PulseFocusPlatform/deploy/python/keypoint_infer.py

429 lines
16 KiB
Python
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import yaml
import cv2
import numpy as np
import paddle
from preprocess import preprocess
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
from keypoint_visualize import draw_pose
from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
from infer import get_test_images, print_arguments
# Global dictionary
KEYPOINT_SUPPORT_MODELS = {
'HigherHRNet': 'keypoint_bottomup',
'HRNet': 'keypoint_topdown'
}
class KeyPoint_Detector(object):
"""
Args:
config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
use_gpu (bool): whether use gpu
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
threshold (float): threshold to reserve the result for output.
"""
def __init__(self,
pred_config,
model_dir,
use_gpu=False,
run_mode='fluid',
use_dynamic_shape=False,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False):
self.pred_config = pred_config
self.predictor, self.config = load_predictor(
model_dir,
run_mode=run_mode,
min_subgraph_size=self.pred_config.min_subgraph_size,
use_gpu=use_gpu,
use_dynamic_shape=use_dynamic_shape,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn)
self.det_times = Timer()
self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
def preprocess(self, im):
preprocess_ops = []
for op_info in self.pred_config.preprocess_infos:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
im, im_info = preprocess(im, preprocess_ops)
inputs = create_inputs(im, im_info)
return inputs
def postprocess(self, np_boxes, np_masks, inputs, threshold=0.5):
# postprocess output of predictor
if KEYPOINT_SUPPORT_MODELS[
self.pred_config.arch] == 'keypoint_bottomup':
results = {}
h, w = inputs['im_shape'][0]
preds = [np_boxes]
if np_masks is not None:
preds += np_masks
preds += [h, w]
keypoint_postprocess = HrHRNetPostProcess()
results['keypoint'] = keypoint_postprocess(*preds)
return results
elif KEYPOINT_SUPPORT_MODELS[
self.pred_config.arch] == 'keypoint_topdown':
results = {}
imshape = inputs['im_shape'][:, ::-1]
center = np.round(imshape / 2.)
scale = imshape / 200.
keypoint_postprocess = HRNetPostProcess()
results['keypoint'] = keypoint_postprocess(np_boxes, center, scale)
return results
else:
raise ValueError("Unsupported arch: {}, expect {}".format(
self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))
def predict(self, image, threshold=0.5, warmup=0, repeats=1):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(image)
np_boxes, np_masks = None, None
input_names = self.predictor.get_input_names()
for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
self.det_times.preprocess_time_s.end()
for i in range(warmup):
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
np_boxes = boxes_tensor.copy_to_cpu()
if self.pred_config.tagmap:
masks_tensor = self.predictor.get_output_handle(output_names[1])
heat_k = self.predictor.get_output_handle(output_names[2])
inds_k = self.predictor.get_output_handle(output_names[3])
np_masks = [
masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
inds_k.copy_to_cpu()
]
self.det_times.inference_time_s.start()
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
np_boxes = boxes_tensor.copy_to_cpu()
if self.pred_config.tagmap:
masks_tensor = self.predictor.get_output_handle(output_names[1])
heat_k = self.predictor.get_output_handle(output_names[2])
inds_k = self.predictor.get_output_handle(output_names[3])
np_masks = [
masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
inds_k.copy_to_cpu()
]
self.det_times.inference_time_s.end(repeats=repeats)
self.det_times.postprocess_time_s.start()
results = self.postprocess(
np_boxes, np_masks, inputs, threshold=threshold)
self.det_times.postprocess_time_s.end()
self.det_times.img_num += 1
return results
def create_inputs(im, im_info):
"""generate input for different model type
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
model_arch (str): model type
Returns:
inputs (dict): input of model
"""
inputs = {}
inputs['image'] = np.array((im, )).astype('float32')
inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32')
return inputs
class PredictConfig_KeyPoint():
"""set config of preprocess, postprocess and visualize
Args:
model_dir (str): root path of model.yml
"""
def __init__(self, model_dir):
# parsing Yaml config for Preprocess
deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
self.check_model(yml_conf)
self.arch = yml_conf['arch']
self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
self.preprocess_infos = yml_conf['Preprocess']
self.min_subgraph_size = yml_conf['min_subgraph_size']
self.labels = yml_conf['label_list']
self.tagmap = False
if 'keypoint_bottomup' == self.archcls:
self.tagmap = True
self.print_config()
def check_model(self, yml_conf):
"""
Raises:
ValueError: loaded model not in supported model type
"""
for support_model in KEYPOINT_SUPPORT_MODELS:
if support_model in yml_conf['arch']:
return True
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
'arch'], KEYPOINT_SUPPORT_MODELS))
def print_config(self):
print('----------- Model Configuration -----------')
print('%s: %s' % ('Model Arch', self.arch))
print('%s: ' % ('Transform Order'))
for op_info in self.preprocess_infos:
print('--%s: %s' % ('transform op', op_info['type']))
print('--------------------------------------------')
def load_predictor(model_dir,
run_mode='fluid',
batch_size=1,
use_gpu=False,
min_subgraph_size=3,
use_dynamic_shape=False,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
use_gpu (bool): whether use gpu
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8)
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
Returns:
predictor (PaddlePredictor): AnalysisPredictor
Raises:
ValueError: predict by TensorRT need use_gpu == True.
