242 lines
7.8 KiB
C++
242 lines
7.8 KiB
C++
/*
|
|
* Copyright (C) 2012 Open Source Robotics Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
*/
|
|
#ifdef _WIN32
|
|
// Ensure that Winsock2.h is included before Windows.h, which can get
|
|
// pulled in by anybody (e.g., Boost).
|
|
#include <Winsock2.h>
|
|
#endif
|
|
|
|
#include <ignition/math/Helpers.hh>
|
|
#include <ignition/math/Rand.hh>
|
|
|
|
#include "gazebo/common/Assert.hh"
|
|
#include "gazebo/common/Console.hh"
|
|
#include "gazebo/rendering/ogre_gazebo.h"
|
|
#include "gazebo/rendering/Camera.hh"
|
|
#include "gazebo/sensors/GaussianNoiseModel.hh"
|
|
|
|
namespace gazebo
|
|
{
|
|
// We'll create an instance of this class for each camera, to be used to
|
|
// inject random values on each render call.
|
|
class GaussianNoiseCompositorListener
|
|
: public Ogre::CompositorInstance::Listener
|
|
{
|
|
/// \brief Constructor, setting mean and standard deviation.
|
|
public: GaussianNoiseCompositorListener(double _mean, double _stddev):
|
|
mean(_mean), stddev(_stddev) {}
|
|
|
|
/// \brief Callback that OGRE will invoke for us on each render call
|
|
/// \param[in] _passID OGRE material pass ID.
|
|
/// \param[in] _mat Pointer to OGRE material.
|
|
public: virtual void notifyMaterialRender(unsigned int _passId,
|
|
Ogre::MaterialPtr &_mat)
|
|
{
|
|
GZ_ASSERT(!_mat.isNull(), "Null OGRE material");
|
|
// modify material here (wont alter the base material!), called for
|
|
// every drawn geometry instance (i.e. compositor render_quad)
|
|
|
|
// Sample three values within the range [0,1.0] and set them for use in
|
|
// the fragment shader, which will interpret them as offsets from (0,0)
|
|
// to use when computing pseudo-random values.
|
|
Ogre::Vector3 offsets(ignition::math::Rand::DblUniform(0.0, 1.0),
|
|
ignition::math::Rand::DblUniform(0.0, 1.0),
|
|
ignition::math::Rand::DblUniform(0.0, 1.0));
|
|
// These calls are setting parameters that are declared in two places:
|
|
// 1. media/materials/scripts/gazebo.material, in
|
|
// fragment_program Gazebo/GaussianCameraNoiseFS
|
|
// 2. media/materials/scripts/camera_noise_gaussian_fs.glsl
|
|
Ogre::Technique *technique = _mat->getTechnique(0);
|
|
GZ_ASSERT(technique, "Null OGRE material technique");
|
|
Ogre::Pass *pass = technique->getPass(_passId);
|
|
GZ_ASSERT(pass, "Null OGRE material pass");
|
|
Ogre::GpuProgramParametersSharedPtr params =
|
|
pass->getFragmentProgramParameters();
|
|
GZ_ASSERT(!params.isNull(), "Null OGRE material GPU parameters");
|
|
|
|
params->setNamedConstant("offsets", offsets);
|
|
params->setNamedConstant("mean", static_cast<Ogre::Real>(this->mean));
|
|
params->setNamedConstant("stddev", static_cast<Ogre::Real>(this->stddev));
|
|
}
|
|
|
|
/// \brief Mean that we'll pass down to the GLSL fragment shader.
|
|
private: double mean;
|
|
/// \brief Standard deviation that we'll pass down to the GLSL fragment
|
|
/// shader.
|
|
private: double stddev;
|
|
};
|
|
} // namespace gazebo
|
|
|
|
using namespace gazebo;
|
|
using namespace sensors;
|
|
|
|
//////////////////////////////////////////////////
|
|
GaussianNoiseModel::GaussianNoiseModel()
|
|
: Noise(Noise::GAUSSIAN),
|
|
mean(0.0),
|
|
stdDev(0.0),
|
|
bias(0.0),
|
|
precision(0.0),
|
|
quantized(false)
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
GaussianNoiseModel::~GaussianNoiseModel()
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
void GaussianNoiseModel::Load(sdf::ElementPtr _sdf)
|
|
{
|
|
Noise::Load(_sdf);
|
|
|
|
this->mean = _sdf->Get<double>("mean");
|
|
this->stdDev = _sdf->Get<double>("stddev");
|
|
// Sample the bias
|
|
double biasMean = 0;
|
|
double biasStdDev = 0;
|
|
if (_sdf->HasElement("bias_mean"))
|
|
biasMean = _sdf->Get<double>("bias_mean");
|
|
if (_sdf->HasElement("bias_stddev"))
|
|
biasStdDev = _sdf->Get<double>("bias_stddev");
|
|
this->bias = ignition::math::Rand::DblNormal(biasMean, biasStdDev);
|
|
// With equal probability, we pick a negative bias (by convention,
|
|
// rateBiasMean should be positive, though it would work fine if
|
|
// negative).
