linux_old1/drivers/media/dvb-frontends/af9013.c

1558 lines
32 KiB
C

/*
* Afatech AF9013 demodulator driver
*
* Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
*
* Thanks to Afatech who kindly provided information.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include "af9013_priv.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
struct af9013_state {
struct i2c_adapter *i2c;
struct dvb_frontend fe;
struct af9013_config config;
/* tuner/demod RF and IF AGC limits used for signal strength calc */
u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
u16 signal_strength;
u32 ber;
u32 ucblocks;
u16 snr;
u32 bandwidth_hz;
fe_status_t fe_status;
unsigned long set_frontend_jiffies;
unsigned long read_status_jiffies;
bool first_tune;
bool i2c_gate_state;
unsigned int statistics_step:3;
struct delayed_work statistics_work;
};
/* write multiple registers */
static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
const u8 *val, int len)
{
int ret;
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg[1] = {
{
.addr = priv->config.i2c_addr,
.flags = 0,
.len = 3 + len,
.buf = buf,
}
};
if (3 + len > sizeof(buf)) {
dev_warn(&priv->i2c->dev,
"%s: i2c wr reg=%04x: len=%d is too big!\n",
KBUILD_MODNAME, reg, len);
return -EINVAL;
}
buf[0] = (reg >> 8) & 0xff;
buf[1] = (reg >> 0) & 0xff;
buf[2] = mbox;
memcpy(&buf[3], val, len);
ret = i2c_transfer(priv->i2c, msg, 1);
if (ret == 1) {
ret = 0;
} else {
dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* read multiple registers */
static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
u8 *val, int len)
{
int ret;
u8 buf[3];
struct i2c_msg msg[2] = {
{
.addr = priv->config.i2c_addr,
.flags = 0,
.len = 3,
.buf = buf,
}, {
.addr = priv->config.i2c_addr,
.flags = I2C_M_RD,
.len = len,
.buf = val,
}
};
buf[0] = (reg >> 8) & 0xff;
buf[1] = (reg >> 0) & 0xff;
buf[2] = mbox;
ret = i2c_transfer(priv->i2c, msg, 2);
if (ret == 2) {
ret = 0;
} else {
dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
"len=%d\n", KBUILD_MODNAME, ret, reg, len);
ret = -EREMOTEIO;
}
return ret;
}
/* write multiple registers */
static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
int len)
{
int ret, i;
u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
if ((priv->config.ts_mode == AF9013_TS_USB) &&
((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
mbox |= ((len - 1) << 2);
ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
} else {
for (i = 0; i < len; i++) {
ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
if (ret)
goto err;
}
}
err:
return 0;
}
/* read multiple registers */
static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
{
int ret, i;
u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
if ((priv->config.ts_mode == AF9013_TS_USB) &&
((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
mbox |= ((len - 1) << 2);
ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
} else {
for (i = 0; i < len; i++) {
ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
if (ret)
goto err;
}
}
err:
return 0;
}
/* write single register */
static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
{
return af9013_wr_regs(priv, reg, &val, 1);
}
/* read single register */
static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
{
return af9013_rd_regs(priv, reg, val, 1);
}
static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
u8 len)
{
u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
return af9013_wr_regs_i2c(state, mbox, reg, val, len);
}
static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
int len, u8 val)
{
int ret;
u8 tmp, mask;
/* no need for read if whole reg is written */
if (len != 8) {
ret = af9013_rd_reg(state, reg, &tmp);
if (ret)
return ret;
mask = (0xff >> (8 - len)) << pos;
val <<= pos;
tmp &= ~mask;
val |= tmp;
}
return af9013_wr_reg(state, reg, val);
}
static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
int len, u8 *val)
{
int ret;
u8 tmp;
ret = af9013_rd_reg(state, reg, &tmp);
if (ret)
return ret;
*val = (tmp >> pos);
*val &= (0xff >> (8 - len));
return 0;
}
static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
{
int ret;
u8 pos;
u16 addr;
dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
