CPM-9G-8B/stream_infer/deploy_llm_8b_demo.py

153 lines
4.1 KiB
Python
Raw Permalink Normal View History

2024-03-14 17:38:39 +08:00
import os
import struct
import json
from typing import List
import libcpm
from flask import Flask, Response, request
# from concurrent.futures import ThreadPoolExecutor
# executor = ThreadPoolExecutor(1)
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
def _load_dtype(fp):
dtype = struct.unpack("B", fp.read(1))[0]
return dtype
def _load_string(fp):
size = struct.unpack("I", fp.read(4))[0]
return fp.read(size).decode("utf-8")
def _load_tuple(fp):
ndim = struct.unpack("B", fp.read(1))[0]
ret = []
for i in range(ndim):
ret.append(struct.unpack("I", fp.read(4))[0])
return tuple(ret)
class LocalLoader(libcpm.ModelLoader):
def __init__(self,
model_path : str,
vocab_path : str,
):
vocabs = []
with open(vocab_path, "r") as fin:
for line in fin:
if line.startswith("\""):
vocabs.append(json.loads(line))
self._vocabs = vocabs
# print(len(vocabs), "tokens")
with open(model_path, "rb") as fp:
num_parameters = struct.unpack("I", fp.read(4))[0]
parameters = {}
for _ in range(num_parameters):
param_name = "model." + _load_string(fp)
_ = _load_tuple(fp)
param_size = struct.unpack("I", fp.read(4))[0]
_ = _load_dtype(fp)
param = fp.read(param_size)
parameters[param_name] = param
self._parameters = parameters
def fetch_parameter(self, name):
# print(name, len(self._parameters[name]))
return self._parameters[name]
@property
def num_layers(self):
return 32
@property
def dim_model(self):
return 4096
@property
def num_heads(self):
return 32
@property
def num_kv_heads(self):
return 32
@property
def dim_head(self):
return 128
@property
def dim_ff(self):
return 14336
@property
def tokens(self):
return self._vocabs
@property
def rope_theta(self):
return 10000.0
model = libcpm.CPMCaterpillar(
#add converted model and vocabs
LocalLoader(
"model_8b.ckpt",
"vocabs.txt",
),
memory_limit = 40 << 30,
)
app = Flask(__name__)
import logging
logging.basicConfig(filename='error_8b.log',level=logging.DEBUG)
@app.route("/llm", methods=["get", "post"])
def llm():
content: str = request.json["content"]
if "params" in request.json:
params = request.json["params"]
else:
params = {}
# ret = executor.submit(_llm, content).result()
ret = _llm(content, params)
return ret
def _llm(content, params):
logging.debug("~ content:\n" + content)
logging.debug("~ input_params:\n" + json.dumps(params, ensure_ascii=False))
def generate_events(content):
ipt = content.replace("<用户>", "<sep>用户:")
ipt = ipt.replace("<AI>", "<sep>AI")
ipt = ipt.lstrip("<sep>")
old_ans = ""
logging.debug("~ ans:")
true_params = {}
USING_PARAMS = {"max_length", "repetition_penalty", "ngram_penalty", "seed", "temperature", "top_p", "top_k", "interval"}
true_params = {}
for p in USING_PARAMS:
if p in params:
true_params[p] = params[p]
if "max_length" not in true_params:
true_params["max_length"] = 4096
logging.debug("~ true_params:\n" + json.dumps(true_params, ensure_ascii=False))
for it in model.random_search(ipt, **true_params):
ans = it["result"]
if ans is not None:
return_data = "data:" + json.dumps({"text": ans[len(old_ans):]}, ensure_ascii=False) + "\n\n"
yield return_data
logging.debug("return_data[" + return_data.strip() + "]")
old_ans = ans
if it["stoped"]:
break
logging.debug("\n")
return Response(generate_events(content), mimetype="text/event-stream")
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8888, debug=True, use_reloader=False)