316 lines
9.1 KiB
C
316 lines
9.1 KiB
C
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/rculist.h>
|
|
#include <net/inetpeer.h>
|
|
#include <net/tcp.h>
|
|
|
|
int sysctl_tcp_fastopen __read_mostly = TFO_CLIENT_ENABLE;
|
|
|
|
struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
|
|
|
|
static DEFINE_SPINLOCK(tcp_fastopen_ctx_lock);
|
|
|
|
void tcp_fastopen_init_key_once(bool publish)
|
|
{
|
|
static u8 key[TCP_FASTOPEN_KEY_LENGTH];
|
|
|
|
/* tcp_fastopen_reset_cipher publishes the new context
|
|
* atomically, so we allow this race happening here.
|
|
*
|
|
* All call sites of tcp_fastopen_cookie_gen also check
|
|
* for a valid cookie, so this is an acceptable risk.
|
|
*/
|
|
if (net_get_random_once(key, sizeof(key)) && publish)
|
|
tcp_fastopen_reset_cipher(key, sizeof(key));
|
|
}
|
|
|
|
static void tcp_fastopen_ctx_free(struct rcu_head *head)
|
|
{
|
|
struct tcp_fastopen_context *ctx =
|
|
container_of(head, struct tcp_fastopen_context, rcu);
|
|
crypto_free_cipher(ctx->tfm);
|
|
kfree(ctx);
|
|
}
|
|
|
|
int tcp_fastopen_reset_cipher(void *key, unsigned int len)
|
|
{
|
|
int err;
|
|
struct tcp_fastopen_context *ctx, *octx;
|
|
|
|
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
|
|
|
|
if (IS_ERR(ctx->tfm)) {
|
|
err = PTR_ERR(ctx->tfm);
|
|
error: kfree(ctx);
|
|
pr_err("TCP: TFO aes cipher alloc error: %d\n", err);
|
|
return err;
|
|
}
|
|
err = crypto_cipher_setkey(ctx->tfm, key, len);
|
|
if (err) {
|
|
pr_err("TCP: TFO cipher key error: %d\n", err);
|
|
crypto_free_cipher(ctx->tfm);
|
|
goto error;
|
|
}
|
|
memcpy(ctx->key, key, len);
|
|
|
|
spin_lock(&tcp_fastopen_ctx_lock);
|
|
|
|
octx = rcu_dereference_protected(tcp_fastopen_ctx,
|
|
lockdep_is_held(&tcp_fastopen_ctx_lock));
|
|
rcu_assign_pointer(tcp_fastopen_ctx, ctx);
|
|
spin_unlock(&tcp_fastopen_ctx_lock);
|
|
|
|
if (octx)
|
|
call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
|
|
return err;
|
|
}
|
|
|
|
static bool __tcp_fastopen_cookie_gen(const void *path,
|
|
struct tcp_fastopen_cookie *foc)
|
|
{
|
|
struct tcp_fastopen_context *ctx;
|
|
bool ok = false;
|
|
|
|
tcp_fastopen_init_key_once(true);
|
|
|
|
rcu_read_lock();
|
|
ctx = rcu_dereference(tcp_fastopen_ctx);
|
|
if (ctx) {
|
|
crypto_cipher_encrypt_one(ctx->tfm, foc->val, path);
|
|
foc->len = TCP_FASTOPEN_COOKIE_SIZE;
|
|
ok = true;
|
|
}
|
|
rcu_read_unlock();
|
|
return ok;
|
|
}
|
|
|
|
/* Generate the fastopen cookie by doing aes128 encryption on both
|
|
* the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6
|
|
* addresses. For the longer IPv6 addresses use CBC-MAC.
|
|
*
|
|
* XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE.