__func__, gpio, gpioval);
/*
* GPIO0 & GPIO1 0xd735
* GPIO2 & GPIO3 0xd736
*/
switch (gpio) {
case 0:
case 1:
addr = 0xd735;
break;
case 2:
case 3:
addr = 0xd736;
break;
default:
dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
KBUILD_MODNAME, gpio);
ret = -EINVAL;
goto err;
}
switch (gpio) {
case 0:
case 2:
pos = 0;
break;
case 1:
case 3:
default:
pos = 4;
break;
}
ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
if (ret)
goto err;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
{
u32 r = 0, c = 0, i;
dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
if (a > b) {
c = a / b;
a = a - c * b;
}
for (i = 0; i < x; i++) {
if (a >= b) {
r += 1;
a -= b;
}
a <<= 1;
r <<= 1;
}
r = (c << (u32)x) + r;
dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
__func__, a, b, x, r, r);
return r;
}
static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
{
int ret, i;
u8 tmp;
dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
/* enable reset */
ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
if (ret)
goto err;
/* start reset mechanism */
ret = af9013_wr_reg(state, 0xaeff, 1);
if (ret)
goto err;
/* wait reset performs */
for (i = 0; i < 150; i++) {
ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
if (ret)
goto err;
if (tmp)
break; /* reset done */
usleep_range(5000, 25000);
}
if (!tmp)
return -ETIMEDOUT;
if (onoff) {
/* clear reset */
ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
if (ret)
goto err;
/* disable reset */
ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
/* power on */
ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
} else {
/* power off */
ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
}
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
int ret;
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
/* reset and start BER counter */
ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
if (ret)
goto err;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
int ret;
u8 buf[5];
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
/* check if error bit count is ready */
ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
if (ret)
goto err;
if (!buf[0]) {
dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
return 0;
}
ret = af9013_rd_regs(state, 0xd387, buf, 5);
if (ret)
goto err;
state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
state->ucblocks += (buf[4] << 8) | buf[3];
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_statistics_snr_start(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
int ret;
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
/* start SNR meas */
ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
if (ret)
goto err;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_statistics_snr_result(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
int ret, i, len;
u8 buf[3], tmp;
u32 snr_val;
const struct af9013_snr *uninitialized_var(snr_lut);
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
/* check if SNR ready */
ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
if (ret)
goto err;
if (!tmp) {
dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
return 0;
}
/* read value */
ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
if (ret)
goto err;
snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
/* read current modulation */
ret = af9013_rd_reg(state, 0xd3c1, &tmp);
if (ret)
goto err;
switch ((tmp >> 6) & 3) {
case 0:
len = ARRAY_SIZE(qpsk_snr_lut);
snr_lut = qpsk_snr_lut;
break;
case 1:
len = ARRAY_SIZE(qam16_snr_lut);
snr_lut = qam16_snr_lut;
break;
case 2:
len = ARRAY_SIZE(qam64_snr_lut);
snr_lut = qam64_snr_lut;
break;
default:
goto err;
}
for (i = 0; i < len; i++) {
tmp = snr_lut[i].snr;
if (snr_val < snr_lut[i].val)
break;
}
state->snr = tmp * 10; /* dB/10 */
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
int ret = 0;
u8 buf[2], rf_gain, if_gain;
int signal_strength;
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
if (!state->signal_strength_en)
return 0;
ret = af9013_rd_regs(state, 0xd07c, buf, 2);
if (ret)
goto err;
rf_gain = buf[0];
if_gain = buf[1];
signal_strength = (0xffff / \
(9 * (state->rf_50 + state->if_50) - \
