pxmlw6n2f/Gazebo_Distributed_TCP/gazebo/sensors/AltimeterSensor_TEST.cc

311 lines
10 KiB
C++

/*
* Copyright (C) 2015 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <gtest/gtest.h>
#include <ignition/math/Pose3.hh>
#include "gazebo/test/ServerFixture.hh"
#include "gazebo/test/helper_physics_generator.hh"
#include "gazebo/sensors/AltimeterSensor.hh"
#define TOL 1e-4
using namespace gazebo;
/// \brief Test class for the altimeter sensor
class AltimeterSensor_TEST : public ServerFixture,
public testing::WithParamInterface<const char*>
{
/// \brief Check that a simple altimeter works correctly
/// The default should be inserted with altitude = 0 and velocity = 0
/// \param[in] _physicsEngine The type of physics engine to use.
public: void BasicAltimeterSensorCheck(const std::string &_physicsEngine);
/// \brief Check that an altimeter at a non-zero altitude works.
/// \param[in] _physicsEngine The type of physics engine to use.
public: void NonzeroAltimeterSensorCheck(const std::string &_physicsEngine);
/// \brief Check that a falling altimeter has the correct velocity.
/// \param[in] _physicsEngine The type of physics engine to use.
public: void LinearAltimeterSensorCheck(const std::string &_physicsEngine);
/// \brief Check that a rotating altimeter has the correct velocity.
/// \param[in] _physicsEngine The type of physics engine to use.
public: void AngularAltimeterSensorCheck(const std::string &_physicsEngine);
/// \brief Check that a rotating and falling altimeter has the correct
/// velocity.
/// \param[in] _physicsEngine The type of physics engine to use.
public: void LinearAngularAltimeterSensorCheck(
const std::string &_physicsEngine);
};
// An altitude sensor
static std::string altSensorString =
"<sdf version='1.5'>"
" <sensor name='altimeter' type='altimeter'>"
" <always_on>1</always_on>"
" <update_rate>10.0</update_rate>"
" <altimeter>"
" </altimeter>"
" </sensor>"
"</sdf>";
/////////////////////////////////////////////////
void AltimeterSensor_TEST::BasicAltimeterSensorCheck(
const std::string &_physicsEngine)
{
Load("worlds/empty.world", false, _physicsEngine);
sensors::SensorManager *mgr = sensors::SensorManager::Instance();
physics::WorldPtr world = physics::get_world("default");
sdf::ElementPtr sdf(new sdf::Element);
sdf::initFile("sensor.sdf", sdf);
sdf::readString(altSensorString, sdf);
// Create the altimeter sensor
std::string sensorName = mgr->CreateSensor(sdf, "default",
"ground_plane::link", 0);
// Make sure the returned sensor name is correct
EXPECT_EQ(sensorName,
std::string("default::ground_plane::link::altimeter"));
// Update the sensor manager so that it can process new sensors.
mgr->Update();
// Get a pointer to the altimeter sensor
sensors::AltimeterSensorPtr sensor =
std::dynamic_pointer_cast<sensors::AltimeterSensor>
(mgr->GetSensor(sensorName));
// Make sure the above dynamic cast worked.
EXPECT_TRUE(sensor != NULL);
// By default the altitude of the sensor should be zero
EXPECT_DOUBLE_EQ(sensor->Altitude(), 0.0);
EXPECT_DOUBLE_EQ(sensor->VerticalVelocity(), 0.0);
}
/////////////////////////////////////////////////
// Check linear velocity is correct
void AltimeterSensor_TEST::LinearAltimeterSensorCheck(
const std::string &_physicsEngine)
{
Load("worlds/empty.world", true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
// Spawn an altimeter
std::string modelName = "altModel";
std::string altSensorName = "altSensor";
ignition::math::Pose3d modelPose(0, 0, 10, 0, 0, 0);
std::string topic = "~/" + altSensorName + "_" + _physicsEngine;
SpawnUnitAltimeterSensor(modelName, altSensorName,
"box", topic, modelPose.Pos(), modelPose.Rot().Euler());
// Get the altimeter
sensors::SensorPtr sensor = sensors::get_sensor("altSensor");
sensors::AltimeterSensorPtr altSensor =
std::dynamic_pointer_cast<sensors::AltimeterSensor>(sensor);
ASSERT_TRUE(altSensor != NULL);
sensors::SensorManager::Instance()->Init();
altSensor->SetActive(true);
int steps = 10;
world->Step(steps);
altSensor->Update(true);
// The altimeter should have a velocity of v = g * dt
EXPECT_FLOAT_EQ(altSensor->VerticalVelocity(),
physics->GetGravity().z * (physics->GetMaxStepSize()*steps));
}
/////////////////////////////////////////////////
// Check rotational velocity is correct
void AltimeterSensor_TEST::AngularAltimeterSensorCheck(
const std::string &_physicsEngine)
{
Load("worlds/test_altimeter_rotation.world", true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
physics::ModelPtr model = world->GetModel("model");
ASSERT_TRUE(model != NULL);
physics::JointPtr joint = model->GetJoint("joint");
ASSERT_TRUE(joint != NULL);
sensors::SensorPtr sensor = sensors::get_sensor("altimeter");
sensors::AltimeterSensorPtr altSensor =
std::dynamic_pointer_cast<sensors::AltimeterSensor>(sensor);
ASSERT_TRUE(altSensor != NULL);
sensors::SensorManager::Instance()->Init();
altSensor->SetActive(true);
int steps = 1;
world->Step(steps);
altSensor->Update(true);
// Get the link's angular velocity
ignition::math::Vector3d avel =
model->GetLink("link")->GetRelativeAngularVel().Ign();
// Expect the altimeter's velocity to equal the angular velocity at the
// end of the rod.