|
|
*/
|
|
static bool tcp_fastopen_cookie_gen(struct request_sock *req,
|
|
struct sk_buff *syn,
|
|
struct tcp_fastopen_cookie *foc)
|
|
{
|
|
if (req->rsk_ops->family == AF_INET) {
|
|
const struct iphdr *iph = ip_hdr(syn);
|
|
|
|
__be32 path[4] = { iph->saddr, iph->daddr, 0, 0 };
|
|
return __tcp_fastopen_cookie_gen(path, foc);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_IPV6)
|
|
if (req->rsk_ops->family == AF_INET6) {
|
|
const struct ipv6hdr *ip6h = ipv6_hdr(syn);
|
|
struct tcp_fastopen_cookie tmp;
|
|
|
|
if (__tcp_fastopen_cookie_gen(&ip6h->saddr, &tmp)) {
|
|
struct in6_addr *buf = (struct in6_addr *) tmp.val;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i];
|
|
return __tcp_fastopen_cookie_gen(buf, foc);
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static bool tcp_fastopen_create_child(struct sock *sk,
|
|
struct sk_buff *skb,
|
|
struct dst_entry *dst,
|
|
struct request_sock *req)
|
|
{
|
|
struct tcp_sock *tp;
|
|
struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
|
|
struct sock *child;
|
|
u32 end_seq;
|
|
|
|
req->num_retrans = 0;
|
|
req->num_timeout = 0;
|
|
req->sk = NULL;
|
|
|
|
child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
|
|
if (!child)
|
|
return false;
|
|
|
|
spin_lock(&queue->fastopenq->lock);
|
|
queue->fastopenq->qlen++;
|
|
spin_unlock(&queue->fastopenq->lock);
|
|
|
|
/* Initialize the child socket. Have to fix some values to take
|
|
* into account the child is a Fast Open socket and is created
|
|
* only out of the bits carried in the SYN packet.
|
|
*/
|
|
tp = tcp_sk(child);
|
|
|
|
tp->fastopen_rsk = req;
|
|
tcp_rsk(req)->tfo_listener = true;
|
|
|
|
/* RFC1323: The window in SYN & SYN/ACK segments is never
|
|
* scaled. So correct it appropriately.
|
|
*/
|
|
tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
|
|
|
|
/* Activate the retrans timer so that SYNACK can be retransmitted.
|
|
* The request socket is not added to the SYN table of the parent
|
|
* because it's been added to the accept queue directly.
|
|
*/
|
|
inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
|
|
TCP_TIMEOUT_INIT, TCP_RTO_MAX);
|
|
|
|
atomic_set(&req->rsk_refcnt, 1);
|
|
/* Add the child socket directly into the accept queue */
|
|
inet_csk_reqsk_queue_add(sk, req, child);
|
|
|
|
/* Now finish processing the fastopen child socket. */
|
|
inet_csk(child)->icsk_af_ops->rebuild_header(child);
|
|
tcp_init_congestion_control(child);
|
|
tcp_mtup_init(child);
|
|
tcp_init_metrics(child);
|
|
tcp_init_buffer_space(child);
|
|
|
|
/* Queue the data carried in the SYN packet. We need to first
|
|
* bump skb's refcnt because the caller will attempt to free it.
|
|
* Note that IPv6 might also have used skb_get() trick
|
|
* in tcp_v6_conn_request() to keep this SYN around (treq->pktopts)
|
|
* So we need to eventually get a clone of the packet,
|
|
* before inserting it in sk_receive_queue.
|
|
*
|
|
* XXX (TFO) - we honor a zero-payload TFO request for now,
|
|
* (any reason not to?) but no need to queue the skb since
|
|
* there is no data. How about SYN+FIN?