11 * (state->rf_80 + state->if_80))) * \
(10 * (rf_gain + if_gain) - \
11 * (state->rf_80 + state->if_80));
if (signal_strength < 0)
signal_strength = 0;
else if (signal_strength > 0xffff)
signal_strength = 0xffff;
state->signal_strength = signal_strength;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static void af9013_statistics_work(struct work_struct *work)
{
struct af9013_state *state = container_of(work,
struct af9013_state, statistics_work.work);
unsigned int next_msec;
/* update only signal strength when demod is not locked */
if (!(state->fe_status & FE_HAS_LOCK)) {
state->statistics_step = 0;
state->ber = 0;
state->snr = 0;
}
switch (state->statistics_step) {
default:
state->statistics_step = 0;
case 0:
af9013_statistics_signal_strength(&state->fe);
state->statistics_step++;
next_msec = 300;
break;
case 1:
af9013_statistics_snr_start(&state->fe);
state->statistics_step++;
next_msec = 200;
break;
case 2:
af9013_statistics_ber_unc_start(&state->fe);
state->statistics_step++;
next_msec = 1000;
break;
case 3:
af9013_statistics_snr_result(&state->fe);
state->statistics_step++;
next_msec = 400;
break;
case 4:
af9013_statistics_ber_unc_result(&state->fe);
state->statistics_step++;
next_msec = 100;
break;
}
schedule_delayed_work(&state->statistics_work,
msecs_to_jiffies(next_msec));
}
static int af9013_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *fesettings)
{
fesettings->min_delay_ms = 800;
fesettings->step_size = 0;
fesettings->max_drift = 0;
return 0;
}
static int af9013_set_frontend(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int ret, i, sampling_freq;
bool auto_mode, spec_inv;
u8 buf[6];
u32 if_frequency, freq_cw;
dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
__func__, c->frequency, c->bandwidth_hz);
/* program tuner */
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
/* program CFOE coefficients */
if (c->bandwidth_hz != state->bandwidth_hz) {
for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
if (coeff_lut[i].clock == state->config.clock &&
coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
break;
}
}
ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
sizeof(coeff_lut[i].val));
}
/* program frequency control */
if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
/* get used IF frequency */
if (fe->ops.tuner_ops.get_if_frequency)
fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
else
if_frequency = state->config.if_frequency;
dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
__func__, if_frequency);
sampling_freq = if_frequency;
while (sampling_freq > (state->config.clock / 2))
sampling_freq -= state->config.clock;
if (sampling_freq < 0) {
sampling_freq *= -1;
spec_inv = state->config.spec_inv;
} else {
spec_inv = !state->config.spec_inv;
}
freq_cw = af9013_div(state, sampling_freq, state->config.clock,
23);
if (spec_inv)
freq_cw = 0x800000 - freq_cw;
buf[0] = (freq_cw >> 0) & 0xff;
buf[1] = (freq_cw >> 8) & 0xff;
buf[2] = (freq_cw >> 16) & 0x7f;
freq_cw = 0x800000 - freq_cw;
buf[3] = (freq_cw >> 0) & 0xff;
buf[4] = (freq_cw >> 8) & 0xff;
buf[5] = (freq_cw >> 16) & 0x7f;
ret = af9013_wr_regs(state, 0xd140, buf, 3);
if (ret)
goto err;
ret = af9013_wr_regs(state, 0x9be7, buf, 6);
if (ret)
goto err;
}
/* clear TPS lock flag */
ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
if (ret)
goto err;
/* clear MPEG2 lock flag */
ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
if (ret)
goto err;
/* empty channel function */
ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
if (ret)
goto err;
/* empty DVB-T channel function */
ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
if (ret)
goto err;
/* transmission parameters */
auto_mode = false;
memset(buf, 0, 3);
switch (c->transmission_mode) {
case TRANSMISSION_MODE_AUTO:
auto_mode = true;
break;
case TRANSMISSION_MODE_2K:
break;
case TRANSMISSION_MODE_8K:
buf[0] |= (1 << 0);
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
__func__);
auto_mode = true;
}
switch (c->guard_interval) {
case GUARD_INTERVAL_AUTO:
auto_mode = true;
break;
case GUARD_INTERVAL_1_32:
break;
case GUARD_INTERVAL_1_16:
buf[0] |= (1 << 2);
break;
case GUARD_INTERVAL_1_8:
