pxmlw6n2f/Gazebo_Distributed_TCP/gazebo/sensors/RaySensor.cc

608 lines
17 KiB
C++
Raw Normal View History

2019-03-28 10:57:49 +08:00
/*
* Copyright (C) 2012 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifdef _WIN32
// Ensure that Winsock2.h is included before Windows.h, which can get
// pulled in by anybody (e.g., Boost).
#include <Winsock2.h>
#endif
#include <boost/algorithm/string.hpp>
#include "gazebo/physics/World.hh"
#include "gazebo/physics/MultiRayShape.hh"
#include "gazebo/physics/PhysicsEngine.hh"
#include "gazebo/physics/PhysicsIface.hh"
#include "gazebo/physics/Model.hh"
#include "gazebo/physics/Collision.hh"
#include "gazebo/common/Assert.hh"
#include "gazebo/common/Exception.hh"
#include "gazebo/transport/Node.hh"
#include "gazebo/transport/Publisher.hh"
#include "gazebo/msgs/msgs.hh"
#include "gazebo/sensors/SensorFactory.hh"
#include "gazebo/sensors/RaySensorPrivate.hh"
#include "gazebo/sensors/RaySensor.hh"
#include "gazebo/sensors/Noise.hh"
using namespace gazebo;
using namespace sensors;
GZ_REGISTER_STATIC_SENSOR("ray", RaySensor)
//////////////////////////////////////////////////
RaySensor::RaySensor()
: Sensor(sensors::RAY),
dataPtr(new RaySensorPrivate)
{
}
//////////////////////////////////////////////////
RaySensor::~RaySensor()
{
}
//////////////////////////////////////////////////
std::string RaySensor::Topic() const
{
std::string topicName = "~/";
topicName += this->ParentName() + "/" + this->Name() + "/scan";
boost::replace_all(topicName, "::", "/");
return topicName;
}
//////////////////////////////////////////////////
void RaySensor::Load(const std::string &_worldName)
{
Sensor::Load(_worldName);
this->dataPtr->scanPub =
this->node->Advertise<msgs::LaserScanStamped>(this->Topic(), 50);
GZ_ASSERT(this->world != NULL,
"RaySensor did not get a valid World pointer");
physics::PhysicsEnginePtr physicsEngine =
this->world->GetPhysicsEngine();
GZ_ASSERT(physicsEngine != NULL,
"Unable to get a pointer to the physics engine");
this->dataPtr->laserCollision = physicsEngine->CreateCollision("multiray",
this->ParentName());
GZ_ASSERT(this->dataPtr->laserCollision != NULL,
"Unable to create a multiray collision using the physics engine.");
this->dataPtr->laserCollision->SetName("ray_sensor_collision");
this->dataPtr->laserCollision->SetRelativePose(this->pose);
this->dataPtr->laserCollision->SetInitialRelativePose(this->pose);
this->dataPtr->laserShape =
boost::dynamic_pointer_cast<physics::MultiRayShape>(
this->dataPtr->laserCollision->GetShape());
GZ_ASSERT(this->dataPtr->laserShape != NULL,
"Unable to get the laser shape from the multi-ray collision.");
this->dataPtr->laserShape->Load(this->sdf);
this->dataPtr->laserShape->Init();
// Handle noise model settings.