|
|
*/
|
|
end_seq = TCP_SKB_CB(skb)->end_seq;
|
|
if (end_seq != TCP_SKB_CB(skb)->seq + 1) {
|
|
struct sk_buff *skb2;
|
|
|
|
if (unlikely(skb_shared(skb)))
|
|
skb2 = skb_clone(skb, GFP_ATOMIC);
|
|
else
|
|
skb2 = skb_get(skb);
|
|
|
|
if (likely(skb2)) {
|
|
skb_dst_drop(skb2);
|
|
__skb_pull(skb2, tcp_hdrlen(skb));
|
|
skb_set_owner_r(skb2, child);
|
|
__skb_queue_tail(&child->sk_receive_queue, skb2);
|
|
tp->syn_data_acked = 1;
|
|
|
|
/* u64_stats_update_begin(&tp->syncp) not needed here,
|
|
* as we certainly are not changing upper 32bit value (0)
|
|
*/
|
|
tp->bytes_received = end_seq - TCP_SKB_CB(skb)->seq - 1;
|
|
} else {
|
|
end_seq = TCP_SKB_CB(skb)->seq + 1;
|
|
}
|
|
}
|
|
tcp_rsk(req)->rcv_nxt = tp->rcv_nxt = end_seq;
|
|
sk->sk_data_ready(sk);
|
|
bh_unlock_sock(child);
|
|
sock_put(child);
|
|
WARN_ON(!req->sk);
|
|
return true;
|
|
}
|
|
|
|
static bool tcp_fastopen_queue_check(struct sock *sk)
|
|
{
|
|
struct fastopen_queue *fastopenq;
|
|
|
|
/* Make sure the listener has enabled fastopen, and we don't
|
|
* exceed the max # of pending TFO requests allowed before trying
|
|
* to validating the cookie in order to avoid burning CPU cycles
|
|
* unnecessarily.
|
|
*
|
|
* XXX (TFO) - The implication of checking the max_qlen before
|
|
* processing a cookie request is that clients can't differentiate
|
|
* between qlen overflow causing Fast Open to be disabled
|
|
* temporarily vs a server not supporting Fast Open at all.
|
|
*/
|
|
fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
|
|
if (!fastopenq || fastopenq->max_qlen == 0)
|
|
return false;
|
|
|
|
if (fastopenq->qlen >= fastopenq->max_qlen) {
|
|
struct request_sock *req1;
|
|
spin_lock(&fastopenq->lock);
|
|
req1 = fastopenq->rskq_rst_head;
|
|
if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
|
|
spin_unlock(&fastopenq->lock);
|
|
NET_INC_STATS_BH(sock_net(sk),
|
|
LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
|
|
return false;
|
|
}
|
|
fastopenq->rskq_rst_head = req1->dl_next;
|
|
fastopenq->qlen--;
|
|
spin_unlock(&fastopenq->lock);
|
|
reqsk_put(req1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
|
|
* may be updated and return the client in the SYN-ACK later. E.g., Fast Open
|
|
* cookie request (foc->len == 0).
|
|
*/
|
|
bool tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *req,
|
|
struct tcp_fastopen_cookie *foc,
|
|
struct dst_entry *dst)
|
|
{
|
|
struct tcp_fastopen_cookie valid_foc = { .len = -1 };
|
|
bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
|
|
|
|
if (foc->len == 0) /* Client requests a cookie */
|
|
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
|
|
|
|
if (!((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) &&
|
|
(syn_data || foc->len >= 0) &&
|
|
tcp_fastopen_queue_check(sk))) {
|
|
foc->len = -1;
|
|
return false;
|
|
}
|
|
|
|
if (syn_data && (sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD))
|
|
goto fastopen;
|
|
|
|
if (foc->len >= 0 && /* Client presents or requests a cookie */
|
|
tcp_fastopen_cookie_gen(req, skb, &valid_foc) &&
|
|
foc->len == TCP_FASTOPEN_COOKIE_SIZE &&
|
|
foc->len == valid_foc.len &&
|
|
!memcmp(foc->val, valid_foc.val, foc->len)) {
|
|
/* Cookie is valid. Create a (full) child socket to accept
|
|
* the data in SYN before returning a SYN-ACK to ack the
|
|
* data. If we fail to create the socket, fall back and
|
|
* ack the ISN only but includes the same cookie.
|
|
*
|
|
* Note: Data-less SYN with valid cookie is allowed to send
|
|
* data in SYN_RECV state.
|
|
*/
|
|
fastopen:
|
|
if (tcp_fastopen_create_child(sk, skb, dst, req)) {
|
|
foc->len = -1;
|
|
NET_INC_STATS_BH(sock_net(sk),
|
|
LINUX_MIB_TCPFASTOPENPASSIVE);
|
|
return true;
|
|
}
|
|
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
|
|
} else if (foc->len > 0) /* Client presents an invalid cookie */
|
|
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
|
|
|
|
valid_foc.exp = foc->exp;
|
|
*foc = valid_foc;
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(tcp_try_fastopen);
|