forked from idrl/idrlnet
docs: Fix a typo in the inverse wave problem
This commit is contained in:
parent
3493e5068f
commit
0cc817b15b
|
@ -3,7 +3,7 @@ Consider the 1d wave equation:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\frac{\partial^2u}{\partial t^2}=c\frac{\partial^2u}{\partial x^2},
|
\frac{\partial^2u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
$$
|
$$
|
||||||
where $c>0$ is unknown and is to be estimated. A group of data pairs $\{x_i, t_i, u_i\}_{i=1,2,\cdot,N}$ is observed.
|
where $c>0$ is unknown and is to be estimated. A group of data pairs $\{x_i, t_i, u_i\}_{i=1,2,\cdot,N}$ is observed.
|
||||||
|
@ -11,7 +11,7 @@ Then the problem is formulated as:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\min_{u,c} \sum_{i=1,2,\cdots,N} \|u(x_i, t_i)-u_i\|^2\\
|
\min_{u,c} \sum_{i=1,2,\cdots,N} \|u(x_i, t_i)-u_i\|^2\\
|
||||||
s.t. \frac{\partial^2u}{\partial t^2}=c\frac{\partial^2u}{\partial x^2}
|
s.t. \frac{\partial^2u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
In the context of PINN, $u$ is parameterized to $u_\theta$.
|
In the context of PINN, $u$ is parameterized to $u_\theta$.
|
||||||
|
@ -20,7 +20,7 @@ The problem above is transformed to the discrete form:
|
||||||
$$
|
$$
|
||||||
\min_{\theta,c}
|
\min_{\theta,c}
|
||||||
w_1\sum_{i=1,2,\cdots,N} \|u_\theta(x_i, t_i)-u_i\|^2
|
w_1\sum_{i=1,2,\cdots,N} \|u_\theta(x_i, t_i)-u_i\|^2
|
||||||
+w_2\sum_{i=1,2,\cdots,M}\left|\frac{\partial^2u_\theta(x_i,t_i)}{\partial t^2}-c\frac{\partial^2u_\theta(x_i,t_i)}{\partial x^2}\right|^2.
|
+w_2\sum_{i=1,2,\cdots,M}\left|\frac{\partial^2u_\theta(x_i,t_i)}{\partial t^2}-c^2\frac{\partial^2u_\theta(x_i,t_i)}{\partial x^2}\right|^2.
|
||||||
$$
|
$$
|
||||||
|
|
||||||
## Importing External Data
|
## Importing External Data
|
||||||
|
|
Loading…
Reference in New Issue