|
|
if (ignition::math::Rand::DblUniform() < 0.5)
|
|
this->bias = -this->bias;
|
|
|
|
/// \todo Remove this, and use Noise::Print. See ImuSensor for an example
|
|
gzlog << "applying Gaussian noise model with mean " << this->mean
|
|
<< ", stddev " << this->stdDev
|
|
<< ", bias " << this->bias << std::endl;
|
|
|
|
if (_sdf->HasElement("precision"))
|
|
{
|
|
this->precision = _sdf->Get<double>("precision");
|
|
if (this->precision < 0)
|
|
{
|
|
gzerr << "Noise precision cannot be less than 0" << std::endl;
|
|
}
|
|
else if (!ignition::math::equal(this->precision, 0.0, 1e-6))
|
|
{
|
|
this->quantized = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
void GaussianNoiseModel::Fini()
|
|
{
|
|
Noise::Fini();
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
double GaussianNoiseModel::ApplyImpl(double _in)
|
|
{
|
|
// Add independent (uncorrelated) Gaussian noise to each input value.
|
|
double whiteNoise = ignition::math::Rand::DblNormal(this->mean, this->stdDev);
|
|
double output = _in + this->bias + whiteNoise;
|
|
if (this->quantized)
|
|
{
|
|
// Apply this->precision
|
|
if (!ignition::math::equal(this->precision, 0.0, 1e-6))
|
|
{
|
|
output = std::round(output / this->precision) * this->precision;
|
|
}
|
|
}
|
|
return output;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
double GaussianNoiseModel::GetMean() const
|
|
{
|
|
return this->mean;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
double GaussianNoiseModel::GetStdDev() const
|
|
{
|
|
return this->stdDev;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
double GaussianNoiseModel::GetBias() const
|
|
{
|
|
return this->bias;
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
void GaussianNoiseModel::Print(std::ostream &_out) const
|
|
{
|
|
_out << "Gaussian noise, mean[" << this->mean << "], "
|
|
<< "stdDev[" << this->stdDev << "] "
|
|
<< "bias[" << this->bias << "] "
|
|
<< "precision[" << this->precision << "] "
|
|
<< "quantized[" << this->quantized << "]";
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
ImageGaussianNoiseModel::ImageGaussianNoiseModel()
|
|
: GaussianNoiseModel()
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
ImageGaussianNoiseModel::~ImageGaussianNoiseModel()
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
void ImageGaussianNoiseModel::Load(sdf::ElementPtr _sdf)
|
|
{
|
|
GaussianNoiseModel::Load(_sdf);
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
void ImageGaussianNoiseModel::SetCamera(rendering::CameraPtr _camera)
|
|
{
|
|
GZ_ASSERT(_camera, "Unable to apply gaussian noise, camera is NULL");
|
|
|
|
this->gaussianNoiseCompositorListener.reset(new
|
|
GaussianNoiseCompositorListener(this->mean, this->stdDev));
|
|
|
|
this->gaussianNoiseInstance =
|
|
Ogre::CompositorManager::getSingleton().addCompositor(
|
|
_camera->OgreViewport(), "CameraNoise/Gaussian");
|
|
this->gaussianNoiseInstance->setEnabled(true);
|
|
this->gaussianNoiseInstance->addListener(
|
|
this->gaussianNoiseCompositorListener.get());
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
void ImageGaussianNoiseModel::Fini()
|
|
{
|
|
GaussianNoiseModel::Fini();
|
|
}
|
|
|
|
//////////////////////////////////////////////////
|
|
void ImageGaussianNoiseModel::Print(std::ostream &_out) const
|
|
{
|
|
_out << "Image Gaussian noise, mean[" << this->mean << "], "
|
|
<< "stdDev[" << this->stdDev << "] "
|
|
<< "bias[" << this->bias << "] "
|
|
<< "precision[" << this->precision << "] "
|
|
<< "quantized[" << this->quantized << "]";
|
|
}
|