pxmlw6n2f/Gazebo_Distributed_TCP/deps/opende/OPCODE/OPC_LSSAABBOverlap.h

521 lines
16 KiB
C
Raw Normal View History

2019-03-28 10:57:49 +08:00
// Following code from Magic-Software (http://www.magic-software.com/)
// A bit modified for Opcode
inline_ float OPC_PointAABBSqrDist(const Point& point, const Point& center, const Point& extents)
{
// Compute coordinates of point in box coordinate system
Point Closest = point - center;
float SqrDistance = 0.0f;
if(Closest.x < -extents.x)
{
float Delta = Closest.x + extents.x;
SqrDistance += Delta*Delta;
}
else if(Closest.x > extents.x)
{
float Delta = Closest.x - extents.x;
SqrDistance += Delta*Delta;
}
if(Closest.y < -extents.y)
{
float Delta = Closest.y + extents.y;
SqrDistance += Delta*Delta;
}
else if(Closest.y > extents.y)
{
float Delta = Closest.y - extents.y;
SqrDistance += Delta*Delta;
}
if(Closest.z < -extents.z)
{
float Delta = Closest.z + extents.z;
SqrDistance += Delta*Delta;
}
else if(Closest.z > extents.z)
{
float Delta = Closest.z - extents.z;
SqrDistance += Delta*Delta;
}
return SqrDistance;
}
static void Face(int i0, int i1, int i2, Point& rkPnt, const Point& rkDir, const Point& extents, const Point& rkPmE, float* pfLParam, float& rfSqrDistance)
{
Point kPpE;
float fLSqr, fInv, fTmp, fParam, fT, fDelta;
kPpE[i1] = rkPnt[i1] + extents[i1];
kPpE[i2] = rkPnt[i2] + extents[i2];
if(rkDir[i0]*kPpE[i1] >= rkDir[i1]*rkPmE[i0])
{
if(rkDir[i0]*kPpE[i2] >= rkDir[i2]*rkPmE[i0])
{
// v[i1] >= -e[i1], v[i2] >= -e[i2] (distance = 0)
if(pfLParam)
{
rkPnt[i0] = extents[i0];
fInv = 1.0f/rkDir[i0];
rkPnt[i1] -= rkDir[i1]*rkPmE[i0]*fInv;
rkPnt[i2] -= rkDir[i2]*rkPmE[i0]*fInv;
*pfLParam = -rkPmE[i0]*fInv;
}
}
else
{
// v[i1] >= -e[i1], v[i2] < -e[i2]
fLSqr = rkDir[i0]*rkDir[i0] + rkDir[i2]*rkDir[i2];
fTmp = fLSqr*kPpE[i1] - rkDir[i1]*(rkDir[i0]*rkPmE[i0] + rkDir[i2]*kPpE[i2]);
if(fTmp <= 2.0f*fLSqr*extents[i1])
{
fT = fTmp/fLSqr;
fLSqr += rkDir[i1]*rkDir[i1];
fTmp = kPpE[i1] - fT;
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*fTmp + rkDir[i2]*kPpE[i2];
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + fTmp*fTmp + kPpE[i2]*kPpE[i2] + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = fT - extents[i1];
rkPnt[i2] = -extents[i2];
}
}
else
{
fLSqr += rkDir[i1]*rkDir[i1];
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*rkPmE[i1] + rkDir[i2]*kPpE[i2];
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + rkPmE[i1]*rkPmE[i1] + kPpE[i2]*kPpE[i2] + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = extents[i1];
rkPnt[i2] = -extents[i2];
}
}
}
}
else
{
if ( rkDir[i0]*kPpE[i2] >= rkDir[i2]*rkPmE[i0] )
{
// v[i1] < -e[i1], v[i2] >= -e[i2]
fLSqr = rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1];
fTmp = fLSqr*kPpE[i2] - rkDir[i2]*(rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1]);
if(fTmp <= 2.0f*fLSqr*extents[i2])
{
fT = fTmp/fLSqr;
