pxmlw6n2f/Gazebo_Distributed_TCP/gazebo/sensors/GaussianNoiseModel.cc

242 lines
7.8 KiB
C++
Raw Permalink Normal View History

2019-03-28 10:57:49 +08:00
/*
* Copyright (C) 2012 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifdef _WIN32
// Ensure that Winsock2.h is included before Windows.h, which can get
// pulled in by anybody (e.g., Boost).
#include <Winsock2.h>
#endif
#include <ignition/math/Helpers.hh>
#include <ignition/math/Rand.hh>
#include "gazebo/common/Assert.hh"
#include "gazebo/common/Console.hh"
#include "gazebo/rendering/ogre_gazebo.h"
#include "gazebo/rendering/Camera.hh"
#include "gazebo/sensors/GaussianNoiseModel.hh"
namespace gazebo
{
// We'll create an instance of this class for each camera, to be used to
// inject random values on each render call.
class GaussianNoiseCompositorListener
: public Ogre::CompositorInstance::Listener
{
/// \brief Constructor, setting mean and standard deviation.
public: GaussianNoiseCompositorListener(double _mean, double _stddev):
mean(_mean), stddev(_stddev) {}
/// \brief Callback that OGRE will invoke for us on each render call
/// \param[in] _passID OGRE material pass ID.
/// \param[in] _mat Pointer to OGRE material.
public: virtual void notifyMaterialRender(unsigned int _passId,
Ogre::MaterialPtr &_mat)
{
GZ_ASSERT(!_mat.isNull(), "Null OGRE material");
// modify material here (wont alter the base material!), called for
// every drawn geometry instance (i.e. compositor render_quad)
// Sample three values within the range [0,1.0] and set them for use in
// the fragment shader, which will interpret them as offsets from (0,0)
// to use when computing pseudo-random values.
Ogre::Vector3 offsets(ignition::math::Rand::DblUniform(0.0, 1.0),
ignition::math::Rand::DblUniform(0.0, 1.0),
ignition::math::Rand::DblUniform(0.0, 1.0));
// These calls are setting parameters that are declared in two places:
// 1. media/materials/scripts/gazebo.material, in
// fragment_program Gazebo/GaussianCameraNoiseFS
// 2. media/materials/scripts/camera_noise_gaussian_fs.glsl
Ogre::Technique *technique = _mat->getTechnique(0);
GZ_ASSERT(technique, "Null OGRE material technique");
Ogre::Pass *pass = technique->getPass(_passId);
GZ_ASSERT(pass, "Null OGRE material pass");
Ogre::GpuProgramParametersSharedPtr params =
pass->getFragmentProgramParameters();
GZ_ASSERT(!params.isNull(), "Null OGRE material GPU parameters");
params->setNamedConstant("offsets", offsets);
params->setNamedConstant("mean", static_cast<Ogre::Real>(this->mean));
params->setNamedConstant("stddev", static_cast<Ogre::Real>(this->stddev));
}
/// \brief Mean that we'll pass down to the GLSL fragment shader.
private: double mean;
/// \brief Standard deviation that we'll pass down to the GLSL fragment
/// shader.
private: double stddev;
};
} // namespace gazebo
using namespace gazebo;
using namespace sensors;
//////////////////////////////////////////////////
GaussianNoiseModel::GaussianNoiseModel()
: Noise(Noise::GAUSSIAN),
mean(0.0),
stdDev(0.0),
bias(0.0),
precision(0.0),
quantized(false)
{
}
//////////////////////////////////////////////////
GaussianNoiseModel::~GaussianNoiseModel()
{
}
//////////////////////////////////////////////////
void GaussianNoiseModel::Load(sdf::ElementPtr _sdf)
{
Noise::Load(_sdf);
this->mean = _sdf->Get<double>("mean");
this->stdDev = _sdf->Get<double>("stddev");
// Sample the bias
double biasMean = 0;
double biasStdDev = 0;
if (_sdf->HasElement("bias_mean"))
biasMean = _sdf->Get<double>("bias_mean");
if (_sdf->HasElement("bias_stddev"))
biasStdDev = _sdf->Get<double>("bias_stddev");
this->bias = ignition::math::Rand::DblNormal(biasMean, biasStdDev);
// With equal probability, we pick a negative bias (by convention,
// rateBiasMean should be positive, though it would work fine if
// negative).