buf[0] |= (2 << 2);
break;
case GUARD_INTERVAL_1_4:
buf[0] |= (3 << 2);
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
__func__);
auto_mode = true;
}
switch (c->hierarchy) {
case HIERARCHY_AUTO:
auto_mode = true;
break;
case HIERARCHY_NONE:
break;
case HIERARCHY_1:
buf[0] |= (1 << 4);
break;
case HIERARCHY_2:
buf[0] |= (2 << 4);
break;
case HIERARCHY_4:
buf[0] |= (3 << 4);
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
auto_mode = true;
}
switch (c->modulation) {
case QAM_AUTO:
auto_mode = true;
break;
case QPSK:
break;
case QAM_16:
buf[1] |= (1 << 6);
break;
case QAM_64:
buf[1] |= (2 << 6);
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
auto_mode = true;
}
/* Use HP. How and which case we can switch to LP? */
buf[1] |= (1 << 4);
switch (c->code_rate_HP) {
case FEC_AUTO:
auto_mode = true;
break;
case FEC_1_2:
break;
case FEC_2_3:
buf[2] |= (1 << 0);
break;
case FEC_3_4:
buf[2] |= (2 << 0);
break;
case FEC_5_6:
buf[2] |= (3 << 0);
break;
case FEC_7_8:
buf[2] |= (4 << 0);
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
__func__);
auto_mode = true;
}
switch (c->code_rate_LP) {
case FEC_AUTO:
auto_mode = true;
break;
case FEC_1_2:
break;
case FEC_2_3:
buf[2] |= (1 << 3);
break;
case FEC_3_4:
buf[2] |= (2 << 3);
break;
case FEC_5_6:
buf[2] |= (3 << 3);
break;
case FEC_7_8:
buf[2] |= (4 << 3);
break;
case FEC_NONE:
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
__func__);
auto_mode = true;
}
switch (c->bandwidth_hz) {
case 6000000:
break;
case 7000000:
buf[1] |= (1 << 2);
break;
case 8000000:
buf[1] |= (2 << 2);
break;
default:
dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
__func__);
ret = -EINVAL;
goto err;
}
ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
if (ret)
goto err;
if (auto_mode) {
/* clear easy mode flag */
ret = af9013_wr_reg(state, 0xaefd, 0);
if (ret)
goto err;
dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
} else {
/* set easy mode flag */
ret = af9013_wr_reg(state, 0xaefd, 1);
if (ret)
goto err;
ret = af9013_wr_reg(state, 0xaefe, 0);
if (ret)
goto err;
dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
}
/* tune */
ret = af9013_wr_reg(state, 0xffff, 0);
if (ret)
goto err;
state->bandwidth_hz = c->bandwidth_hz;
state->set_frontend_jiffies = jiffies;
state->first_tune = false;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_get_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct af9013_state *state = fe->demodulator_priv;
int ret;
u8 buf[3];
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
if (ret)
goto err;
switch ((buf[1] >> 6) & 3) {
case 0:
c->modulation = QPSK;
break;
case 1:
c->modulation = QAM_16;
break;
case 2:
c->modulation = QAM_64;
break;
}
switch ((buf[0] >> 0) & 3) {
case 0:
c->transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
c->transmission_mode = TRANSMISSION_MODE_8K;
}
switch ((buf[0] >> 2) & 3) {
case 0:
c->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
c->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
c->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
c->guard_interval = GUARD_INTERVAL_1_4;
break;
}
switch ((buf[0] >> 4) & 7) {
case 0:
c->hierarchy = HIERARCHY_NONE;
break;
case 1:
c->hierarchy = HIERARCHY_1;
break;
case 2:
c->hierarchy = HIERARCHY_2;
break;
case 3:
c->hierarchy = HIERARCHY_4;
break;
}
switch ((buf[2] >> 0) & 7) {
case 0:
c->code_rate_HP = FEC_1_2;
break;
case 1:
c->code_rate_HP = FEC_2_3;
break;
case 2:
c->code_rate_HP = FEC_3_4;
break;
case 3:
c->code_rate_HP = FEC_5_6;
break;
case 4:
c->code_rate_HP = FEC_7_8;
break;
}
switch ((buf[2] >> 3) & 7) {
case 0:
c->code_rate_LP = FEC_1_2;
break;
case 1:
c->code_rate_LP = FEC_2_3;
break;
case 2:
c->code_rate_LP = FEC_3_4;
break;
case 3:
c->code_rate_LP = FEC_5_6;
break;
case 4:
c->code_rate_LP = FEC_7_8;
break;
}
switch ((buf[1] >> 2) & 3) {
case 0:
c->bandwidth_hz = 6000000;
break;
case 1:
c->bandwidth_hz = 7000000;
break;
case 2:
c->bandwidth_hz = 8000000;
break;
}
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct af9013_state *state = fe->demodulator_priv;
int ret;
u8 tmp;
/*
* Return status from the cache if it is younger than 2000ms with the
* exception of last tune is done during 4000ms.
