pxmlw6n2f/Gazebo_Distributed_MPI/gazebo/sensors/Noise_TEST.cc

382 lines
12 KiB
C++

/*
* Copyright (C) 2012 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <gtest/gtest.h>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/mean.hpp>
#include <boost/accumulators/statistics/variance.hpp>
#include <boost/bind.hpp>
#include <ignition/math/Rand.hh>
#include "gazebo/sensors/Noise.hh"
#include "gazebo/sensors/GaussianNoiseModel.hh"
#include "test/util.hh"
using namespace gazebo;
class NoiseTest : public gazebo::testing::AutoLogFixture { };
const unsigned int g_applyCount = 100;
// We will use 5 sigma (4e-5 chance of failure)
const double g_sigma = 5.0;
////////////////////////////////////////////////////////////////
// Helper function that constructs sdf strings for noise element
sdf::ElementPtr NoiseSdf(const std::string &_type, double _mean,
double _stddev, double _biasMean, double _biasStddev, double _precision)
{
std::ostringstream noiseStream;
noiseStream << "<sdf version='1.4'>"
<< " <noise type='" << _type << "'>"
<< " <mean>" << _mean << "</mean>"
<< " <stddev>" << _stddev << "</stddev>"
<< " <bias_mean>" << _biasMean << "</bias_mean>"
<< " <bias_stddev>" << _biasStddev << "</bias_stddev>"
<< " <precision>" << _precision << "</precision>"
<< " </noise>"
<< "</sdf>";
sdf::ElementPtr sdf(new sdf::Element);
sdf::initFile("noise.sdf", sdf);
sdf::readString(noiseStream.str(), sdf);
return sdf;
}
//////////////////////////////////////////////////
// Test constructor
TEST_F(NoiseTest, Constructor)
{
// Construct and nothing else
{
sensors::Noise noise(sensors::Noise::NONE);
}
// Construct and initialize
{
sensors::Noise noise(sensors::Noise::NONE);
noise.Load(NoiseSdf("none", 0, 0, 0, 0, 0));
}
}
//////////////////////////////////////////////////
// Test noise types
TEST_F(NoiseTest, Types)
{
// NONE type
{
sensors::NoisePtr noise =
sensors::NoiseFactory::NewNoiseModel(NoiseSdf("none", 0, 0, 0, 0, 0));
EXPECT_EQ(noise->GetNoiseType(), sensors::Noise::NONE);
}
// GAUSSIAN type
{
sensors::NoisePtr noise =
sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian", 0, 0, 0, 0, 0));
EXPECT_EQ(noise->GetNoiseType(), sensors::Noise::GAUSSIAN);
}
// GAUSSIAN_QUANTIZED type
{
sensors::NoisePtr noise =
sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian_quantized", 0, 0, 0, 0, 0));
EXPECT_EQ(noise->GetNoiseType(), sensors::Noise::GAUSSIAN);
}
}
//////////////////////////////////////////////////
// Helper function for testing no noise
void NoNoise(sensors::NoisePtr _noise, unsigned int _count)
{
// Expect no change in input value
for (unsigned int i = 0; i < _count; ++i)
{
double x = ignition::math::Rand::DblUniform(-1e6, 1e6);
EXPECT_NEAR(x, _noise->Apply(x), 1e-6);
}
}
//////////////////////////////////////////////////
// Helper function for testing Gaussian noise
void GaussianNoise(sensors::NoisePtr _noise, unsigned int _count)
{
sensors::GaussianNoiseModelPtr noiseModel =
std::dynamic_pointer_cast<sensors::GaussianNoiseModel>(_noise);
ASSERT_TRUE(noiseModel != NULL);
// Use constant input and repeatedly add noise to it.