fLSqr += rkDir[i2]*rkDir[i2];
fTmp = kPpE[i2] - fT;
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*fTmp;
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + fTmp*fTmp + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = -extents[i1];
rkPnt[i2] = fT - extents[i2];
}
}
else
{
fLSqr += rkDir[i2]*rkDir[i2];
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*rkPmE[i2];
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + rkPmE[i2]*rkPmE[i2] + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = -extents[i1];
rkPnt[i2] = extents[i2];
}
}
}
else
{
// v[i1] < -e[i1], v[i2] < -e[i2]
fLSqr = rkDir[i0]*rkDir[i0]+rkDir[i2]*rkDir[i2];
fTmp = fLSqr*kPpE[i1] - rkDir[i1]*(rkDir[i0]*rkPmE[i0] + rkDir[i2]*kPpE[i2]);
if(fTmp >= 0.0f)
{
// v[i1]-edge is closest
if ( fTmp <= 2.0f*fLSqr*extents[i1] )
{
fT = fTmp/fLSqr;
fLSqr += rkDir[i1]*rkDir[i1];
fTmp = kPpE[i1] - fT;
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*fTmp + rkDir[i2]*kPpE[i2];
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + fTmp*fTmp + kPpE[i2]*kPpE[i2] + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = fT - extents[i1];
rkPnt[i2] = -extents[i2];
}
}
else
{
fLSqr += rkDir[i1]*rkDir[i1];
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*rkPmE[i1] + rkDir[i2]*kPpE[i2];
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + rkPmE[i1]*rkPmE[i1] + kPpE[i2]*kPpE[i2] + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = extents[i1];
rkPnt[i2] = -extents[i2];
}
}
return;
}
fLSqr = rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1];
fTmp = fLSqr*kPpE[i2] - rkDir[i2]*(rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1]);
if(fTmp >= 0.0f)
{
// v[i2]-edge is closest
if(fTmp <= 2.0f*fLSqr*extents[i2])
{
fT = fTmp/fLSqr;
fLSqr += rkDir[i2]*rkDir[i2];
fTmp = kPpE[i2] - fT;
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*fTmp;
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + fTmp*fTmp + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = -extents[i1];
rkPnt[i2] = fT - extents[i2];
}
}
else
{
fLSqr += rkDir[i2]*rkDir[i2];
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*rkPmE[i2];
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + rkPmE[i2]*rkPmE[i2] + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = -extents[i1];
rkPnt[i2] = extents[i2];
}
}
return;
}
// (v[i1],v[i2])-corner is closest
fLSqr += rkDir[i2]*rkDir[i2];
fDelta = rkDir[i0]*rkPmE[i0] + rkDir[i1]*kPpE[i1] + rkDir[i2]*kPpE[i2];
fParam = -fDelta/fLSqr;
rfSqrDistance += rkPmE[i0]*rkPmE[i0] + kPpE[i1]*kPpE[i1] + kPpE[i2]*kPpE[i2] + fDelta*fParam;
if(pfLParam)
{
*pfLParam = fParam;
rkPnt[i0] = extents[i0];
rkPnt[i1] = -extents[i1];
rkPnt[i2] = -extents[i2];
}
}
}
}
static void CaseNoZeros(Point& rkPnt, const Point& rkDir, const Point& extents, float* pfLParam, float& rfSqrDistance)
{
Point kPmE(rkPnt.x - extents.x, rkPnt.y - extents.y, rkPnt.z - extents.z);