sdf::ElementPtr rayElem = this->sdf->GetElement("ray");
if (rayElem->HasElement("noise"))
{
this->noises[RAY_NOISE] =
NoiseFactory::NewNoiseModel(rayElem->GetElement("noise"),
this->Type());
}
this->dataPtr->parentEntity =
this->world->GetEntity(this->ParentName());
GZ_ASSERT(this->dataPtr->parentEntity != NULL,
"Unable to get the parent entity.");
}
//////////////////////////////////////////////////
void RaySensor::Init()
{
Sensor::Init();
this->dataPtr->laserMsg.mutable_scan()->set_frame(this->ParentName());
}
//////////////////////////////////////////////////
void RaySensor::Fini()
{
Sensor::Fini();
this->dataPtr->scanPub.reset();
if (this->dataPtr->laserCollision)
{
this->dataPtr->laserCollision->Fini();
this->dataPtr->laserCollision.reset();
}
if (this->dataPtr->laserShape)
{
this->dataPtr->laserShape->Fini();
this->dataPtr->laserShape.reset();
}
}
//////////////////////////////////////////////////
ignition::math::Angle RaySensor::AngleMin() const
{
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetMinAngle().Ign();
else
return -1;
}
//////////////////////////////////////////////////
ignition::math::Angle RaySensor::AngleMax() const
{
if (this->dataPtr->laserShape)
{
return ignition::math::Angle(
this->dataPtr->laserShape->GetMaxAngle().Radian());
}
else
return -1;
}
//////////////////////////////////////////////////
double RaySensor::GetRangeMin() const
{
return this->RangeMin();
}
//////////////////////////////////////////////////
double RaySensor::RangeMin() const
{
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetMinRange();
else
return -1;
}
//////////////////////////////////////////////////
double RaySensor::GetRangeMax() const
{
return this->RangeMax();
}
//////////////////////////////////////////////////
double RaySensor::RangeMax() const
{
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetMaxRange();
else
return -1;
}
//////////////////////////////////////////////////
double RaySensor::GetAngleResolution() const
{
return this->AngleResolution();
}
//////////////////////////////////////////////////
double RaySensor::AngleResolution() const
{
return (this->AngleMax() - this->AngleMin()).Radian() /
(this->RangeCount()-1);
}
//////////////////////////////////////////////////
double RaySensor::GetRangeResolution() const
{
return this->RangeResolution();
}
//////////////////////////////////////////////////
double RaySensor::RangeResolution() const
{
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetResRange();
else
return -1;
}
//////////////////////////////////////////////////
int RaySensor::GetRayCount() const
{
return this->RayCount();
}
//////////////////////////////////////////////////
int RaySensor::RayCount() const
{
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetSampleCount();
else
return -1;
}
//////////////////////////////////////////////////
int RaySensor::GetRangeCount() const
{
return this->RangeCount();
}
//////////////////////////////////////////////////
int RaySensor::RangeCount() const
{
// TODO: maybe should check against this->dataPtr->laserMsg.ranges_size()
// as users use this to loop through GetRange() calls
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetSampleCount() *
this->dataPtr->laserShape->GetScanResolution();
else
return -1;
}
//////////////////////////////////////////////////
int RaySensor::GetVerticalRayCount() const
{
return this->VerticalRayCount();
}
//////////////////////////////////////////////////
int RaySensor::VerticalRayCount() const
{
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetVerticalSampleCount();
else
return -1;
}
//////////////////////////////////////////////////
int RaySensor::GetVerticalRangeCount() const
{
return this->VerticalRangeCount();
}
//////////////////////////////////////////////////
int RaySensor::VerticalRangeCount() const
{
if (this->dataPtr->laserShape)
return this->dataPtr->laserShape->GetVerticalSampleCount() *
this->dataPtr->laserShape->GetVerticalScanResolution();
else
return -1;
}
//////////////////////////////////////////////////
ignition::math::Angle RaySensor::VerticalAngleMin() const
{
if (this->dataPtr->laserShape)
{
return ignition::math::Angle(
this->dataPtr->laserShape->GetVerticalMinAngle().Radian());
}
else
return -1;
}
//////////////////////////////////////////////////
ignition::math::Angle RaySensor::VerticalAngleMax() const
{
if (this->dataPtr->laserShape)
{
return ignition::math::Angle(
this->dataPtr->laserShape->GetVerticalMaxAngle().Radian());
}
else
return -1;
}
//////////////////////////////////////////////////
double RaySensor::GetVerticalAngleResolution() const
{
return this->VerticalAngleResolution();
