forked from PulseFocusPlatform/PulseFocusPlatform
208 lines
9.0 KiB
Python
208 lines
9.0 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from paddle import fluid
|
||
|
from paddle.fluid.param_attr import ParamAttr
|
||
|
from ppdet.core.workspace import register, serializable
|
||
|
|
||
|
INF = 1e8
|
||
|
__all__ = ['FCOSLoss']
|
||
|
|
||
|
|
||
|
@register
|
||
|
@serializable
|
||
|
class FCOSLoss(object):
|
||
|
"""
|
||
|
FCOSLoss
|
||
|
Args:
|
||
|
loss_alpha (float): alpha in focal loss
|
||
|
loss_gamma (float): gamma in focal loss
|
||
|
iou_loss_type(str): location loss type, IoU/GIoU/LINEAR_IoU
|
||
|
reg_weights(float): weight for location loss
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
loss_alpha=0.25,
|
||
|
loss_gamma=2.0,
|
||
|
iou_loss_type="IoU",
|
||
|
reg_weights=1.0):
|
||
|
self.loss_alpha = loss_alpha
|
||
|
self.loss_gamma = loss_gamma
|
||
|
self.iou_loss_type = iou_loss_type
|
||
|
self.reg_weights = reg_weights
|
||
|
|
||
|
def __flatten_tensor(self, input, channel_first=False):
|
||
|
"""
|
||
|
Flatten a Tensor
|
||
|
Args:
|
||
|
input (Variables): Input Tensor
|
||
|
channel_first(bool): if true the dimension order of
|
||
|
Tensor is [N, C, H, W], otherwise is [N, H, W, C]
|
||
|
Return:
|
||
|
input_channel_last (Variables): The flattened Tensor in channel_last style
|
||
|
"""
|
||
|
if channel_first:
|
||
|
input_channel_last = fluid.layers.transpose(
|
||
|
input, perm=[0, 2, 3, 1])
|
||
|
else:
|
||
|
input_channel_last = input
|
||
|
input_channel_last = fluid.layers.flatten(input_channel_last, axis=3)
|
||
|
return input_channel_last
|
||
|
|
||
|
def __iou_loss(self, pred, targets, positive_mask, weights=None):
|
||
|
"""
|
||
|
Calculate the loss for location prediction
|
||
|
Args:
|
||
|
pred (Variables): bounding boxes prediction
|
||
|
targets (Variables): targets for positive samples
|
||
|
positive_mask (Variables): mask of positive samples
|
||
|
weights (Variables): weights for each positive samples
|
||
|
Return:
|
||
|
loss (Varialbes): location loss
|
||
|
"""
|
||
|
plw = fluid.layers.elementwise_mul(pred[:, 0], positive_mask, axis=0)
|
||
|
pth = fluid.layers.elementwise_mul(pred[:, 1], positive_mask, axis=0)
|
||
|
prw = fluid.layers.elementwise_mul(pred[:, 2], positive_mask, axis=0)
|
||
|
pbh = fluid.layers.elementwise_mul(pred[:, 3], positive_mask, axis=0)
|
||
|
tlw = fluid.layers.elementwise_mul(targets[:, 0], positive_mask, axis=0)
|
||
|
tth = fluid.layers.elementwise_mul(targets[:, 1], positive_mask, axis=0)
|
||
|
trw = fluid.layers.elementwise_mul(targets[:, 2], positive_mask, axis=0)
|
||
|
tbh = fluid.layers.elementwise_mul(targets[:, 3], positive_mask, axis=0)
|
||
|
tlw.stop_gradient = True
|
||
|
trw.stop_gradient = True
|
||
|
tth.stop_gradient = True
|
||
|
tbh.stop_gradient = True
|
||
|
area_target = (tlw + trw) * (tth + tbh)
|
||
|
area_predict = (plw + prw) * (pth + pbh)
|
||
|
ilw = fluid.layers.elementwise_min(plw, tlw)
|
||
|
irw = fluid.layers.elementwise_min(prw, trw)
|
||
|
ith = fluid.layers.elementwise_min(pth, tth)
|
||
|
ibh = fluid.layers.elementwise_min(pbh, tbh)
|
||
|
clw = fluid.layers.elementwise_max(plw, tlw)
|
||
|
crw = fluid.layers.elementwise_max(prw, trw)
|
||
|
cth = fluid.layers.elementwise_max(pth, tth)
|
||
|
cbh = fluid.layers.elementwise_max(pbh, tbh)
|
||
|
area_inter = (ilw + irw) * (ith + ibh)
|
||
|
ious = (area_inter + 1.0) / (
|
||
|
area_predict + area_target - area_inter + 1.0)
|
||
|
ious = fluid.layers.elementwise_mul(ious, positive_mask, axis=0)
|
||
|
if self.iou_loss_type.lower() == "linear_iou":
|
||
|
loss = 1.0 - ious
|
||
|
elif self.iou_loss_type.lower() == "giou":
|
||
|
area_uniou = area_predict + area_target - area_inter
|
||
|
area_circum = (clw + crw) * (cth + cbh) + 1e-7
|
||
|
giou = ious - (area_circum - area_uniou) / area_circum
|
||
|
loss = 1.0 - giou
|
||
|
elif self.iou_loss_type.lower() == "iou":
|
||
|
loss = 0.0 - fluid.layers.log(ious)
|
||
|
else:
|
||
|
raise KeyError
|
||
|
if weights is not None:
|
||
|
loss = loss * weights
|
||
|
return loss
|
||
|
|
||
|