*/
if (time_is_after_jiffies(
state->read_status_jiffies + msecs_to_jiffies(2000)) &&
time_is_before_jiffies(
state->set_frontend_jiffies + msecs_to_jiffies(4000))
) {
*status = state->fe_status;
return 0;
} else {
*status = 0;
}
/* MPEG2 lock */
ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
if (ret)
goto err;
if (tmp)
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
FE_HAS_SYNC | FE_HAS_LOCK;
if (!*status) {
/* TPS lock */
ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
if (ret)
goto err;
if (tmp)
*status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
FE_HAS_VITERBI;
}
state->fe_status = *status;
state->read_status_jiffies = jiffies;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct af9013_state *state = fe->demodulator_priv;
*snr = state->snr;
return 0;
}
static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct af9013_state *state = fe->demodulator_priv;
*strength = state->signal_strength;
return 0;
}
static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct af9013_state *state = fe->demodulator_priv;
*ber = state->ber;
return 0;
}
static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct af9013_state *state = fe->demodulator_priv;
*ucblocks = state->ucblocks;
return 0;
}
static int af9013_init(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
int ret, i, len;
u8 buf[3], tmp;
u32 adc_cw;
const struct af9013_reg_bit *init;
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
/* power on */
ret = af9013_power_ctrl(state, 1);
if (ret)
goto err;
/* enable ADC */
ret = af9013_wr_reg(state, 0xd73a, 0xa4);
if (ret)
goto err;
/* write API version to firmware */
ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
if (ret)
goto err;
/* program ADC control */
switch (state->config.clock) {
case 28800000: /* 28.800 MHz */
tmp = 0;
break;
case 20480000: /* 20.480 MHz */
tmp = 1;
break;
case 28000000: /* 28.000 MHz */
tmp = 2;
break;
case 25000000: /* 25.000 MHz */
tmp = 3;
break;
default:
dev_err(&state->i2c->dev, "%s: invalid clock\n",
KBUILD_MODNAME);
return -EINVAL;
}
adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
buf[0] = (adc_cw >> 0) & 0xff;
buf[1] = (adc_cw >> 8) & 0xff;
buf[2] = (adc_cw >> 16) & 0xff;
ret = af9013_wr_regs(state, 0xd180, buf, 3);
if (ret)
goto err;
ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
if (ret)
goto err;
/* set I2C master clock */
ret = af9013_wr_reg(state, 0xd416, 0x14);
if (ret)
goto err;
/* set 16 embx */
ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
if (ret)
goto err;
/* set no trigger */
ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
if (ret)
goto err;
/* set read-update bit for constellation */
ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
if (ret)
goto err;
/* settings for mp2if */
if (state->config.ts_mode == AF9013_TS_USB) {
/* AF9015 split PSB to 1.5k + 0.5k */
ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
if (ret)
goto err;
} else {
/* AF9013 change the output bit to data7 */
ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
if (ret)
goto err;
/* AF9013 set mpeg to full speed */
ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
if (ret)
goto err;
}
ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
if (ret)
goto err;
/* load OFSM settings */
dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
len = ARRAY_SIZE(ofsm_init);
init = ofsm_init;
for (i = 0; i < len; i++) {
ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
init[i].len, init[i].val);
if (ret)
goto err;
}
/* load tuner specific settings */
dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
__func__);
switch (state->config.tuner) {
case AF9013_TUNER_MXL5003D:
len = ARRAY_SIZE(tuner_init_mxl5003d);
init = tuner_init_mxl5003d;
break;
case AF9013_TUNER_MXL5005D:
case AF9013_TUNER_MXL5005R:
case AF9013_TUNER_MXL5007T:
len = ARRAY_SIZE(tuner_init_mxl5005);
init = tuner_init_mxl5005;