float fProdDxPy, fProdDyPx, fProdDzPx, fProdDxPz, fProdDzPy, fProdDyPz;
fProdDxPy = rkDir.x*kPmE.y;
fProdDyPx = rkDir.y*kPmE.x;
if(fProdDyPx >= fProdDxPy)
{
fProdDzPx = rkDir.z*kPmE.x;
fProdDxPz = rkDir.x*kPmE.z;
if(fProdDzPx >= fProdDxPz)
{
// line intersects x = e0
Face(0, 1, 2, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance);
}
else
{
// line intersects z = e2
Face(2, 0, 1, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance);
}
}
else
{
fProdDzPy = rkDir.z*kPmE.y;
fProdDyPz = rkDir.y*kPmE.z;
if(fProdDzPy >= fProdDyPz)
{
// line intersects y = e1
Face(1, 2, 0, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance);
}
else
{
// line intersects z = e2
Face(2, 0, 1, rkPnt, rkDir, extents, kPmE, pfLParam, rfSqrDistance);
}
}
}
static void Case0(int i0, int i1, int i2, Point& rkPnt, const Point& rkDir, const Point& extents, float* pfLParam, float& rfSqrDistance)
{
float fPmE0 = rkPnt[i0] - extents[i0];
float fPmE1 = rkPnt[i1] - extents[i1];
float fProd0 = rkDir[i1]*fPmE0;
float fProd1 = rkDir[i0]*fPmE1;
float fDelta, fInvLSqr, fInv;
if(fProd0 >= fProd1)
{
// line intersects P[i0] = e[i0]
rkPnt[i0] = extents[i0];
float fPpE1 = rkPnt[i1] + extents[i1];
fDelta = fProd0 - rkDir[i0]*fPpE1;
if(fDelta >= 0.0f)
{
fInvLSqr = 1.0f/(rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1]);
rfSqrDistance += fDelta*fDelta*fInvLSqr;
if(pfLParam)
{
rkPnt[i1] = -extents[i1];
*pfLParam = -(rkDir[i0]*fPmE0+rkDir[i1]*fPpE1)*fInvLSqr;
}
}
else
{
if(pfLParam)
{
fInv = 1.0f/rkDir[i0];
rkPnt[i1] -= fProd0*fInv;
*pfLParam = -fPmE0*fInv;
}
}
}
else
{
// line intersects P[i1] = e[i1]
rkPnt[i1] = extents[i1];
float fPpE0 = rkPnt[i0] + extents[i0];
fDelta = fProd1 - rkDir[i1]*fPpE0;
if(fDelta >= 0.0f)
{
fInvLSqr = 1.0f/(rkDir[i0]*rkDir[i0] + rkDir[i1]*rkDir[i1]);
rfSqrDistance += fDelta*fDelta*fInvLSqr;
if(pfLParam)
{
rkPnt[i0] = -extents[i0];
*pfLParam = -(rkDir[i0]*fPpE0+rkDir[i1]*fPmE1)*fInvLSqr;
}
}
else
{
if(pfLParam)
{
fInv = 1.0f/rkDir[i1];
rkPnt[i0] -= fProd1*fInv;
*pfLParam = -fPmE1*fInv;
}
}
}
if(rkPnt[i2] < -extents[i2])
{
fDelta = rkPnt[i2] + extents[i2];
rfSqrDistance += fDelta*fDelta;
rkPnt[i2] = -extents[i2];
}
else if ( rkPnt[i2] > extents[i2] )
{
fDelta = rkPnt[i2] - extents[i2];
rfSqrDistance += fDelta*fDelta;
rkPnt[i2] = extents[i2];
}
}
static void Case00(int i0, int i1, int i2, Point& rkPnt, const Point& rkDir, const Point& extents, float* pfLParam, float& rfSqrDistance)
{
float fDelta;
if(pfLParam)
*pfLParam = (extents[i0] - rkPnt[i0])/rkDir[i0];
rkPnt[i0] = extents[i0];
if(rkPnt[i1] < -extents[i1])
{
fDelta = rkPnt[i1] + extents[i1];
rfSqrDistance += fDelta*fDelta;
rkPnt[i1] = -extents[i1];
}
else if(rkPnt[i1] > extents[i1])
{
fDelta = rkPnt[i1] - extents[i1];
rfSqrDistance += fDelta*fDelta;
rkPnt[i1] = extents[i1];
}
if(rkPnt[i2] < -extents[i2])
{
fDelta = rkPnt[i2] + extents[i2];
rfSqrDistance += fDelta*fDelta;
