pxmlw6n2f/Gazebo_Distributed_TCP/gazebo/math/Kmeans.cc

169 lines
4.3 KiB
C++

/*
* Copyright (C) 2014 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <algorithm>
#include <iostream>
#include <vector>
#include "gazebo/math/Kmeans.hh"
#include "gazebo/math/Rand.hh"
#include "gazebo/math/Vector3.hh"
using namespace gazebo;
using namespace math;
//////////////////////////////////////////////////
Kmeans::Kmeans(const std::vector<Vector3> &_obs)
{
this->Observations(_obs);
}
//////////////////////////////////////////////////
Kmeans::~Kmeans()
{
}
//////////////////////////////////////////////////
std::vector<Vector3> Kmeans::Observations() const
{
return this->obs;
}
//////////////////////////////////////////////////
bool Kmeans::Observations(const std::vector<Vector3> &_obs)
{
if (_obs.empty())
{
std::cerr << "Kmeans::SetObservations() error: Observations vector is empty"
<< std::endl;
return false;
}
this->obs = _obs;
return true;
}
//////////////////////////////////////////////////
bool Kmeans::AppendObservations(const std::vector<Vector3> &_obs)
{
if (_obs.empty())
{
std::cerr << "Kmeans::AppendObservations() error: input vector is empty"
<< std::endl;
return false;
}
this->obs.insert(this->obs.end(), _obs.begin(), _obs.end());
return true;
}
//////////////////////////////////////////////////
bool Kmeans::Cluster(int _k,
std::vector<Vector3> &_centroids,
std::vector<unsigned int> &_labels)
{
// Sanity check.
if (this->obs.empty())
{
std::cerr << "Kmeans error: The set of observations is empty" << std::endl;
return false;
}
if (_k <= 0)
{
std::cerr << "Kmeans error: The number of clusters has to"
<< " be positive but its value is [" << _k << "]"
<< std::endl;
return false;
}
if (_k > static_cast<int>(this->obs.size()))
{
std::cerr << "Kmeans error: The number of clusters [" << _k << "] has to be"
<< " lower or equal to the number of observations ["
<< this->obs.size() << "]" << std::endl;
return false;
}
size_t changed = 0;
// Initialize the size of the vectors;
this->centroids.clear();
this->labels.resize(this->obs.size());
this->sums.resize(_k);
this->counters.resize(_k);
for (int i = 0; i < _k; ++i)
{
// Choose a random observation and make sure it has not been chosen before.
// Note: This is not really random but it's faster than choosing a random
// one and verifying that it was not taken before.
this->centroids.push_back(this->obs[i]);
}
// Initialize labels.
for (size_t i = 0; i < this->obs.size(); ++i)
this->labels[i] = 0;
do
{
// Reset sums and counters.
for (size_t i = 0; i < this->centroids.size(); ++i)
{
this->sums[i] = Vector3::Zero;
this->counters[i] = 0;
}
changed = 0;
for (size_t i = 0; i < this->obs.size(); ++i)
{
// Update the labels containing the closest centroid for each point.
unsigned int label = this->ClosestCentroid(this->obs[i]);
if (this->labels[i] != label)
{
this->labels[i] = label;
changed++;
}
this->sums[label] += this->obs[i];
this->counters[label]++;
}
// Update the centroids.
for (size_t i = 0; i < this->centroids.size(); ++i)
this->centroids[i] = this->sums[i] / this->counters[i];
}
while (changed > (this->obs.size() >> 10));
_centroids = this->centroids;
_labels = this->labels;
return true;
}
//////////////////////////////////////////////////
unsigned int Kmeans::ClosestCentroid(const Vector3 &_p) const
{
double min = HUGE_VAL;
unsigned int minIdx = 0;
for (size_t i = 0; i < this->centroids.size(); ++i)
{
double d = _p.Distance(this->centroids[i]);
if (d < min)
{
min = d;
minIdx = i;
}
}
return minIdx;
}