EXPECT_NEAR(altSensor->VerticalVelocity(), avel.Sum() * 10, 1e-3);
}
/////////////////////////////////////////////////
// Check angular and linear velocity is correct
void AltimeterSensor_TEST::LinearAngularAltimeterSensorCheck(
const std::string &_physicsEngine)
{
Load("worlds/test_altimeter_linear_angular.world", true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
physics::ModelPtr model = world->GetModel("model");
ASSERT_TRUE(model != NULL);
physics::JointPtr joint = model->GetJoint("joint");
ASSERT_TRUE(joint != NULL);
sensors::SensorPtr sensor = sensors::get_sensor("altimeter");
sensors::AltimeterSensorPtr altSensor =
std::dynamic_pointer_cast<sensors::AltimeterSensor>(sensor);
ASSERT_TRUE(altSensor != NULL);
sensors::SensorManager::Instance()->Init();
altSensor->SetActive(true);
int steps = 10;
world->Step(steps);
altSensor->Update(true);
// Angular velocity of the rod
ignition::math::Vector3d avel =
model->GetLink("link")->GetRelativeAngularVel().Ign();
// Linear velocity of the rod at the location that is attached to
// the prismatic joint.
ignition::math::Vector3d lvel =
model->GetLink("link")->GetWorldLinearVel(
ignition::math::Vector3d(0, -5, 0)).Ign();
// Expect the altimeter's velocity to equal the angular velocity at the
// end of the rod + the rod's linear velocity.
EXPECT_NEAR(altSensor->VerticalVelocity(),
avel.Sum() * 10 + lvel.Z(), 1e-4);
}
/////////////////////////////////////////////////
// If inserted at X=0,Y=0,Z=10m
void AltimeterSensor_TEST::NonzeroAltimeterSensorCheck(
const std::string &_physicsEngine)
{
Load("worlds/empty.world", true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != NULL);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != NULL);
EXPECT_EQ(physics->GetType(), _physicsEngine);
// Spawn an altimeter sensor at a height of 10m
std::string modelName = "altModel";
std::string altSensorName = "altSensor";
ignition::math::Pose3d modelPose(0, 0, 10, 0, 0, 0);
std::string topic = "~/" + altSensorName + "_" + _physicsEngine;
SpawnUnitAltimeterSensor(modelName, altSensorName,
"box", topic, modelPose.Pos(), modelPose.Rot().Euler());
sensors::SensorPtr sensor = sensors::get_sensor(altSensorName);
sensors::AltimeterSensorPtr altSensor =
std::dynamic_pointer_cast<sensors::AltimeterSensor>(sensor);
ASSERT_TRUE(altSensor != NULL);
sensors::SensorManager::Instance()->Init();
altSensor->SetActive(true);
// Check for match
EXPECT_DOUBLE_EQ(altSensor->ReferenceAltitude(), 10.0);
EXPECT_DOUBLE_EQ(altSensor->Altitude(), 0.0);
EXPECT_DOUBLE_EQ(altSensor->VerticalVelocity(), 0.0);
}
/////////////////////////////////////////////////
TEST_P(AltimeterSensor_TEST, BasicAltimeterSensorCheck)
{
BasicAltimeterSensorCheck(GetParam());
}
/////////////////////////////////////////////////
TEST_P(AltimeterSensor_TEST, LinearAltimeterSensorCheck)
{
LinearAltimeterSensorCheck(GetParam());
}
/////////////////////////////////////////////////
TEST_P(AltimeterSensor_TEST, AngularAltimeterSensorCheck)
{
AngularAltimeterSensorCheck(GetParam());
}
/////////////////////////////////////////////////
TEST_P(AltimeterSensor_TEST, LinearAngularAltimeterSensorCheck)
{
LinearAngularAltimeterSensorCheck(GetParam());
}
/////////////////////////////////////////////////
TEST_P(AltimeterSensor_TEST, NonzeroAltimeterSensorCheck)
{
NonzeroAltimeterSensorCheck(GetParam());
}
INSTANTIATE_TEST_CASE_P(PhysicsEngines, AltimeterSensor_TEST,
PHYSICS_ENGINE_VALUES);
/////////////////////////////////////////////////
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}