rkPnt[i1] = -extents[i2];
}
else if(rkPnt[i2] > extents[i2])
{
fDelta = rkPnt[i2] - extents[i2];
rfSqrDistance += fDelta*fDelta;
rkPnt[i2] = extents[i2];
}
}
static void Case000(Point& rkPnt, const Point& extents, float& rfSqrDistance)
{
float fDelta;
if(rkPnt.x < -extents.x)
{
fDelta = rkPnt.x + extents.x;
rfSqrDistance += fDelta*fDelta;
rkPnt.x = -extents.x;
}
else if(rkPnt.x > extents.x)
{
fDelta = rkPnt.x - extents.x;
rfSqrDistance += fDelta*fDelta;
rkPnt.x = extents.x;
}
if(rkPnt.y < -extents.y)
{
fDelta = rkPnt.y + extents.y;
rfSqrDistance += fDelta*fDelta;
rkPnt.y = -extents.y;
}
else if(rkPnt.y > extents.y)
{
fDelta = rkPnt.y - extents.y;
rfSqrDistance += fDelta*fDelta;
rkPnt.y = extents.y;
}
if(rkPnt.z < -extents.z)
{
fDelta = rkPnt.z + extents.z;
rfSqrDistance += fDelta*fDelta;
rkPnt.z = -extents.z;
}
else if(rkPnt.z > extents.z)
{
fDelta = rkPnt.z - extents.z;
rfSqrDistance += fDelta*fDelta;
rkPnt.z = extents.z;
}
}
static float SqrDistance(const Ray& rkLine, const Point& center, const Point& extents, float* pfLParam)
{
// compute coordinates of line in box coordinate system
Point kDiff = rkLine.mOrig - center;
Point kPnt = kDiff;
Point kDir = rkLine.mDir;
// Apply reflections so that direction vector has nonnegative components.
//bool bReflect[3];
//bReflect[0] = bReflect[1] = bReflect[2] = false;
for(int i=0;i<3;i++)
{
if(kDir[i]<0.0f)
{
kPnt[i] = -kPnt[i];
kDir[i] = -kDir[i];
//bReflect[i] = true;
}
}
float fSqrDistance = 0.0f;
if(kDir.x>0.0f)
{
if(kDir.y>0.0f)
{
if(kDir.z>0.0f) CaseNoZeros(kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,+,+)
else Case0(0, 1, 2, kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,+,0)
}
else
{
if(kDir.z>0.0f) Case0(0, 2, 1, kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,0,+)
else Case00(0, 1, 2, kPnt, kDir, extents, pfLParam, fSqrDistance); // (+,0,0)
}
}
else
{
if(kDir.y>0.0f)
{
if(kDir.z>0.0f) Case0(1, 2, 0, kPnt, kDir, extents, pfLParam, fSqrDistance); // (0,+,+)
else Case00(1, 0, 2, kPnt, kDir, extents, pfLParam, fSqrDistance); // (0,+,0)
}
else
{
if(kDir.z>0.0f) Case00(2, 0, 1, kPnt, kDir, extents, pfLParam, fSqrDistance); // (0,0,+)
else
{
Case000(kPnt, extents, fSqrDistance); // (0,0,0)
if(pfLParam) *pfLParam = 0.0f;
}
}
}
return fSqrDistance;
}
inline_ float OPC_SegmentOBBSqrDist(const Segment& segment, const Point& c0, const Point& e0)
{
float fLP;
float fSqrDistance = SqrDistance(Ray(segment.GetOrigin(), segment.ComputeDirection()), c0, e0, &fLP);
if(fLP>=0.0f)
{
if(fLP<=1.0f) return fSqrDistance;
else return OPC_PointAABBSqrDist(segment.mP1, c0, e0);
}
else return OPC_PointAABBSqrDist(segment.mP0, c0, e0);
}
inline_ BOOL LSSCollider::LSSAABBOverlap(const Point& center, const Point& extents)
{
// Stats
mNbVolumeBVTests++;
float s2 = OPC_SegmentOBBSqrDist(mSeg, center, extents);
if(s2<mRadius2) return TRUE;
return FALSE;
}