"""
if not use_gpu and not run_mode == 'fluid':
raise ValueError(
"Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
.format(run_mode, use_gpu))
config = Config(
os.path.join(model_dir, 'model.pdmodel'),
os.path.join(model_dir, 'model.pdiparams'))
precision_map = {
'trt_int8': Config.Precision.Int8,
'trt_fp32': Config.Precision.Float32,
'trt_fp16': Config.Precision.Half
}
if use_gpu:
# initial GPU memory(M), device ID
config.enable_use_gpu(200, 0)
# optimize graph and fuse op
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(cpu_threads)
if enable_mkldnn:
try:
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
except Exception as e:
print(
"The current environment does not support `mkldnn`, so disable mkldnn."
)
pass
if run_mode in precision_map.keys():
config.enable_tensorrt_engine(
workspace_size=1 << 10,
max_batch_size=batch_size,
min_subgraph_size=min_subgraph_size,
precision_mode=precision_map[run_mode],
use_static=False,
use_calib_mode=trt_calib_mode)
if use_dynamic_shape:
min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]}
max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]}
opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]}
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
opt_input_shape)
print('trt set dynamic shape done!')
# disable print log when predict
config.disable_glog_info()
# enable shared memory
config.enable_memory_optim()
# disable feed, fetch OP, needed by zero_copy_run
config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config)
return predictor, config
def predict_image(detector, image_list):
for i, img_file in enumerate(image_list):
if FLAGS.run_benchmark:
detector.predict(img_file, FLAGS.threshold, warmup=10, repeats=10)
cm, gm, gu = get_current_memory_mb()
detector.cpu_mem += cm
detector.gpu_mem += gm
detector.gpu_util += gu
print('Test iter {}, file name:{}'.format(i, img_file))
else:
results = detector.predict(img_file, FLAGS.threshold)
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
draw_pose(
img_file,
results,
visual_thread=FLAGS.threshold,
save_dir=FLAGS.output_dir)
def predict_video(detector, camera_id):
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
video_name = 'output.mp4'
else:
capture = cv2.VideoCapture(FLAGS.video_file)
video_name = os.path.splitext(os.path.basename(FLAGS.video_file))[
0] + '.mp4'
fps = 30
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
# yapf: disable
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# yapf: enable
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
out_path = os.path.join(FLAGS.output_dir, video_name + '.mp4')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
index = 1
while (1):
ret, frame = capture.read()
if not ret:
break
print('detect frame:%d' % (index))
index += 1
results = detector.predict(frame, FLAGS.threshold)
im = draw_pose(
frame, results, visual_thread=FLAGS.threshold, returnimg=True)
writer.write(im)
if camera_id != -1:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
writer.release()
def main():
pred_config = PredictConfig_KeyPoint(FLAGS.model_dir)
detector = KeyPoint_Detector(
pred_config,
FLAGS.model_dir,
use_gpu=FLAGS.use_gpu,
run_mode=FLAGS.run_mode,
use_dynamic_shape=FLAGS.use_dynamic_shape,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn)
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
predict_video(detector, FLAGS.camera_id)
else:
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
predict_image(detector, img_list)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
mems = {
'cpu_rss_mb': detector.cpu_mem / len(img_list),
'gpu_rss_mb': detector.gpu_mem / len(img_list),
'gpu_util': detector.gpu_util * 100 / len(img_list)
}
perf_info = detector.det_times.report(average=True)
model_dir = FLAGS.model_dir
mode = FLAGS.run_mode
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
data_info = {
'batch_size': 1,
'shape': "dynamic_shape",
'data_num': perf_info['img_num']
}
det_log = PaddleInferBenchmark(detector.config, model_info,
data_info, perf_info, mems)
det_log('KeyPoint')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
main()