169 lines
4.3 KiB
C++
169 lines
4.3 KiB
C++
/*
|
|
* Copyright (C) 2014 Open Source Robotics Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include "gazebo/math/Kmeans.hh"
|
|
#include "gazebo/math/Rand.hh"
|
|
#include "gazebo/math/Vector3.hh"
|
|
|
|
using namespace gazebo;
|
|
using namespace math;
|
|
|
|
//////////////////////////////////////////////////
|
|
Kmeans::Kmeans(const std::vector<Vector3> &_obs)
|
|
{
|
|
this->Observations(_obs);
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
Kmeans::~Kmeans()
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
std::vector<Vector3> Kmeans::Observations() const
|
|
{
|
|
return this->obs;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
bool Kmeans::Observations(const std::vector<Vector3> &_obs)
|
|
{
|
|
if (_obs.empty())
|
|
{
|
|
std::cerr << "Kmeans::SetObservations() error: Observations vector is empty"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
this->obs = _obs;
|
|
return true;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
bool Kmeans::AppendObservations(const std::vector<Vector3> &_obs)
|
|
{
|
|
if (_obs.empty())
|
|
{
|
|
std::cerr << "Kmeans::AppendObservations() error: input vector is empty"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
this->obs.insert(this->obs.end(), _obs.begin(), _obs.end());
|
|
return true;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
bool Kmeans::Cluster(int _k,
|
|
std::vector<Vector3> &_centroids,
|
|
std::vector<unsigned int> &_labels)
|
|
{
|
|
// Sanity check.
|
|
if (this->obs.empty())
|
|
{
|
|
std::cerr << "Kmeans error: The set of observations is empty" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (_k <= 0)
|
|
{
|
|
std::cerr << "Kmeans error: The number of clusters has to"
|
|
<< " be positive but its value is [" << _k << "]"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (_k > static_cast<int>(this->obs.size()))
|
|
{
|
|
std::cerr << "Kmeans error: The number of clusters [" << _k << "] has to be"
|
|
<< " lower or equal to the number of observations ["
|
|
<< this->obs.size() << "]" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
size_t changed = 0;
|
|
|
|
// Initialize the size of the vectors;
|
|
this->centroids.clear();
|
|
this->labels.resize(this->obs.size());
|
|
this->sums.resize(_k);
|
|
this->counters.resize(_k);
|
|
|
|
for (int i = 0; i < _k; ++i)
|
|
{
|
|
// Choose a random observation and make sure it has not been chosen before.
|
|
// Note: This is not really random but it's faster than choosing a random
|
|
// one and verifying that it was not taken before.
|
|
this->centroids.push_back(this->obs[i]);
|
|
}
|
|
|
|
// Initialize labels.
|
|
for (size_t i = 0; i < this->obs.size(); ++i)
|
|
this->labels[i] = 0;
|
|
|
|
do
|
|
{
|
|
// Reset sums and counters.
|
|
for (size_t i = 0; i < this->centroids.size(); ++i)
|
|
{
|
|
this->sums[i] = Vector3::Zero;
|
|
this->counters[i] = 0;
|
|
}
|
|
changed = 0;
|
|
|
|
for (size_t i = 0; i < this->obs.size(); ++i)
|
|
{
|
|
// Update the labels containing the closest centroid for each point.
|
|
unsigned int label = this->ClosestCentroid(this->obs[i]);
|
|
if (this->labels[i] != label)
|
|
{
|
|
this->labels[i] = label;
|
|
changed++;
|
|
}
|
|
this->sums[label] += this->obs[i];
|
|
this->counters[label]++;
|
|
}
|
|
|
|
// Update the centroids.
|
|
for (size_t i = 0; i < this->centroids.size(); ++i)
|
|
this->centroids[i] = this->sums[i] / this->counters[i];
|
|
}
|
|
while (changed > (this->obs.size() >> 10));
|
|
|
|
_centroids = this->centroids;
|
|
_labels = this->labels;
|
|
return true;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
unsigned int Kmeans::ClosestCentroid(const Vector3 &_p) const
|
|
{
|
|
double min = HUGE_VAL;
|
|
unsigned int minIdx = 0;
|
|
for (size_t i = 0; i < this->centroids.size(); ++i)
|
|
{
|
|
double d = _p.Distance(this->centroids[i]);
|
|
if (d < min)
|
|
{
|
|
min = d;
|
|
minIdx = i;
|
|
}
|
|
}
|
|
return minIdx;
|
|
}
|