def __call__(self, cls_logits, bboxes_reg, centerness, tag_labels,
|
||
|
tag_bboxes, tag_center):
|
||
|
"""
|
||
|
Calculate the loss for classification, location and centerness
|
||
|
Args:
|
||
|
cls_logits (list): list of Variables, which is predicted
|
||
|
score for all anchor points with shape [N, M, C]
|
||
|
bboxes_reg (list): list of Variables, which is predicted
|
||
|
offsets for all anchor points with shape [N, M, 4]
|
||
|
centerness (list): list of Variables, which is predicted
|
||
|
centerness for all anchor points with shape [N, M, 1]
|
||
|
tag_labels (list): list of Variables, which is category
|
||
|
targets for each anchor point
|
||
|
tag_bboxes (list): list of Variables, which is bounding
|
||
|
boxes targets for positive samples
|
||
|
tag_center (list): list of Variables, which is centerness
|
||
|
targets for positive samples
|
||
|
Return:
|
||
|
loss (dict): loss composed by classification loss, bounding box
|
||
|
"""
|
||
|
cls_logits_flatten_list = []
|
||
|
bboxes_reg_flatten_list = []
|
||
|
centerness_flatten_list = []
|
||
|
tag_labels_flatten_list = []
|
||
|
tag_bboxes_flatten_list = []
|
||
|
tag_center_flatten_list = []
|
||
|
num_lvl = len(cls_logits)
|
||
|
for lvl in range(num_lvl):
|
||
|
cls_logits_flatten_list.append(
|
||
|
self.__flatten_tensor(cls_logits[num_lvl - 1 - lvl], True))
|
||
|
bboxes_reg_flatten_list.append(
|
||
|
self.__flatten_tensor(bboxes_reg[num_lvl - 1 - lvl], True))
|
||
|
centerness_flatten_list.append(
|
||
|
self.__flatten_tensor(centerness[num_lvl - 1 - lvl], True))
|
||
|
tag_labels_flatten_list.append(
|
||
|
self.__flatten_tensor(tag_labels[lvl], False))
|
||
|
tag_bboxes_flatten_list.append(
|
||
|
self.__flatten_tensor(tag_bboxes[lvl], False))
|
||
|
tag_center_flatten_list.append(
|
||
|
self.__flatten_tensor(tag_center[lvl], False))
|
||
|
|
||
|
cls_logits_flatten = fluid.layers.concat(
|
||
|
cls_logits_flatten_list, axis=0)
|
||
|
bboxes_reg_flatten = fluid.layers.concat(
|
||
|
bboxes_reg_flatten_list, axis=0)
|
||
|
centerness_flatten = fluid.layers.concat(
|
||
|
centerness_flatten_list, axis=0)
|
||
|
tag_labels_flatten = fluid.layers.concat(
|
||
|
tag_labels_flatten_list, axis=0)
|
||
|
tag_bboxes_flatten = fluid.layers.concat(
|
||
|
tag_bboxes_flatten_list, axis=0)
|
||
|
tag_center_flatten = fluid.layers.concat(
|
||
|
tag_center_flatten_list, axis=0)
|
||
|
tag_labels_flatten.stop_gradient = True
|
||
|
tag_bboxes_flatten.stop_gradient = True
|
||
|
tag_center_flatten.stop_gradient = True
|
||
|
|
||
|
mask_positive = tag_labels_flatten > 0
|
||
|
mask_positive.stop_gradient = True
|
||
|
mask_positive_float = fluid.layers.cast(mask_positive, dtype="float32")
|
||
|
mask_positive_float.stop_gradient = True
|
||
|
num_positive_fp32 = fluid.layers.reduce_sum(mask_positive_float)
|
||
|
num_positive_int32 = fluid.layers.cast(num_positive_fp32, dtype="int32")
|
||
|
num_positive_int32 = num_positive_int32 * 0 + 1
|
||
|
num_positive_fp32.stop_gradient = True
|
||
|
num_positive_int32.stop_gradient = True
|
||
|
normalize_sum = fluid.layers.sum(tag_center_flatten)
|
||
|
normalize_sum.stop_gradient = True
|
||
|
normalize_sum = fluid.layers.reduce_sum(mask_positive_float *
|
||
|
normalize_sum)
|
||
|
|
||
|
normalize_sum.stop_gradient = True
|
||
|
cls_loss = fluid.layers.sigmoid_focal_loss(
|
||
|
cls_logits_flatten, tag_labels_flatten,
|
||
|
num_positive_int32) / num_positive_fp32
|
||
|
reg_loss = self.__iou_loss(bboxes_reg_flatten, tag_bboxes_flatten,
|
||
|
mask_positive_float, tag_center_flatten)
|
||
|
reg_loss = fluid.layers.elementwise_mul(
|
||
|
reg_loss, mask_positive_float, axis=0) / normalize_sum
|
||
|
ctn_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
|
||
|
x=centerness_flatten, label=tag_center_flatten)
|
||
|
ctn_loss = fluid.layers.elementwise_mul(
|
||
|
ctn_loss, mask_positive_float, axis=0) / num_positive_fp32
|
||
|
loss_all = {
|
||
|
"loss_centerness": fluid.layers.reduce_sum(ctn_loss),
|
||
|
"loss_cls": fluid.layers.reduce_sum(cls_loss),
|
||
|
"loss_box": fluid.layers.reduce_sum(reg_loss)
|
||
|
}
|
||
|
return loss_all
|