break;
case AF9013_TUNER_ENV77H11D5:
len = ARRAY_SIZE(tuner_init_env77h11d5);
init = tuner_init_env77h11d5;
break;
case AF9013_TUNER_MT2060:
len = ARRAY_SIZE(tuner_init_mt2060);
init = tuner_init_mt2060;
break;
case AF9013_TUNER_MC44S803:
len = ARRAY_SIZE(tuner_init_mc44s803);
init = tuner_init_mc44s803;
break;
case AF9013_TUNER_QT1010:
case AF9013_TUNER_QT1010A:
len = ARRAY_SIZE(tuner_init_qt1010);
init = tuner_init_qt1010;
break;
case AF9013_TUNER_MT2060_2:
len = ARRAY_SIZE(tuner_init_mt2060_2);
init = tuner_init_mt2060_2;
break;
case AF9013_TUNER_TDA18271:
case AF9013_TUNER_TDA18218:
len = ARRAY_SIZE(tuner_init_tda18271);
init = tuner_init_tda18271;
break;
case AF9013_TUNER_UNKNOWN:
default:
len = ARRAY_SIZE(tuner_init_unknown);
init = tuner_init_unknown;
break;
}
for (i = 0; i < len; i++) {
ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
init[i].len, init[i].val);
if (ret)
goto err;
}
/* TS mode */
ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
if (ret)
goto err;
/* enable lock led */
ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
if (ret)
goto err;
/* check if we support signal strength */
if (!state->signal_strength_en) {
ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
&state->signal_strength_en);
if (ret)
goto err;
}
/* read values needed for signal strength calculation */
if (state->signal_strength_en && !state->rf_50) {
ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
if (ret)
goto err;
ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
if (ret)
goto err;
ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
if (ret)
goto err;
ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
if (ret)
goto err;
}
/* SNR */
ret = af9013_wr_reg(state, 0xd2e2, 1);
if (ret)
goto err;
/* BER / UCB */
buf[0] = (10000 >> 0) & 0xff;
buf[1] = (10000 >> 8) & 0xff;
ret = af9013_wr_regs(state, 0xd385, buf, 2);
if (ret)
goto err;
/* enable FEC monitor */
ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
if (ret)
goto err;
state->first_tune = true;
schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_sleep(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
int ret;
dev_dbg(&state->i2c->dev, "%s:\n", __func__);
/* stop statistics polling */
cancel_delayed_work_sync(&state->statistics_work);
/* disable lock led */
ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
if (ret)
goto err;
/* power off */
ret = af9013_power_ctrl(state, 0);
if (ret)
goto err;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
int ret;
struct af9013_state *state = fe->demodulator_priv;
dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
/* gate already open or close */
if (state->i2c_gate_state == enable)
return 0;
if (state->config.ts_mode == AF9013_TS_USB)
ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
else
ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
if (ret)
goto err;
state->i2c_gate_state = enable;
return ret;
err:
dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
return ret;
}
static void af9013_release(struct dvb_frontend *fe)
{
struct af9013_state *state = fe->demodulator_priv;
kfree(state);
}
static struct dvb_frontend_ops af9013_ops;
static int af9013_download_firmware(struct af9013_state *state)
{
int i, len, remaining, ret;
const struct firmware *fw;
u16 checksum = 0;
u8 val;
u8 fw_params[4];
u8 *fw_file = AF9013_FIRMWARE;
msleep(100);
/* check whether firmware is already running */
ret = af9013_rd_reg(state, 0x98be, &val);
if (ret)
goto err;
else
dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
__func__, val);
if (val == 0x0c) /* fw is running, no need for download */
goto exit;
dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
"to load a firmware\n",
KBUILD_MODNAME, af9013_ops.info.name);
/* request the firmware, this will block and timeout */
ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
if (ret) {