}
//////////////////////////////////////////////////
double RaySensor::VerticalAngleResolution() const
{
return (this->VerticalAngleMax() - this->VerticalAngleMin()).Radian() /
(this->VerticalRangeCount()-1);
}
//////////////////////////////////////////////////
void RaySensor::GetRanges(std::vector<double> &_ranges)
{
this->Ranges(_ranges);
}
//////////////////////////////////////////////////
void RaySensor::Ranges(std::vector<double> &_ranges) const
{
std::lock_guard<std::mutex> lock(this->dataPtr->mutex);
_ranges.resize(this->dataPtr->laserMsg.scan().ranges_size());
memcpy(&_ranges[0], this->dataPtr->laserMsg.scan().ranges().data(),
sizeof(_ranges[0]) * this->dataPtr->laserMsg.scan().ranges_size());
}
//////////////////////////////////////////////////
double RaySensor::GetRange(unsigned int _index)
{
return this->Range(_index);
}
//////////////////////////////////////////////////
double RaySensor::Range(const unsigned int _index) const
{
std::lock_guard<std::mutex> lock(this->dataPtr->mutex);
if (this->dataPtr->laserMsg.scan().ranges_size() == 0)
{
gzwarn << "ranges not constructed yet (zero sized)\n";
return 0.0;
}
if (static_cast<int>(_index) >= this->dataPtr->laserMsg.scan().ranges_size())
{
gzerr << "Invalid range index[" << _index << "]\n";
return 0.0;
}
return this->dataPtr->laserMsg.scan().ranges(_index);
}
//////////////////////////////////////////////////
double RaySensor::GetRetro(unsigned int _index)
{
return this->Retro(_index);
}
//////////////////////////////////////////////////
double RaySensor::Retro(const unsigned int _index) const
{
std::lock_guard<std::mutex> lock(this->dataPtr->mutex);
if (this->dataPtr->laserMsg.scan().intensities_size() == 0)
{
gzwarn << "Intensities not constructed yet (zero size)\n";
return 0.0;
}
if (static_cast<int>(_index) >=
this->dataPtr->laserMsg.scan().intensities_size())
{
gzerr << "Invalid intensity index[" << _index << "]\n";
return 0.0;
}
return this->dataPtr->laserMsg.scan().intensities(_index);
}
//////////////////////////////////////////////////
int RaySensor::GetFiducial(unsigned int _index)
{
return this->Fiducial(_index);
}
//////////////////////////////////////////////////
int RaySensor::Fiducial(const unsigned int _index) const
{
std::lock_guard<std::mutex> lock(this->dataPtr->mutex);
// Convert range index to ray index.
// Find vertical/horizontal range indices (vIdx, hIdx) and mulitply
// by the ratio of ray count to range count to get the vertical/horizontal
// ray indices, which are then used to compute the final index into ray array.
int vIdx = _index / this->RangeCount();
vIdx = vIdx * this->VerticalRayCount() / this->VerticalRangeCount();
int hIdx = _index % this->RangeCount();
hIdx = hIdx * this->RayCount() / this->RangeCount();
int idx = vIdx * this->RayCount() + hIdx;
if (idx >= this->RayCount() * this->VerticalRayCount())
{
gzerr << "Invalid fiducial index[" << _index << "]\n";
return 0.0;
}
return this->dataPtr->laserShape->GetFiducial(idx);
}
//////////////////////////////////////////////////
bool RaySensor::UpdateImpl(const bool /*_force*/)
{
// do the collision checks
// this eventually call OnNewScans, so move mutex lock behind it in case
// need to move mutex lock after this? or make the OnNewLaserScan connection
// call somewhere else?
this->dataPtr->laserShape->Update();
this->lastMeasurementTime = this->world->GetSimTime();
// moving this behind laserShape update
std::lock_guard<std::mutex> lock(this->dataPtr->mutex);
msgs::Set(this->dataPtr->laserMsg.mutable_time(),
this->lastMeasurementTime);
msgs::LaserScan *scan = this->dataPtr->laserMsg.mutable_scan();
// Store the latest laser scans into laserMsg
msgs::Set(scan->mutable_world_pose(),
this->pose + this->dataPtr->parentEntity->GetWorldPose().Ign());
scan->set_angle_min(this->AngleMin().Radian());
scan->set_angle_max(this->AngleMax().Radian());
scan->set_angle_step(this->AngleResolution());
scan->set_count(this->RangeCount());
scan->set_vertical_angle_min(this->VerticalAngleMin().Radian());
scan->set_vertical_angle_max(this->VerticalAngleMax().Radian());
scan->set_vertical_angle_step(this->VerticalAngleResolution());
scan->set_vertical_count(this->VerticalRangeCount());
scan->set_range_min(this->RangeMin());
scan->set_range_max(this->RangeMax());
scan->clear_ranges();
scan->clear_intensities();
unsigned int rayCount = this->RayCount();
unsigned int rangeCount = this->RangeCount();
unsigned int verticalRayCount = this->VerticalRayCount();
unsigned int verticalRangeCount = this->VerticalRangeCount();
// Interpolation: for every point in range count, compute interpolated value
// using four bounding ray samples.