double x = 42.0;
// boost code from http://stackoverflow.com/questions/3534335
boost::accumulators::accumulator_set<double,
boost::accumulators::stats<boost::accumulators::tag::mean,
boost::accumulators::tag::variance > > acc;
for (unsigned int i = 0; i < _count; ++i)
{
double y = _noise->Apply(x);
acc(y);
}
// The sample mean should be near x+mean, with standard deviation of
// stddev / sqrt(_count)
// https://onlinecourses.science.psu.edu/stat414/node/167
// We will use 5 sigma (4e-5 chance of failure)
double mean = noiseModel->GetMean() + noiseModel->GetBias();
double stddev = noiseModel->GetStdDev();
double sampleStdDev = g_sigma*stddev / sqrt(_count);
EXPECT_NEAR(boost::accumulators::mean(acc), x+mean, sampleStdDev);
// The sample variance has the following variance:
// 2 stddev^4 / (_count - 1)
// en.wikipedia.org/wiki/Variance#Distribution_of_the_sample_variance
// Again use 5 sigma
double variance = stddev*stddev;
double sampleVariance2 = 2 * variance*variance / (_count - 1);
EXPECT_NEAR(boost::accumulators::variance(acc),
variance, g_sigma*sqrt(sampleVariance2));
}
//////////////////////////////////////////////////
// Test noise application
TEST_F(NoiseTest, ApplyNone)
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("none", 0, 0, 0, 0, 0));
NoNoise(noise, g_applyCount);
}
TEST_F(NoiseTest, ApplyGaussian)
{
double mean, stddev, biasMean, biasStddev;
// GAUSSIAN with zero means and standard deviations
// should be the same as NONE
mean = 0.0;
stddev = 0.0;
biasMean = 0.0;
biasStddev = 0.0;
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian", mean, stddev, biasMean, biasStddev, 0));
NoNoise(noise, g_applyCount);
}
// GAUSSIAN with non-zero means and standard deviations, but no bias
mean = 10.0;
stddev = 5.0;
biasMean = 0.0;
biasStddev = 0.0;
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian", mean, stddev, biasMean, biasStddev, 0));
sensors::GaussianNoiseModelPtr gaussianNoise =
std::dynamic_pointer_cast<sensors::GaussianNoiseModel>(noise);
EXPECT_NEAR(gaussianNoise->GetBias(), 0.0, 1e-6);
GaussianNoise(noise, g_applyCount);
}
// GAUSSIAN with non-zero mean, exact bias, and standard deviations
mean = 10.0;
stddev = 5.0;
biasMean = 100.0;
biasStddev = 0.0;
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian", mean, stddev, biasMean, biasStddev, 0));
GaussianNoise(noise, g_applyCount);
}
// Test bias generation
mean = 0.0;
stddev = 0.0;
biasMean = 0.0;
biasStddev = 5.0;
{
boost::accumulators::accumulator_set<double,
boost::accumulators::stats<boost::accumulators::tag::mean,
boost::accumulators::tag::variance > > acc;
for (unsigned int i = 0; i < g_applyCount; ++i)
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian", mean, stddev, biasMean, biasStddev, 0));
sensors::GaussianNoiseModelPtr gaussianNoise =
std::dynamic_pointer_cast<sensors::GaussianNoiseModel>(noise);
acc(gaussianNoise->GetBias());
}
// See comments in GaussianNoise function to explain these calculations.