if (ignition::math::Rand::DblUniform() < 0.5)
this->bias = -this->bias;
/// \todo Remove this, and use Noise::Print. See ImuSensor for an example
gzlog << "applying Gaussian noise model with mean " << this->mean
<< ", stddev " << this->stdDev
<< ", bias " << this->bias << std::endl;
if (_sdf->HasElement("precision"))
{
this->precision = _sdf->Get<double>("precision");
if (this->precision < 0)
{
gzerr << "Noise precision cannot be less than 0" << std::endl;
}
else if (!ignition::math::equal(this->precision, 0.0, 1e-6))
{
this->quantized = true;
}
}
}
//////////////////////////////////////////////////
void GaussianNoiseModel::Fini()
{
Noise::Fini();
}
//////////////////////////////////////////////////
double GaussianNoiseModel::ApplyImpl(double _in)
{
// Add independent (uncorrelated) Gaussian noise to each input value.
double whiteNoise = ignition::math::Rand::DblNormal(this->mean, this->stdDev);
double output = _in + this->bias + whiteNoise;
if (this->quantized)
{
// Apply this->precision
if (!ignition::math::equal(this->precision, 0.0, 1e-6))
{
output = std::round(output / this->precision) * this->precision;
}
}
return output;
}
//////////////////////////////////////////////////
double GaussianNoiseModel::GetMean() const
{
return this->mean;
}
//////////////////////////////////////////////////
double GaussianNoiseModel::GetStdDev() const
{
return this->stdDev;
}
//////////////////////////////////////////////////
double GaussianNoiseModel::GetBias() const
{
return this->bias;
}
//////////////////////////////////////////////////
void GaussianNoiseModel::Print(std::ostream &_out) const
{
_out << "Gaussian noise, mean[" << this->mean << "], "
<< "stdDev[" << this->stdDev << "] "
<< "bias[" << this->bias << "] "
<< "precision[" << this->precision << "] "
<< "quantized[" << this->quantized << "]";
}
//////////////////////////////////////////////////
ImageGaussianNoiseModel::ImageGaussianNoiseModel()
: GaussianNoiseModel()
{
}
//////////////////////////////////////////////////
ImageGaussianNoiseModel::~ImageGaussianNoiseModel()
{
}
//////////////////////////////////////////////////
void ImageGaussianNoiseModel::Load(sdf::ElementPtr _sdf)
{
GaussianNoiseModel::Load(_sdf);
}
//////////////////////////////////////////////////
void ImageGaussianNoiseModel::SetCamera(rendering::CameraPtr _camera)
{
GZ_ASSERT(_camera, "Unable to apply gaussian noise, camera is NULL");
this->gaussianNoiseCompositorListener.reset(new
GaussianNoiseCompositorListener(this->mean, this->stdDev));
this->gaussianNoiseInstance =
Ogre::CompositorManager::getSingleton().addCompositor(
_camera->OgreViewport(), "CameraNoise/Gaussian");
this->gaussianNoiseInstance->setEnabled(true);
this->gaussianNoiseInstance->addListener(
this->gaussianNoiseCompositorListener.get());
}
//////////////////////////////////////////////////
void ImageGaussianNoiseModel::Fini()
{
GaussianNoiseModel::Fini();
}
//////////////////////////////////////////////////
void ImageGaussianNoiseModel::Print(std::ostream &_out) const
{
_out << "Image Gaussian noise, mean[" << this->mean << "], "
<< "stdDev[" << this->stdDev << "] "
<< "bias[" << this->bias << "] "
<< "precision[" << this->precision << "] "
<< "quantized[" << this->quantized << "]";
}