// (vja, hja) (vja, hjb)
// x---------x
// | |
// | o |
// | |
// x---------x
// (vjb, hja) (vjb, hjb)
// where o: is the range to be interpolated
// x: ray sample
// vja: is the previous index of ray in vertical direction
// vjb: is the next index of ray in vertical direction
// hja: is the previous index of ray in horizontal direction
// hjb: is the next index of ray in horizontal direction
unsigned int hja, hjb;
unsigned int vja = 0, vjb = 0;
// percentage of interpolation between rays
double vb = 0, hb;
// indices of ray samples
int j1, j2, j3, j4;
// range values of ray samples
double r1, r2, r3, r4;
// Check for the common case of vertical and horizontal resolution being 1,
// which means that ray count == range count and we can do simple lookup
// of ranges and intensity data, skipping interpolation. We could do this
// check independently for vertical and horizontal, but that's more
// complexity for an unlikely use case.
bool interp =
((rayCount != rangeCount) || (verticalRayCount != verticalRangeCount));
// interpolate in vertical direction
for (unsigned int j = 0; j < verticalRangeCount; ++j)
{
if (interp)
{
vb = (verticalRangeCount == 1) ? 0 :
static_cast<double>(j * (verticalRayCount - 1))
/ (verticalRangeCount - 1);
vja = static_cast<int>(floor(vb));
vjb = std::min(vja + 1, verticalRayCount - 1);
vb = vb - floor(vb);
GZ_ASSERT(vja < verticalRayCount,
"Invalid vertical ray index used for interpolation");
GZ_ASSERT(vjb < verticalRayCount,
"Invalid vertical ray index used for interpolation");
}
// interpolate in horizontal direction
for (unsigned int i = 0; i < rangeCount; ++i)
{
double range, intensity;
if (interp)
{
hb = (rangeCount == 1)? 0 : static_cast<double>(i * (rayCount - 1))
/ (rangeCount - 1);
hja = static_cast<int>(floor(hb));
hjb = std::min(hja + 1, rayCount - 1);
hb = hb - floor(hb);
GZ_ASSERT(hja < rayCount,
"Invalid horizontal ray index used for interpolation");
GZ_ASSERT(hjb < rayCount,
"Invalid horizontal ray index used for interpolation");
// indices of 4 corners
j1 = hja + vja * rayCount;
j2 = hjb + vja * rayCount;
j3 = hja + vjb * rayCount;
j4 = hjb + vjb * rayCount;
// range readings of 4 corners
r1 = this->LaserShape()->GetRange(j1);
r2 = this->LaserShape()->GetRange(j2);
r3 = this->LaserShape()->GetRange(j3);
r4 = this->LaserShape()->GetRange(j4);
range = (1-vb)*((1 - hb) * r1 + hb * r2)
+ vb *((1 - hb) * r3 + hb * r4);
// intensity is averaged
intensity = 0.25 * (this->LaserShape()->GetRetro(j1)
+ this->LaserShape()->GetRetro(j2)
+ this->LaserShape()->GetRetro(j3)
+ this->LaserShape()->GetRetro(j4));
}
else
{
range = this->dataPtr->laserShape->GetRange(j * this->RayCount() + i);
intensity = this->dataPtr->laserShape->GetRetro(j *
this->RayCount() + i);
}
// Mask ranges outside of min/max to +/- inf, as per REP 117
if (range >= this->RangeMax())
{
range = IGN_DBL_INF;
}
else if (range <= this->RangeMin())
{
range = -IGN_DBL_INF;
}
else if (this->noises.find(RAY_NOISE) !=
this->noises.end())
{
// currently supports only one noise model per laser sensor
range = this->noises[RAY_NOISE]->Apply(range);
range = ignition::math::clamp(range,
this->RangeMin(), this->RangeMax());
}
scan->add_ranges(range);
scan->add_intensities(intensity);
}
}
if (this->dataPtr->scanPub && this->dataPtr->scanPub->HasConnections())
this->dataPtr->scanPub->Publish(this->dataPtr->laserMsg);
return true;
}
//////////////////////////////////////////////////
bool RaySensor::IsActive() const
{
return Sensor::IsActive() ||
(this->dataPtr->scanPub && this->dataPtr->scanPub->HasConnections());
}
//////////////////////////////////////////////////
physics::MultiRayShapePtr RaySensor::GetLaserShape() const
{
return this->LaserShape();
}
//////////////////////////////////////////////////
physics::MultiRayShapePtr RaySensor::LaserShape() const
{
return this->dataPtr->laserShape;
}