pxmlw6n2f/Gazebo_Distributed_MPI/test/integration/speed_thread_islands.cc

184 lines
5.8 KiB
C++

/*
* Copyright (C) 2017 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include "gazebo/test/ServerFixture.hh"
#include "gazebo/common/Timer.hh"
#include "gazebo/physics/physics.hh"
#include "gazebo/test/helper_physics_generator.hh"
using namespace gazebo;
class SpeedThreadIslandsTest : public ServerFixture,
public testing::WithParamInterface<const char*>
{
/// \brief Load a world file and test the thread speedup using _threads
/// Unthrottle update rate, set island threads, and check
/// changes in required computational time.
/// \param[in] _physicsEngine Type of physics engine to use.
/// \param[in] _solverType Type of solver to use.
/// \param[in] _worldFile The world file to load into physics engine.
/// \param[in] _threads The number of threads to use for speedup test.
/// \param[in] _warmUpSteps The numebr of warm up simulation steps.
public: void ThreadSpeedup(const std::string &_physicsEngine,
const std::string &_solverType,
const std::string &_worldFile,
const int _threads,
const int _warmUpSteps);
};
/////////////////////////////////////////////////
// copied from speed_thread_pr2.cc
// Get timing information from World::Step()
// \param[in] _world Pointer to the world
// \param[in] _steps Number of steps to run
// \param[out] _avgTime Average duration of a World::Step
// \param[out] _maxTime Max duration of a World::Step
// \param[out] _minTime Min duration of a World::Step
void Stats(physics::WorldPtr _world, const int _steps, common::Time &_avgTime,
common::Time &_maxTime, common::Time &_minTime)
{
common::Timer timer;
common::Time timeLap = common::Time::Zero;
_avgTime = common::Time::Zero;
_maxTime = common::Time::Zero;
_minTime.Set(GZ_INT32_MAX, 0);
int repetitions = 3;
int steps = _steps;
for (int i = 0; i < repetitions; ++i)
{
// Time the world for 5000 iterations
timer.Reset();
timer.Start();
_world->Step(steps);
timer.Stop();
timeLap = timer.GetElapsed();
_avgTime += timeLap;
if (timeLap >= _maxTime)
_maxTime = timeLap;
if (timeLap <= _minTime)
_minTime = timeLap;
}
_avgTime = _avgTime.Double() / repetitions;
}
////////////////////////////////////////////////////////////////////////
void SpeedThreadIslandsTest::ThreadSpeedup(const std::string &_physicsEngine,
const std::string &_solverType,
const std::string &_worldFile,
const int _threads,
const int _warmUpSteps)
{
// Load world
Load(_worldFile, true, _physicsEngine);
physics::WorldPtr world = physics::get_world("default");
ASSERT_TRUE(world != nullptr);
// Verify physics engine type
physics::PhysicsEnginePtr physics = world->GetPhysicsEngine();
ASSERT_TRUE(physics != nullptr);
EXPECT_EQ(physics->GetType(), _physicsEngine);
// Set solver type and unthrottle update rate
physics->SetParam("solver_type", _solverType);
if (_solverType == "world")
{
physics->SetParam("ode_quiet", true);
}
physics->SetRealTimeUpdateRate(0.0);
// Expect no island threads by default
{
int threads;
EXPECT_NO_THROW(
threads = boost::any_cast<int>(physics->GetParam("island_threads")));
EXPECT_EQ(0, threads);
}
// Take some steps to warm up.
world->Step(_warmUpSteps);
// Collect base-line statistics (no threading)
common::Time baseAvgTime, baseMaxTime, baseMinTime;
Stats(world, 10*_warmUpSteps, baseAvgTime, baseMaxTime, baseMinTime);
std::cout << "Base Time\n";
std::cout << "\t Avg[" << baseAvgTime << "]\n"
<< "\t Max[" << baseMaxTime << "]\n"
<< "\t Min[" << baseMinTime << "]\n";
// Turn on island threads
{
int threads;
physics->SetParam("island_threads", _threads);
EXPECT_NO_THROW(
threads = boost::any_cast<int>(physics->GetParam("island_threads")));
EXPECT_EQ(_threads, threads);
}
// Take some steps to warm up.
world->Step(_warmUpSteps);
// Collect threaded statistics
common::Time threadAvgTime, threadMaxTime, threadMinTime;
Stats(world, 10*_warmUpSteps, threadAvgTime, threadMaxTime, threadMinTime);
std::cout << "Thread Time\n";
std::cout << "\t Avg[" << threadAvgTime << "]\n"
<< "\t Max[" << threadMaxTime << "]\n"
<< "\t Min[" << threadMinTime << "]\n";
// Expect best-case computational time to decrease
EXPECT_LT(threadMinTime, baseMinTime);
}
TEST_F(SpeedThreadIslandsTest, MultiplePendulumQuickStep)
{
ThreadSpeedup("ode", "quick",
"worlds/revolute_joint_test_with_large_gap.world", 4, 500);
}
// this test fails on macOS, see issue #2364
#ifndef __APPLE__
TEST_F(SpeedThreadIslandsTest, MultiplePendulumWorldStep)
{
ThreadSpeedup("ode", "world",
"worlds/revolute_joint_test_with_large_gap.world", 4, 500);
}
#endif
TEST_F(SpeedThreadIslandsTest, DualPR2QuickStep)
{
ThreadSpeedup("ode", "quick", "worlds/dual_pr2.world", 2, 50);
}
TEST_F(SpeedThreadIslandsTest, DualPR2WorldStep)
{
ThreadSpeedup("ode", "world", "worlds/dual_pr2.world", 2, 50);
}
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}