dev_info(&state->i2c->dev, "%s: did not find the firmware " \
"file. (%s) Please see linux/Documentation/dvb/ for " \
"more details on firmware-problems. (%d)\n",
KBUILD_MODNAME, fw_file, ret);
goto err;
}
dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
KBUILD_MODNAME, fw_file);
/* calc checksum */
for (i = 0; i < fw->size; i++)
checksum += fw->data[i];
fw_params[0] = checksum >> 8;
fw_params[1] = checksum & 0xff;
fw_params[2] = fw->size >> 8;
fw_params[3] = fw->size & 0xff;
/* write fw checksum & size */
ret = af9013_write_ofsm_regs(state, 0x50fc,
fw_params, sizeof(fw_params));
if (ret)
goto err_release;
#define FW_ADDR 0x5100 /* firmware start address */
#define LEN_MAX 16 /* max packet size */
for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
len = remaining;
if (len > LEN_MAX)
len = LEN_MAX;
ret = af9013_write_ofsm_regs(state,
FW_ADDR + fw->size - remaining,
(u8 *) &fw->data[fw->size - remaining], len);
if (ret) {
dev_err(&state->i2c->dev,
"%s: firmware download failed=%d\n",
KBUILD_MODNAME, ret);
goto err_release;
}
}
/* request boot firmware */
ret = af9013_wr_reg(state, 0xe205, 1);
if (ret)
goto err_release;
for (i = 0; i < 15; i++) {
msleep(100);
/* check firmware status */
ret = af9013_rd_reg(state, 0x98be, &val);
if (ret)
goto err_release;
dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
__func__, val);
if (val == 0x0c || val == 0x04) /* success or fail */
break;
}
if (val == 0x04) {
dev_err(&state->i2c->dev, "%s: firmware did not run\n",
KBUILD_MODNAME);
ret = -ENODEV;
} else if (val != 0x0c) {
dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
KBUILD_MODNAME);
ret = -ENODEV;
}
err_release:
release_firmware(fw);
err:
exit:
if (!ret)
dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
KBUILD_MODNAME, af9013_ops.info.name);
return ret;
}
struct dvb_frontend *af9013_attach(const struct af9013_config *config,
struct i2c_adapter *i2c)
{
int ret;
struct af9013_state *state = NULL;
u8 buf[4], i;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
if (state == NULL)
goto err;
/* setup the state */
state->i2c = i2c;
memcpy(&state->config, config, sizeof(struct af9013_config));
/* download firmware */
if (state->config.ts_mode != AF9013_TS_USB) {
ret = af9013_download_firmware(state);
if (ret)
goto err;
}
/* firmware version */
ret = af9013_rd_regs(state, 0x5103, buf, 4);
if (ret)
goto err;
dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
/* set GPIOs */
for (i = 0; i < sizeof(state->config.gpio); i++) {
ret = af9013_set_gpio(state, i, state->config.gpio[i]);
if (ret)
goto err;
}
/* create dvb_frontend */
memcpy(&state->fe.ops, &af9013_ops,
sizeof(struct dvb_frontend_ops));
state->fe.demodulator_priv = state;
INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
return &state->fe;
err:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(af9013_attach);
static struct dvb_frontend_ops af9013_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "Afatech AF9013",
.frequency_min = 174000000,
.frequency_max = 862000000,
.frequency_stepsize = 250000,
.frequency_tolerance = 0,
.caps = FE_CAN_FEC_1_2 |
FE_CAN_FEC_2_3 |
FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 |
FE_CAN_FEC_7_8 |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_QAM_16 |
FE_CAN_QAM_64 |
FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO |
FE_CAN_HIERARCHY_AUTO |
FE_CAN_RECOVER |
FE_CAN_MUTE_TS
},
.release = af9013_release,
.init = af9013_init,
.sleep = af9013_sleep,
.get_tune_settings = af9013_get_tune_settings,
.set_frontend = af9013_set_frontend,
.get_frontend = af9013_get_frontend,
.read_status = af9013_read_status,
.read_snr = af9013_read_snr,
.read_signal_strength = af9013_read_signal_strength,
.read_ber = af9013_read_ber,
.read_ucblocks = af9013_read_ucblocks,
.i2c_gate_ctrl = af9013_i2c_gate_ctrl,
};
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(AF9013_FIRMWARE);