double sampleStdDev = g_sigma*biasStddev / sqrt(g_applyCount);
EXPECT_NEAR(boost::accumulators::mean(acc), 0.0, sampleStdDev);
double variance = biasStddev*biasStddev;
double sampleVariance2 = 2 * variance*variance / (g_applyCount - 1);
EXPECT_NEAR(boost::accumulators::variance(acc),
variance, g_sigma*sqrt(sampleVariance2));
}
}
TEST_F(NoiseTest, ApplyGaussianQuantized)
{
double mean, stddev, biasMean, biasStddev, precision;
// GAUSSIAN_QUANTIZED with zero means and standard deviations
// should be the same as NONE
mean = 0.0;
stddev = 0.0;
biasMean = 0.0;
biasStddev = 0.0;
precision = 0.0;
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian_quantized", mean, stddev, biasMean,
biasStddev, precision));
NoNoise(noise, g_applyCount);
}
// GAUSSIAN_QUANTIZED with non-zero means and standard deviations,
// but no bias or precision
mean = 10.0;
stddev = 5.0;
biasMean = 0.0;
biasStddev = 0.0;
precision = 0.0;
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian_quantized", mean, stddev, biasMean,
biasStddev, precision));
sensors::GaussianNoiseModelPtr gaussianNoise =
std::dynamic_pointer_cast<sensors::GaussianNoiseModel>(noise);
EXPECT_NEAR(gaussianNoise->GetBias(), 0.0, 1e-6);
GaussianNoise(noise, g_applyCount);
}
// GAUSSIAN with non-zero mean, exact bias, and standard deviations
// no precision specified
mean = 10.0;
stddev = 5.0;
biasMean = 100.0;
biasStddev = 0.0;
precision = 0.0;
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian_quantized", mean, stddev, biasMean,
biasStddev, precision));
GaussianNoise(noise, g_applyCount);
}
// Test bias generation
mean = 0.0;
stddev = 0.0;
biasMean = 0.0;
biasStddev = 5.0;
precision = 0.0;
{
boost::accumulators::accumulator_set<double,
boost::accumulators::stats<boost::accumulators::tag::mean,
boost::accumulators::tag::variance > > acc;
for (unsigned int i = 0; i < g_applyCount; ++i)
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian_quantized", mean, stddev, biasMean,
biasStddev, precision));
sensors::GaussianNoiseModelPtr gaussianNoise =
std::dynamic_pointer_cast<sensors::GaussianNoiseModel>(noise);
acc(gaussianNoise->GetBias());
}
// See comments in GaussianNoise function to explain these calculations.
double sampleStdDev = g_sigma*biasStddev / sqrt(g_applyCount);
EXPECT_NEAR(boost::accumulators::mean(acc), 0.0, sampleStdDev);
double variance = biasStddev*biasStddev;
double sampleVariance2 = 2 * variance*variance / (g_applyCount - 1);
EXPECT_NEAR(boost::accumulators::variance(acc),
variance, g_sigma*sqrt(sampleVariance2));
}
// Test precision
mean = 0.0;
stddev = 0.0;
biasMean = 0.0;
biasStddev = 0.0;
precision = 0.3;
{
sensors::NoisePtr noise = sensors::NoiseFactory::NewNoiseModel(
NoiseSdf("gaussian_quantized", mean, stddev, biasMean,
biasStddev, precision));
EXPECT_NEAR(noise->Apply(0.32), 0.3, 1e-6);
EXPECT_NEAR(noise->Apply(0.31), 0.3, 1e-6);
EXPECT_NEAR(noise->Apply(0.30), 0.3, 1e-6);
EXPECT_NEAR(noise->Apply(0.29), 0.3, 1e-6);
EXPECT_NEAR(noise->Apply(0.28), 0.3, 1e-6);
EXPECT_NEAR(noise->Apply(-12.92), -12.9, 1e-6);
EXPECT_NEAR(noise->Apply(-12.91), -12.9, 1e-6);
EXPECT_NEAR(noise->Apply(-12.90), -12.9, 1e-6);
EXPECT_NEAR(noise->Apply(-12.89), -12.9, 1e-6);
EXPECT_NEAR(noise->Apply(-12.88), -12.9, 1e-6);
}
}
//////////////////////////////////////////////////
// Callback function for applying custom noise
double OnApplyCustomNoise(double _in)
{
return _in*2;
}
TEST_F(NoiseTest, OnApplyNoise)
{
// Verify that the custom callback function is called if noise type is
// set to CUSTOM
sensors::NoisePtr noise(new sensors::Noise(sensors::Noise::CUSTOM));
ASSERT_TRUE(noise != NULL);
EXPECT_TRUE(noise->GetNoiseType() == sensors::Noise::CUSTOM);
noise->SetCustomNoiseCallback(
boost::bind(&OnApplyCustomNoise, _1));
for (double i = 0; i < 100; i += 1)
{
double value = noise->Apply(i);
EXPECT_DOUBLE_EQ(value, i*2);
}
}
/////////////////////////////////////////////////
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}