok
init_memory_mapping_active_regions(unsigned long start, unsigned long end)
{
struct mapping_work_data data;
data.start = start;
data.end = end;
data.pfn_mapped = 0;
work_with_active_regions(MAX_NUMNODES, mapping_work_fn, &data);
return data.pfn_mapped;
}
void __init_refok init_memory_mapping_high(void)
{
if (max_pfn > max_low_pfn) {
max_pfn_mapped = init_memory_mapping_active_regions(1UL<<32,
max_pfn<<PAGE_SHIFT);
/* can we preserve max_low_pfn ? */
max_low_pfn = max_pfn;
memblock.current_limit = get_max_mapped();
}
}
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = max_pfn;
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();
/*
* clear the default setting with node 0
* note: don't use nodes_clear here, that is really clearing when
* numa support is not compiled in, and later node_set_state
* will not set it back.
*/
node_clear_state(0, N_NORMAL_MEMORY);
free_area_init_nodes(max_zone_pfns);
}
/*
* Memory hotplug specific functions
*/
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
* updating.
*/
static void update_end_of_memory_vars(u64 start, u64 size)
{
unsigned long end_pfn = PFN_UP(start + size);
if (end_pfn > max_pfn) {
max_pfn = end_pfn;
max_low_pfn = end_pfn;
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
}
}
/*
* Memory is added always to NORMAL zone. This means you will never get
* additional DMA/DMA32 memory.
*/
int arch_add_memory(int nid, u64 start, u64 size)
{
struct pglist_data *pgdat = NODE_DATA(nid);
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
last_mapped_pfn = init_memory_mapping(start, start + size);
if (last_mapped_pfn > max_pfn_mapped)
max_pfn_mapped = last_mapped_pfn;
ret = __add_pages(nid, zone, start_pfn, nr_pages);
WARN_ON_ONCE(ret);
/* update max_pfn, max_low_pfn and high_memory */
update_end_of_memory_vars(start, size);
return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
int memory_add_physaddr_to_nid(u64 start)
{
return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
static struct kcore_list kcore_vsyscall;
void __init mem_init(void)
{
long codesize, reservedpages, datasize, initsize;
unsigned long absent_pages;
pci_iommu_alloc();
/* clear_bss() already clear the empty_zero_page */
reservedpages = 0;
/* this will put all low memory onto the freelists */
#ifdef CONFIG_NUMA
totalram_pages = numa_free_all_bootmem();
#else
totalram_pages = free_all_bootmem();
#endif
absent_pages = absent_pages_in_range(0, max_pfn);
reservedpages = max_pfn - totalram_pages - absent_pages;
after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
"%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
nr_free_pages() << (PAGE_SHIFT-10),
max_pfn << (PAGE_SHIFT-10),
codesize >> 10,
absent_pages << (PAGE_SHIFT-10),
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10);
}
#ifdef CONFIG_DEBUG_RODATA
const int rodata_test_data = 0xC3;
EXPORT_SYMBOL_GPL(rodata_test_data);
int kernel_set_to_readonly;
void set_kernel_text_rw(void)
{
unsigned long start = PFN_ALIGN(_text);
unsigned long end = PFN_ALIGN(__stop___ex_table);
if (!kernel_set_to_readonly)
return;
pr_debug("Set kernel text: %lx - %lx for read write\n",
start, end);
/*
* Make the kernel identity mapping for text RW. Kernel text
* mapping will always be RO. Refer to the comment in
* static_protections() in pageattr.c
*/
set_memory_rw(start, (end - start) >> PAGE_SHIFT);
}
void set_kernel_text_ro(void)
{
unsigned long start = PFN_ALIGN(_text);
unsigned long end = PFN_ALIGN(__stop___ex_table);
if (!kernel_set_to_readonly)
return;
pr_debug("Set kernel text: %lx - %lx for read only\n",
start, end);
/*
* Set the kernel identity mapping for text RO.
*/
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
}
void mark_rodata_ro(void)
{
unsigned long start = PFN_ALIGN(_text);
unsigned long rodata_start =
((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
unsigned long end = (unsigned long) &__end_rodata_hpage_align;
unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
unsigned long data_start = (unsigned long) &_sdata;
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
(end - start) >> 10);
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
kernel_set_to_readonly = 1;
/*
* The rodata section (but not the kernel text!) should also be
* not-executable.
*/
set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
rodata_test();
#ifdef CONFIG_CPA_DEBUG
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
printk(KERN_INFO "Testing CPA: again\n");
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
#endif
free_init_pages("unused kernel memory",
(unsigned long) page_address(virt_to_page(text_end)),
(unsigned long)
page_address(virt_to_page(rodata_start)));
free_init_pages("unused kernel memory",
(unsigned long) page_address(virt_to_page(rodata_end)),
(unsigned long) page_address(virt_to_page(data_start)));
}
#endif
int kern_addr_valid(unsigned long addr)
{
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (above != 0 && above != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
/*
* A pseudo VMA to allow ptrace access for the vsyscall page. This only
* covers the 64bit vsyscall page now. 32bit has a real VMA now and does
* not need special handling anymore:
*/
static struct vm_area_struct gate_vma = {
.vm_start = VSYSCALL_START,
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
.vm_page_prot = PAGE_READONLY_EXEC,
.vm_flags = VM_READ | VM_EXEC
};
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(tsk, TIF_IA32))
return NULL;
#endif
return &gate_vma;
}
int in_gate_area(struct task_struct *task, unsigned long addr)
{
struct vm_area_struct *vma = get_gate_vma(task);
if (!vma)
return 0;
return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
/*
* Use this when you have no reliable task/vma, typically from interrupt
* context. It is less reliable than using the task's vma and may give
* false positives:
*/
int in_gate_area_no_task(unsigned long addr)
{
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
}
const char *arch_vma_name(struct vm_area_struct *vma)
{
if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
return "[vdso]";
if (vma == &gate_vma)
return "[vsyscall]";
return NULL;
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
static long __meminitdata addr_start, addr_end;
static void __meminitdata *p_start, *p_end;
static int __meminitdata node_start;
int __meminit
vmemmap_populate(struct page *start_page, unsigned long size, int node)
{
unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size);
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
for (; addr < end; addr = next) {
void *p = NULL;
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
if (!cpu_has_pse) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
pmd = vmemmap_pmd_populate(pud, addr, node);
if (!pmd)
return -ENOMEM;
p = vmemmap_pte_populate(pmd, addr, node);
if (!p)
return -ENOMEM;
addr_end = addr + PAGE_SIZE;
p_end = p + PAGE_SIZE;
} else {
next = pmd_addr_end(addr, end);
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
pte_t entry;
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
if (!p)
return -ENOMEM;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
PAGE_KERNEL_LARGE);
set_pmd(pmd, __pmd(pte_val(entry)));
/* check to see if we have contiguous blocks */
if (p_end != p || node_start != node) {
if (p_start)
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
addr_start, addr_end-1, p_start, p_end-1, node_start);
addr_start = addr;
node_start = node;
p_start = p;
}
addr_end = addr + PMD_SIZE;
p_end = p + PMD_SIZE;
} else
vmemmap_verify((pte_t *)pmd, node, addr, next);
}
}
sync_global_pgds((unsigned long)start_page, end);
return 0;
}
void __meminit vmemmap_populate_print_last(void)
{
if (p_start) {
printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
addr_start, addr_end-1, p_start, p_end-1, node_start);
p_start = NULL;
p_end = NULL;
node_start = 0;
}
}
#endif